Did you know ... | Search Documentation: |
The class PlQuery |
This class encapsulates the call-backs onto Prolog.
user
.TRUE
if
successful and FALSE
if there are no (more) solutions.
Prolog exceptions are mapped to C++ exceptions.Below is an example listing the currently defined Prolog modules to the terminal.
PREDICATE(list_modules, 0) { PlTermv av(1); PlQuery q("current_module", av); while( q.next_solution() ) cout << (char *)av[0] << endl; return TRUE; }
In addition to the above, the following functions have been defined.
The class PlFrame provides an interface to discard unused term-references as well as rewinding unifications (data-backtracking). Reclaiming unused term-references is automatically performed after a call to a C++-defined predicate has finished and returns control to Prolog. In this scenario PlFrame is rarely of any use. This class comes into play if the toplevel program is defined in C++ and calls Prolog multiple times. Setting up arguments to a query requires term-references and using PlFrame is the only way to reclaim them.
A typical use for PlFrame is the definition of C++ functions that call Prolog and may be called repeatedly from C++. Consider the definition of assertWord(), adding a fact to word/1:
void assertWord(const char *word) { PlFrame fr; PlTermv av(1); av[0] = PlCompound("word", PlTermv(word)); PlQuery q("assert", av); q.next_solution(); }
This example shows the most sensible use of PlFrame if it is used in the context of a foreign predicate. The predicate's thruth-value is the same as for the Prolog unification (=/2), but has no side effects. In Prolog one would use double negation to achieve this.
PREDICATE(can_unify, 2) { PlFrame fr; int rval = (A1=A2); fr.rewind(); return rval; }