Comparison and unification of arbitrary terms. Terms are ordered in
the so-called ``standard order''. This order is defined as follows:

`Variables` < `Numbers` < `Strings`
< `Atoms` < `Compound Terms`
- Variables are sorted by address.
`Numbers` are compared by value. Mixed integer/float are
compared as floats. If the comparison is equal, the float is considered
the smaller value. If the Prolog flag iso
is defined, all floating point numbers precede all integers.
`Strings` are compared alphabetically.
`Atoms` are compared alphabetically.
`Compound` terms are first checked on their arity, then on
their functor name (alphabetically) and finally recursively on their
arguments, leftmost argument first.

Although variables are ordered, there are some unexpected properties
one should keep in mind when relying on variable ordering. This applies
to the predicates below as to predicate such as sort/2
as well as libraries that reply on ordering such as library `library(assoc)`

and library
`library(ordsets)`

. Obviously, an established relation `A` `@<`

`B`
no longer holds if `A` is unified with e.g., a number. Also
unifying `A` with `B` invalidates the relation because
they become equivalent (==/2) after unification.

As stated above, variables are sorted by address, which implies that
they are sorted by `age', where `older' variables are ordered before
`newer' variables. If two variables are unified their `shared' age is
the age of oldest variable. This implies we can examine a list of sorted
variables with `newer' (fresh) variables without invalidating the order.
Attaching an *attribute*, see section
7.1, turns an `old' variable into a `new' one as illustrated below.
Note that the first always succeeds as the first argument of a term is
always the oldest. This only applies for the *first* attribute,
i.e., further manipulation of the attribute list does *not*
change the `age'.

?- T = f(A,B), A @< B.
T = f(A, B).
?- T = f(A,B), put_attr(A, name, value), A @< B.
false.

The above implies you *can* use e.g., an assoc (from library
`library(assoc)`

, implemented as an AVL tree) to maintain
information about a set of variables. You must be careful about what you
do with the attributes though. In many cases it is more robust to use
attributes to register information about variables.

- [ISO]
`@Term1` **==** `@Term2` - True if
`Term1` is equivalent to `Term2`. A variable
is only identical to a sharing variable.
- [ISO]
`@Term1` **\==** `@Term2` - Equivalent to
`\+`

Term1 == Term2

.
- [ISO]
`@Term1` **@<** `@Term2` - True if
`Term1` is before `Term2` in the standard
order of terms.
- [ISO]
`@Term1` **@=<** `@Term2` - True if both terms are equal (==/2)
or
`Term1` is before `Term2` in the standard order of
terms.
- [ISO]
`@Term1` **@>** `@Term2` - True if
`Term1` is after `Term2` in the standard order
of terms.
- [ISO]
`@Term1` **@>=** `@Term2` - True if both terms are equal (==/2)
or
`Term1` is after `Term2` in the standard order of
terms.
- [ISO]
**compare**(`?Order,
@Term1, @Term2`) - Determine or test the
`Order` between two terms in the standard
order of terms. `Order` is one of `<`

, `>`

or `=`

, with the obvious meaning.