/* Part of CLP(R) (Constraint Logic Programming over Reals) Author: Leslie De Koninck E-mail: Leslie.DeKoninck@cs.kuleuven.be WWW: http://www.swi-prolog.org http://www.ai.univie.ac.at/cgi-bin/tr-online?number+95-09 Copyright (C): 2004, K.U. Leuven and 1992-1995, Austrian Research Institute for Artificial Intelligence (OFAI), Vienna, Austria This software is part of Leslie De Koninck's master thesis, supervised by Bart Demoen and daily advisor Tom Schrijvers. It is based on CLP(Q,R) by Christian Holzbaur for SICStus Prolog and distributed under the license details below with permission from all mentioned authors. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA As a special exception, if you link this library with other files, compiled with a Free Software compiler, to produce an executable, this library does not by itself cause the resulting executable to be covered by the GNU General Public License. This exception does not however invalidate any other reasons why the executable file might be covered by the GNU General Public License. */ :- module(itf_r, [ do_checks/8 ]). :- use_module(library(apply), [maplist/2]). :- use_module(bv_r, [ deref/2, detach_bounds_vlv/5, solve/1, solve_ord_x/3 ]). :- use_module(nf_r, [ nf/2 ]). :- use_module(store_r, [ add_linear_11/3, indep/2, nf_coeff_of/3 ]). :- use_module('../clpqr/class', [ class_drop/2 ]). :- use_module(library(error), [type_error/2]). do_checks(Y,Ty,St,Li,Or,Cl,No,Later) :- numbers_only(Y), verify_nonzero(No,Y), verify_type(Ty,St,Y,Later,[]), verify_lin(Or,Cl,Li,Y), maplist(call,Later). numbers_only(Y) :- ( var(Y) -> true ; integer(Y) -> true ; float(Y) -> true ; type_error(real, Y) ). % verify_nonzero(Nonzero,Y) % % if Nonzero = nonzero, then verify that Y is not zero % (if possible, otherwise set Y to be nonzero) verify_nonzero(nonzero,Y) :- ( var(Y) -> ( get_attr(Y,clpqr_itf,Att) -> setarg(8,Att,nonzero) ; put_attr(Y,clpqr_itf,t(clpr,n,n,n,n,n,n,nonzero,n,n,n)) ) ; ( Y < -1.0e-10 -> true ; Y > 1.0e-10 ) ). verify_nonzero(n,_). % X is not nonzero % verify_type(type(Type),strictness(Strict),Y,[OL|OLT],OLT) % % if possible verifies whether Y satisfies the type and strictness of X % if not possible to verify, then returns the constraints that follow from % the type and strictness verify_type(type(Type),strictness(Strict),Y) --> verify_type2(Y,Type,Strict). verify_type(n,n,_) --> []. verify_type2(Y,TypeX,StrictX) --> {var(Y)}, !, verify_type_var(TypeX,Y,StrictX). verify_type2(Y,TypeX,StrictX) --> {verify_type_nonvar(TypeX,Y,StrictX)}. % verify_type_nonvar(Type,Nonvar,Strictness) % % verifies whether the type and strictness are satisfied with the Nonvar verify_type_nonvar(t_none,_,_). verify_type_nonvar(t_l(L),Value,S) :- ilb(S,L,Value). verify_type_nonvar(t_u(U),Value,S) :- iub(S,U,Value). verify_type_nonvar(t_lu(L,U),Value,S) :- ilb(S,L,Value), iub(S,U,Value). verify_type_nonvar(t_L(L),Value,S) :- ilb(S,L,Value). verify_type_nonvar(t_U(U),Value,S) :- iub(S,U,Value). verify_type_nonvar(t_Lu(L,U),Value,S) :- ilb(S,L,Value), iub(S,U,Value). verify_type_nonvar(t_lU(L,U),Value,S) :- ilb(S,L,Value), iub(S,U,Value). % ilb(Strict,Lower,Value) & iub(Strict,Upper,Value) % % check whether Value is satisfiable with the given lower/upper bound and % strictness. % strictness is encoded as follows: % 2 = strict lower bound % 1 = strict upper bound % 3 = strict lower and upper bound % 0 = no strict bounds ilb(S,L,V) :- S /\ 2 =:= 0, !, L - V < 1.0e-10. % non-strict ilb(_,L,V) :- L - V < -1.0e-10. % strict iub(S,U,V) :- S /\ 1 =:= 0, !, V - U < 1.0e-10. % non-strict iub(_,U,V) :- V - U < -1.0e-10. % strict % % Running some goals after X=Y simplifies the coding. It should be possible % to run the goals here and taking care not to put_atts/2 on X ... % % verify_type_var(Type,Var,Strictness,[OutList|OutListTail],OutListTail) % % returns the inequalities following from a type and strictness satisfaction % test with Var verify_type_var(t_none,_,_) --> []. verify_type_var(t_l(L),Y,S) --> llb(S,L,Y). verify_type_var(t_u(U),Y,S) --> lub(S,U,Y). verify_type_var(t_lu(L,U),Y,S) --> llb(S,L,Y), lub(S,U,Y). verify_type_var(t_L(L),Y,S) --> llb(S,L,Y). verify_type_var(t_U(U),Y,S) --> lub(S,U,Y). verify_type_var(t_Lu(L,U),Y,S) --> llb(S,L,Y), lub(S,U,Y). verify_type_var(t_lU(L,U),Y,S) --> llb(S,L,Y), lub(S,U,Y). % llb(Strict,Lower,Value,[OL|OLT],OLT) and lub(Strict,Upper,Value,[OL|OLT],OLT) % % returns the inequalities following from the lower and upper bounds and the % strictness see also lb and ub llb(S,L,V) --> {S /\ 2 =:= 0}, !, [clpr:{L =< V}]. llb(_,L,V) --> [clpr:{L < V}]. lub(S,U,V) --> {S /\ 1 =:= 0}, !, [clpr:{V =< U}]. lub(_,U,V) --> [clpr:{V < U}]. % % We used to drop X from the class/basis to avoid trouble with subsequent % put_atts/2 on X. Now we could let these dead but harmless updates happen. % In R however, exported bindings might conflict, e.g. 0 \== 0.0 % % If X is indep and we do _not_ solve for it, we are in deep shit % because the ordering is violated. % verify_lin(order(OrdX),class(Class),lin(LinX),Y) :- !, ( indep(LinX,OrdX) -> detach_bounds_vlv(OrdX,LinX,Class,Y,NewLinX), % if there were bounds, they are requeued already class_drop(Class,Y), nf(-Y,NfY), deref(NfY,LinY), add_linear_11(NewLinX,LinY,Lind), ( nf_coeff_of(Lind,OrdX,_) -> % X is element of Lind solve_ord_x(Lind,OrdX,Class) ; solve(Lind) % X is gone, can safely solve Lind ) ; class_drop(Class,Y), nf(-Y,NfY), deref(NfY,LinY), add_linear_11(LinX,LinY,Lind), solve(Lind) ). verify_lin(_,_,_,_).