/* Part of SWI-Prolog Author: David Warren and Jan Wielemaker E-mail: jan@swi-prolog.org WWW: https://www.swi-prolog.org Copyright (c) 2019-2024, CWI, Amsterdam SWI-Prolog Solutions b.v. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This module is based on the XSB ``basics.P`` module, licensed under LGPLv2. The SWI-Prolog port has been re-licensed under BSD-2 with permission from David Warren, Sep 11, 2024. */ :- module(basics, [ append/3, flatten/2, ith/3, length/2, member/2, memberchk/2, subset/2, reverse/2, select/3, for/3, % ?I,+B1,+B2) between/3, ground/1, copy_term/2, log_ith/3, log_ith_bound/3, log_ith_new/3, log_ith_to_list/2, logk_ith/4, comma_memberchk/2, abscomma_memberchk/2, comma_to_list/2, comma_length/2, comma_member/2, comma_append/3 ]). :- use_module(library(lists)). /** XSB basics.P emulation This module provides the XSB `basics` module. The implementation either simply uses SWI-Prolog built-ins and libraries or is copied from the XSB file. */ %! for(?I,+B1,+B2) % % Nondeterministically binds I to all integer values from B1 to B2 % inclusive. B1 and B2 must be integers, but either may be larger. for(I, B1, B2) :- B2 >= B1, !, between(B1, B2, I). for(I, B1, B2) :- End is B1 - B2, between(0, End, Diff), I is B1-Diff. %! ith(?Index, +List, ?Element) ith(Index,List,Element) :- nth1(Index, List, Element). log_ith(K,T,E) :- (integer(K) % integer -> log_ith0(K,T,E,1) ; log_ith1(K,T,E,1) ). % K is bound log_ith0(K,[L|R],E,N) :- (K < N -> bintree0(K,L,E,N) ; K1 is K-N, N2 is N+N, log_ith0(K1,R,E,N2) ). % First arg (K) is bound bintree0(K,T,E,N) :- (N > 1 -> T = [L|R], N2 is N // 2, (K < N2 -> bintree0(K,L,E,N2) ; K1 is K - N2, bintree0(K1,R,E,N2) ) ; K =:= 0, T = E ). % K is unbound log_ith1(K,[L|_R],E,N) :- bintree1(K,L,E,N). log_ith1(K,[_L|R],E,N) :- N1 is N + N, log_ith1(K1,R,E,N1), K is K1 + N. % First arg (K) is unbound bintree1(0,E,E,1). bintree1(K,[L|R],E,N) :- N > 1, N2 is N // 2, (bintree1(K,L,E,N2) ; bintree1(K1,R,E,N2), K is K1 + N2 ). % log_ith_bound(Index,ListStr,Element) is like log_ith, but only % succeeds if the Index_th element of ListStr is nonvariable and equal % to Element. This can be used in both directions, and is most useful % with Index unbound, since it will then bind Index and Element for each % nonvariable element in ListStr (in time proportional to N*logN, for N % the number of nonvariable entries in ListStr.) log_ith_bound(K,T,E) :- nonvar(T), (integer(K) % integer -> log_ith2(K,T,E,1) ; log_ith3(K,T,E,1) ). log_ith2(K,[L|R],E,N) :- (K < N -> nonvar(L),bintree2(K,L,E,N) ; nonvar(R), K1 is K-N, N2 is N+N, log_ith2(K1,R,E,N2) ). bintree2(0,E,E,1) :- !. bintree2(K,[L|R],E,N) :- N > 1, N2 is N // 2, (K < N2 -> nonvar(L), bintree2(K,L,E,N2) ; nonvar(R), K1 is K - N2, bintree2(K1,R,E,N2) ). log_ith3(K,[L|_R],E,N) :- nonvar(L), bintree3(K,L,E,N). log_ith3(K,[_L|R],E,N) :- nonvar(R), N1 is N + N, log_ith3(K1,R,E,N1), K is K1 + N. bintree3(0,E,E,1). bintree3(K,[L|R],E,N) :- N > 1, N2 is N // 2, (nonvar(L), bintree3(K,L,E,N2) ; nonvar(R), bintree3(K1,R,E,N2), K is K1 + N2 ). %% convert a log_ith structure to a list of nonempty elements log_ith_to_list(T,L) :- log_ith_to_list(T,0,L,[]). log_ith_to_list(T,K,L0,L) :- (var(T) -> L = L0 ; T = [F|R], log_ith_to_list_btree(F,K,L0,L1), K1 is K+1, log_ith_to_list(R,K1,L1,L) ). log_ith_to_list_btree(T,K,L0,L) :- (var(T) -> L = L0 ; K =:= 0 -> L0 = [T|L] ; T = [TL|TR], K1 is K-1, log_ith_to_list_btree(TL,K1,L0,L1), log_ith_to_list_btree(TR,K1,L1,L) ). /* log_ith_new(I,T,E) adds E to the "end" of the log_list and unifies I to its index. */ log_ith_new(I,T,E) :- (var(T) -> T = [E|_], I = 0 ; log_ith_new_o(I,T,E,1,1) ). log_ith_new_o(I,[L|R],E,K,NI) :- (var(R), log_ith_new_d(I,L,E,K,NIA) -> I is NI + NIA - 1 ; NNI is 2*NI, K1 is K+1, log_ith_new_o(I,R,E,K1,NNI) ). log_ith_new_d(I,T,E,K,NIA) :- (K =< 1 -> var(T), T=E, NIA = 0 ; K1 is K-1, T = [L|R], (var(R), log_ith_new_d(I,L,E,K1,NIA) -> true ; log_ith_new_d(I,R,E,K1,NNIA), NIA is NNIA + 2 ** (K1-1) ) ). /* logk_ith(+KBase,+Index,?ListStr,?Element) is similar log_ith/3 except it uses a user specified base of KBase, which must be between 2 and 255. log_ith uses binary trees with a list cons at each node; logk_ith uses a term of arity KBase at each node. KBase and Index must be bound to integers. */ % :- mode logk_ith(+,+,?,?). logk_ith(K,I,T,E) :- integer(K), integer(I), % integer logk_ith0(K,I,T,E,K). % I is bound logk_ith0(K,I,[L|R],E,N) :- (I < N -> ktree0(K,I,L,E,N) ; I1 is I - N, N2 is K*N, logk_ith0(K,I1,R,E,N2) ). % First arg (I) is bound ktree0(K,I,T,E,N) :- (var(T) -> functor(T,n,K) ; true ), (N > K -> N2 is N // K, N3 is I // N2 + 1, I1 is I rem N2, % mod overflows? arg(N3,T,T1), ktree0(K,I1,T1,E,N2) ; I1 is I+1, arg(I1,T,E) ). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Commautils. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% comma_to_list((One,Two),[One|Twol]):- !, comma_to_list(Two,Twol). comma_to_list(One,[One]). % warning: may bind variables. comma_member(A,','(A,_)). comma_member(A,','(_,R)):- comma_member(A,R). comma_member(A,A):- \+ (functor(A,',',2)). comma_memberchk(A,','(A,_)):- !. comma_memberchk(A,','(_,R)):- comma_memberchk(A,R). comma_memberchk(A,A):- \+ (functor(A,',',_)). abscomma_memberchk(A,A1):- A == A1,!. abscomma_memberchk(','(A,_),A1):- A == A1,!. abscomma_memberchk(','(_,R),A1):- abscomma_memberchk(R,A1). comma_length(','(_L,R),N1):- !, comma_length(R,N), N1 is N + 1. comma_length(true,0):- !. comma_length(_,1). comma_append(','(L,R),Cl,','(L,R1)):- !, comma_append(R,Cl,R1). comma_append(true,Cl,Cl):- !. comma_append(L,Cl,Out):- (Cl == true -> Out = L ; Out = ','(L,Cl)).