# -*- coding: utf-8 -*-
from __future__ import absolute_import, unicode_literals
from nltk import hmm

def _wikipedia_example_hmm():
    # Example from wikipedia
    # (http://en.wikipedia.org/wiki/Forward%E2%80%93backward_algorithm)

    states = ['rain', 'no rain']
    symbols = ['umbrella', 'no umbrella']

    A = [[0.7, 0.3], [0.3, 0.7]]  # transition probabilities
    B = [[0.9, 0.1], [0.2, 0.8]]  # emission probabilities
    pi = [0.5, 0.5]  # initial probabilities

    seq = ['umbrella', 'umbrella', 'no umbrella', 'umbrella', 'umbrella']
    seq = list(zip(seq, [None]*len(seq)))

    model = hmm._create_hmm_tagger(states, symbols, A, B, pi)
    return model, states, symbols, seq


def test_forward_probability():
    from numpy.testing import assert_array_almost_equal

    # example from p. 385, Huang et al
    model, states, symbols = hmm._market_hmm_example()
    seq = [('up', None), ('up', None)]
    expected = [
        [0.09, 0.02, 0.35],
        [0.0357, 0.0085, 0.1792]
    ]

    fp = 2**model._forward_probability(seq)

    assert_array_almost_equal(fp, expected)


def test_forward_probability2():
    from numpy.testing import assert_array_almost_equal

    model, states, symbols, seq = _wikipedia_example_hmm()
    fp = 2**model._forward_probability(seq)

    # examples in wikipedia are normalized
    fp = (fp.T / fp.sum(axis=1)).T

    # results are swapped to match our states order
    # FIXME: is it possible to make order stable?
    wikipedia_results = [
        [0.1818, 0.8182],
        [0.1166, 0.8834],
        [0.8093, 0.1907],
        [0.2692, 0.7308],
        [0.1327, 0.8673],
    ]

    assert_array_almost_equal(wikipedia_results, fp, 4)


def test_backward_probability():
    from numpy.testing import assert_array_almost_equal

    model, states, symbols, seq = _wikipedia_example_hmm()

    bp = 2**model._backward_probability(seq)
    # examples in wikipedia are normalized

    bp = (bp.T / bp.sum(axis=1)).T

    wikipedia_results = [
        # Forward-backward algorithm doesn't need b0_5,
        # so .backward_probability doesn't compute it.
        # [0.3531, 0.6469],
        [0.4077, 0.5923],
        [0.6237, 0.3763],
        [0.3467, 0.6533],
        [0.3727, 0.6273],
        [0.5, 0.5],
    ]

    assert_array_almost_equal(wikipedia_results, bp, 4)


def setup_module(module):
    from nose import SkipTest
    try:
        import numpy
    except ImportError:
        raise SkipTest("numpy is required for nltk.test.test_hmm")
