
Canny Bag o’ Tudor

An experimental Prolog ‘pack’ comprising technical spikes,
or otherwise useful, Prolog predicates that do not seem to
fit anywhere else

Roy Ratcliffe

SWI-Prolog

Contents

1 Canny bag o’ Tudor 4

2 library(canny/a) 5

3 library(canny/arch) 6

4 library(canny/arity) 7

5 library(canny/bits) 8

6 library(canny/cover) 10

7 library(canny/crc) 11

8 library(canny/docker): Canny Docker 12
8.1 Docker API Operations . 12

8.1.1 Example container operations . 13
8.1.2 Example network operations . 13
8.1.3 Restyling Keys . 14

8.2 Low-Level HTTP Requests . 14
8.2.1 Example usage . 14

9 library(canny/endian): Big- and little-endian grammars 22

10 library(canny/exe) 23
10.0.1Implementation Notes . 24

11 library(canny/files) 25

12 library(canny/hdx) 26

13 library(canny/maths) 27

14 library(canny/octet) 28

15 library(canny/pack) 29

16 library(canny/payloads): Local Payloads 30

1

17 library(canny/permutations) 32

18 library(canny/placeholders): Formatting Placeholders 33

19 library(canny/pop) 35

20 library(canny/redis) 36

21 library(canny/redis_streams) 38

22 library(canny/shifter) 39

23 library(canny/situations) 40

24 library(canny/situations_debugging) 43

25 library(canny/z) 44

26 library(data/frame) 45

27 library(dcg/endian) 46

28 library(dcg/files) 47

29 library(doc/latex) 48

30 library(docker/random_names) 49

31 library(gh/api): GitHub API 50

32 library(html/scrapes) 52

33 library(ieee/754) 53

34 library(linear/algebra): Linear algebra 54

35 library(ollama/chat): Ollama Chat 57
35.1Usage . 57

36 library(os/apps): Operation system apps 59
36.1App configuration . 59
36.2Start up and shut down . 60
36.3Broadcasts . 60
36.4Usage . 60

36.4.1Apps testing . 61

37 library(os/lc) 63

38 library(os/search_paths) 64

39 library(os/windows): Microsoft Windows Operating System 65

2

40 library(paxos/http_handlers): Paxos HTTP Handlers 66
40.1Serialisation . 67

41 library(paxos/udp_broadcast): Paxos on UDP 68
41.1Docker Stack . 68

42 library(print/(table)) 69

43 library(proc/loadavg) 70

44 library(random/temporary) 71

45 library(read/until) 72

46 library(scasp/just_dot) 73

47 library(swi/atoms) 75

48 library(swi/codes) 76

49 library(swi/compounds) 77

50 library(swi/dicts): SWI-Prolog dictionary extensions 78
50.0.1Non-deterministic ‘dict_member(?Dict, ?Member)‘ 78

51 library(swi/lists) 82

52 library(swi/memfilesio): I/O on Memory Files 84
52.1Bytes and octets . 84

53 library(swi/options) 85

54 library(swi/paxos) 86

55 library(swi/pengines) 87

56 library(swi/settings) 89

57 library(swi/streams) 90

58 library(swi/zip) 91

59 library(with/output) 92

3

Chapter 1

Canny bag o’ Tudor

!cov !fail
See PDF for details.
This is an experimental SWI-Prolog ’pack’ comprising technical spikes, or other-

wise useful, Prolog predicates that do not seem to fit anywhere else.
The package name reflects a mixed bag of bits and pieces. It’s a phrase from the

North-East corner of England, United Kingdom. ’Canny’ means nice, or good. Tudor
is a crisp (chip, in American) manufacturer. This pack comprises various unrelated
predicates that may, or may not, be tasty; like crisps in a bag, the library sub-folders
and module names delineate the disparate components. If the sub-modules grow
to warrant a larger division, they can ultimately fork their own pack.

The pack comprises experimental modules subject to change and revision due
to its nature. The pack’s major version will always remain 0. Work in progress!

4

https://shields.io/endpoint?url=https://gist.githubusercontent.com/royratcliffe/ec92ac84832950815861d35c2f661953/raw/cov.json
https://shields.io/endpoint?url=https://gist.githubusercontent.com/royratcliffe/ec92ac84832950815861d35c2f661953/raw/fail.json
https://github.com/royratcliffe/canny_tudor/blob/main/man/canny_tudor.pdf

Chapter 2

library(canny/a)

a_star(+Heuristics0, -Heuristics, +Options) [det]
Offers a static non-Constraint Handling Rules interface to a_star/4. Performs
a simplified A* search using CHR where the input is a list of all the possible
arcs along with their cost. Each element in Heuristics0 is a h/3 term specifying
source of the heuristic arc, the arc’s destination node and the cost of traversing
in-between. Nodes specify distinct but arbitrary terms. Only terms initial
and final have semantic significance. You can override these using Options
for initially and finally. For Options see below.
Simplifies the CHR implementation by accepting h/3 terms as a list rather than
using predicates to expand nodes. We match heuristic terms using member/2
from the list of heuristics. This interface does not replace a_star/4 since having
a pre-loaded list of heuristics is not always possible or feasible, for example
when the number of arcs is very large such as when traversing a grid of arcs.
Here is a simple example.

?- a_star([h(a, b, 1)], A, [initially(a), finally(b)]).
A = [h(a, b, 1)].

Options include:

• initially(Initial) defines the initial node, defaults to atom initial.
• finally(Final) defines the final node, atom final by default.
• reverse(Boolean) reverses the outgoing selected Heuristics so that the

order reflects the forward order of traverse. The underlying expansion
pushes path nodes to the head of the list resulting in a final-to-initial
traversal by default.

See also https://rosettacode.org/wiki/A*_search_algorithm

5

https://rosettacode.org/wiki/A*_search_algorithm

Chapter 3

library(canny/arch)

current_arch(?Arch:pair) [semidet]
Unifies Arch with the current host’s architecture and operating system. Use-
fully reads the pair as a Prolog term with which you can unify its component
parts.
The Prolog arch flag combines both the architecture and the operating system
as a dash-separated pair. The predicate splits these two components apart
by reading the underlying atom as a Prolog term. This makes an assumption
about the format of the arch flag.

current_arch_os(?Arch, ?OS) [semidet]
Unifies OS with the current operating system. Splits the host architecture into
its two components: the bit-wise sub-architecture and the operating system.
Operating system is one of: win32 or win64 for Windows, darwin for macOS,
or linux for Linux. Maps architecture bit-width to an atomic Arch token for
contemporary 64-bit hosts, one of: x64, x86_64. Darwin and Linux report the
latter, Windows the former.

current_os(?OS) [semidet]
Succeeds for current OS, one of:

• win32
• win64
• darwin
• linux

6

Chapter 4

library(canny/arity)

arities(?Arities0:compound, ?Arities:list) [semidet]
Suppose that you want to accept arity arguments of the form {A, ...} where A
is the first integer element of a comma-separated list of arity numbers. The
Arities0 form is a compound term enclosed within braces, comprising integers
delimited by commas. The arities/2 predicate extracts the arities as a list.
Empty lists fail. Also, lists containing non-integers fail to unify. The imple-
mentation works forwards and backwards: arity compound to arity list or vice
versa, mode (+, -) or mode (-, +).

7

Chapter 5

library(canny/bits)

bits(+Shift, +Width, ?Word, ?Bits, ?Rest) [semidet]
bits(+ShiftWidthPair, ?Word, ?Bits, ?Rest) [semidet]
bits(+ShiftWidthPair, ?Word, ?Bits) [semidet]

Unifies Bits within a Word using Shift and Width. All arguments are integers
treated as words of arbitrary bit-width.
The implementation uses relational integer arithmetic, i.e. CLP(FD). Hence
allows for forward and backward transformations from Word to Bits and vice
versa. Integer Word applies a Shift and bit Width mask to integer Bits. Bits is
always a smaller integer. Decomposes the problem into shifting and masking.
Treats these operations separately.

Arguments
Width of Bits from Word after Shift. Width of zero always fails.

bit_fields(+Fields:list, +Shift:integer, +Int:integer) [semidet]
bit_fields(+Fields:list, +Shift:integer, +Int0:integer, -Int:integer) [semidet]

Two versions of the predicate unify Value:Width bit fields with integers. The
arity-3 version requires a bound Int from which to find unbound (or bound)
values in the Fields; used to extract values from integers else check values
semi-deterministically. The arity-4 version of the predicate accumulates
bit-field values by OR-wise merging shifted bits from Int0 to Int.
The predicates are semi-deterministic. They can fail. Failure occurs when the
bit-field Width integers do not sum to Shift.

Arguments
Fields is a list of value and width terms of the form

Value:Width where Width is an integer; Value is either
a variable or an integer.

Shift is an integer number of total bits, e.g. 8 for eight-bit
bytes, 16 for sixteen-bit words and so on.

rbit(+Shift:integer, +Int:integer, ?Reverse:integer) [semidet]
Bit reversal over a given span of bits. The reverse bits equal the mirror image of
the original; integer 1 reversed in 16 bits becomes 8000_{16} for instance.

8

Arity-3 rbit/3 predicate throws away the residual. Any bit values lying outside
the shifting span disappear; they do not appear in the residual and the pred-
icate discards them. The order of the sub-terms is not very important, except
for failures. Placing succ first ensures that recursive shifting fails if Shift is not
a positive integer; it triggers an exception if not actually an integer.

9

Chapter 6

library(canny/cover)

coverages_by_module(:Goal, -Coverages:dict) [det]
Calls Goal within show_coverage/1 while capturing the resulting lines of
output; Goal is typically run_tests/0 for running all loaded tests. Parses the
lines for coverage statistics by module. Ignores lines that do not represent
coverage, and also ignores lines that cover non-module files. Automatically
matches prefix-truncated coverage paths as well as full paths.

Arguments
Coverages is a module-keyed dictionary of sub-dictionaries carry-

ing three keys: clauses, cov and fail.

coverage_for_modules(:Goal, +Modules, -Module, -Coverage) [nondet]
Non-deterministically finds Coverage dictionaries for all Modules. Bypasses
those modules excluded from the required list, typically the list of modules
belonging to a particular pack and excluding all system and other supporting
modules.

10

Chapter 7

library(canny/crc)

crc(+Predefined, -CRC) [semidet]
Builds a predefined CRC accumulator.

Arguments
Predefined specifies a predefined CRC computation.
CRC a newly-initialised CRC term with the correct polyno-

mial, initial value and any necessary options such as
bit reversal and inversion value.

crc_property(+CRC, ?Property) [semidet]
Extracts the CRC’s checksum for comparison, or unifies with other interesting
values belonging to a CRC accumulator.

crc(+CRC0, +Term, -CRC) [semidet]
Mutates CRC0 to CRC by feeding in a byte code, or a list of byte codes.

Arguments
CRC0 the initial or thus-far accumulated CRC.
Term a byte code or a list of byte codes.
CRC the updated CRC.

crc_16_mcrf4xx(-Check) [det]
Initialises CRC-16/MCRF4XX checksum.

crc_16_mcrf4xx(+Check0, +Data, -Check) [det]
Accumulates CRC-16/MCRF4XX checksum using optimal shifting and
exclusive-OR operations.

11

Chapter 8

library(canny/docker): Canny
Docker

author Roy Ratcliffe
version 0.1.0

This module provides an interface to the Docker API, allowing interaction with
Docker services through HTTP requests. It defines settings for the Docker daemon
URL and API version, and provides a predicate to construct URLs and options for
various Docker operations.

It supports operations such as listing containers, creating containers, and check-
ing the Docker system status. The module uses Prolog dictionaries to represent
JSON data structures, making it easy to work with the Docker API’s responses. It
also includes utility predicates for transforming dictionary key-value pairs and con-
structing paths for API requests. It is designed to be used in conjunction with the
HTTP client library to make requests to the Docker API. It provides a flexible way
to interact with Docker services, allowing for dynamic construction of API requests
based on the specified operations and options.

8.1 Docker API Operations

The module supports various Docker API operations, such as:

• system_ping: Check if the Docker daemon is reachable.
• container_list: List all containers.
• container_create: Create a new container.
• network_create: Create a new network.
• network_delete: Delete a network.

These operations are defined in the Docker API specification and can be accessed
through the docker/3 predicate, which constructs the appropriate URL and options
based on the operation and the settings defined in this module.

12

8.1.1 Example container operations

The following examples demonstrate how to list and create Docker containers us-
ing the docker/3 predicate. The first example lists all containers, and the second
example creates a new container with a specified image and labels.

?- docker(container_list, Reply).
Reply = [json([’Id’=’abc123’, ’Image’=’ubuntu:latest’, ...|...])].
?- docker(container_create, Reply, [post(json(json([’Image’=ubuntu,

’Labels’=json([’Hello’=world)])))])).
Reply = _{Id:"abc123", Warnings:[]}.

The container_list/2 predicate retrieves a list of all containers, returning a list
of dictionaries representing each container. Each dictionary contains information
such as the container ID, image, and other metadata. The container_create/3 pred-
icate creates a new container with the specified image and labels. The labels are
specified as a JSON object, allowing for flexible tagging of containers with meta-
data. The reply contains the ID of the created container and any warnings that may
have occurred during the creation process. The labels can be used to organise and
manage containers based on specific criteria, such as purpose or owner.

8.1.2 Example network operations

The following examples demonstrate how to create and delete a Docker network using
the docker/3 predicate. The network is created with a name and labels, and then
deleted by its name.

?- docker(network_create(_{name:my_network, labels:_{’my.label’:’my-value’}}), A).
A = _{id:"1be0f5d2337ff6a6db79a59707049c199268591f49e3c9054fc698fe7916f9c3", warning:""}.

38 ?- docker(network_delete(my_network), A).
A = ’’.

Note that the network_create/2 predicate constructs a network with the specified
name and labels, and returns a reply containing the network ID and any warnings.
The network_delete/2 predicate deletes the network by its name, returning an empty
reply if successful.

Labels can be used to tag networks with metadata, which can be useful for or-
ganising and managing Docker resources. The labels are specified as a dictionary
with key-value pairs, where the keys and values are strings. The labels are included
in the network configuration when creating a network, allowing for flexible and dy-
namic tagging of Docker resources.

Labels can be used to filter and query networks, making it easier to manage
Docker resources based on specific criteria. For example, you can create a network
with a label indicating its purpose or owner, and then use that label to find networks
that match certain criteria. This allows for more organised and efficient manage-
ment of Docker resources, especially in larger deployments with many networks and
containers.

13

8.1.3 Restyling Keys

The docker/3 predicate transforms the keys in the input dictionary to CamelCase
format using the restyle_key/3 predicate, which applies the Docker-specific Camel-
Case naming convention to the keys. This transformation is useful for ensuring
that the keys in the input dictionary match the expected format for the Docker API,
making it easier to work with the API and ensuring compatibility with the expected
request format.

The transformation is applied recursively to all key-value pairs in the input dic-
tionary, ensuring that all keys are transformed to the correct format before making
the request to the Docker API. The reverse transformation is applied to the reply
dictionary, which does not retain the original key names as returned by the Docker
API. Label keys are also transformed to CamelCase format, ensuring consistency in
the naming convention used for labels in the Docker API requests and responses.

8.2 Low-Level HTTP Requests

The module provides a low-level interface to the Docker API, allowing for custom
HTTP requests to be made. The docker/3 predicate constructs the URL and options
for the specified operation, and uses the http_get/3 predicate to make the request.
The options can include HTTP methods, headers, and other parameters as needed
for the specific operation.

The url_options/4 predicate is used to construct the URL and options for a spe-
cific Docker operation. It retrieves the operation details from the Docker API speci-
fication and formats the path according to the specified version and operation. The
resulting URL and options can be used with the HTTP client to make requests to the
Docker API.

8.2.1 Example usage

The url_options/4 predicate can be used to construct the URL and options for a spe-
cific Docker operation. For example, to get the URL and options for the system_ping
operation, you can use:

?- [library(http/http_client)].
true.

?- canny_docker:url_options(system_ping, URL, Options),
http_get(URL, Reply, Options).

URL = [path(’/v1.49/_ping’), protocol(tcp), host(localhost), port(2375)],
Options = [method(get), accept(["text/plain"])],
Reply = ’OK’.

For listing containers, you can use:

?- canny_docker:url_options(container_list, URL, Options),
http_get(URL, Reply, Options).

URL = [path(’/v1.49/containers/json’), protocol(tcp), host(localhost), port(2375)],
Options = [method(get), accept(["application/json"])],
Reply = [json([’Id’=..., ...|...])].

14

For creating a container, you can use:

?- docker(container_create, A, [post(json(json([’Image’=ubuntu,
’Labels’=json([’Hello’=world])])))]).

This example creates a new Docker container with the specified image and labels.
Notice that the post request uses json(json(...)) to specify the JSON body of the
request.

docker(+Ask, -Reply) [det]
Issues a request to the Docker API using the specified Ask term and returns
the Reply. The Ask term may be a compound specifying the operation to
perform together with any required arguments.
The Docker API request comprises:

• a path with zero or more placeholders,
• a method,
• zero or more required or optional search parameters,
• a JSON body for POST requests.

This implies that, for the least amount of additional information, a request is
just a path with a method, e.g., a GET, HEAD or DELETE request. From that
point onward, requests grow in complexity involving or more of the following:
path placeholders, query parameters, a request body.
The complexity of the request can vary significantly based on the operation be-
ing performed and the specific requirements of the Docker API. The docker/2
predicate is designed to handle these variations and provide a consistent in-
terface for interacting with the Docker API. It abstracts away the details of
constructing the request and processing the response, allowing users to focus
on the high-level operation they want to perform. Path placeholders appear
in the first Ask term argument as atomic values. URL query parameters are
specified as a list of key-value pairs in the Ask term argument. POST request
payloads are specified as a Prolog dictionary as the Ask term.
The Ask term is a compound term that specifies the operation to perform, such
as container_list or system_ping. The Reply is a Prolog term that represents
the response from the Docker API, which is typically a Prolog dictionary or list,
depending on the operation.
The predicate constructs the URL and options based on the operation and the
settings defined in this module. It uses the ask/4 predicate to determine the
path, method, and any additional options required for the request. The URL
is constructed by appending the path to the daemon_url setting, and the HTTP
request is made using the http_get/3 predicate from the HTTP client library.

15

The Reply is then processed to ensure that the keys in the response are trans-
formed to CamelCase format using the restyle_value/3 predicate. This trans-
formation is useful for ensuring that the keys in the response match the ex-
pected format for the Docker API, making it easier to work with the API and
ensuring compatibility with the expected response format.

Arguments
Ask The Ask term specifies the operation to perform, which

may include path placeholders, query parameters, and
a request body. The Ask term is a compound term that
identifies the operation and provides any necessary ar-
guments or parameters for the request. The Ask term
can be a simple atom for operations with no arguments,
or it can be a more complex term that includes argu-
ments. The Ask term is used to construct the URL
and options for the request, allowing for flexible and dy-
namic construction of API requests based on the spec-
ified operation and options.

Reply The Reply is the response from the Docker API, which
is typically a Prolog dictionary or list, depending on the
operation. It can also be an atom. The Reply is a Prolog
term that represents the data returned by the Docker
API after processing the request. It contains the results
of the operation, such as a list of containers, the status
of a container, or the result of a command.

docker(+Operation, -Reply, +Options) [det]
Makes a request to the Docker API using the specified operation and options.
The operation is a string that identifies the Docker API operation to perform,
such as container_list or system_ping. The predicate constructs the URL and
options based on the operation and the settings defined in this module.
Builds HTTP request options for the Docker API using the base URL from
the daemon_url setting. The path and HTTP method are determined by
path_and_method/4, and the resulting options are suitable for making requests
to the Docker API.
The predicate constructs the URL by concatenating the base URL with the
path and method. The daemon_url setting provides the base URL, and the
api_version setting specifies the version of the Docker API.

Arguments

16

Operation The operation to perform, which determines the path
and method, as well as any additional options.

Reply The response from the Docker API, which is typically a
Prolog dictionary or list, depending on the operation.

Options This is a list of options that control both how the path is
formatted and how the HTTP request is made. For path
formatting, options are terms like id(Value) that pro-
vide values for placeholders in the path template. For
the HTTP request, options can include settings such
as headers, authentication, or other parameters sup-
ported by the HTTP client.

docker_path_options(?Operation, -Path, -Options) [semidet]
Constructs the Path and Options for a Docker API operation. The predicate
retrieves the operation details from the Docker API specification and formats
the path according to the default version and operation. The resulting path
and options can be used with the HTTP client to make requests to the Docker
API.
The predicate uses the docker_path_options/4 predicate to construct the path
and options for the specified operation. It retrieves the operation details from
the Docker API specification and formats the path according to the specified
version and operation. The resulting path and options can be used with the
HTTP client to make requests to the Docker API.

build_prune ’/v1.49/build/prune’ post
config_create ’/v1.49/configs/create’ post
config_delete ’/v1.49/configs/{id}’ delete
config_inspect ’/v1.49/configs/{id}’ get
config_list ’/v1.49/configs’ get
config_update ’/v1.49/configs/{id}/update’ post

For container operations, the following paths and options are defined:

17

container_archive ’/v1.49/containers/{id}/archive’ get
container_archive_info ’/v1.49/containers/{id}/archive’ head
container_attach ’/v1.49/containers/{id}/attach’ post
container_attach_websocket ’/v1.49/containers/{id}/attach/ws’ get
container_changes ’/v1.49/containers/{id}/changes’ get
container_create ’/v1.49/containers/create’ post
container_delete ’/v1.49/containers/{id}’ delete
container_exec ’/v1.49/containers/{id}/exec’ post
container_export ’/v1.49/containers/{id}/export’ get
container_inspect ’/v1.49/containers/{id}/json’ get
container_kill ’/v1.49/containers/{id}/kill’ post
container_list ’/v1.49/containers/json’ get
container_logs ’/v1.49/containers/{id}/logs’ get
container_pause ’/v1.49/containers/{id}/pause’ post
container_prune ’/v1.49/containers/prune’ post
container_rename ’/v1.49/containers/{id}/rename’ post
container_resize ’/v1.49/containers/{id}/resize’ post
container_restart ’/v1.49/containers/{id}/restart’ post
container_start ’/v1.49/containers/{id}/start’ post
container_stats ’/v1.49/containers/{id}/stats’ get
container_stop ’/v1.49/containers/{id}/stop’ post
container_top ’/v1.49/containers/{id}/top’ get
container_unpause ’/v1.49/containers/{id}/unpause’ post
container_update ’/v1.49/containers/{id}/update’ post
container_wait ’/v1.49/containers/{id}/wait’ post
put_container_archive ’/v1.49/containers/{id}/archive’ put

For distribution operations, the following paths and options are defined:

distribution_inspect ’/v1.49/distribution/{name}/json’ get

For exec operations, the following paths and options are defined:

exec_inspect ’/v1.49/exec/{id}/json’ get
exec_resize ’/v1.49/exec/{id}/resize’ post
exec_start ’/v1.49/exec/{id}/start’ post

For image operations, the following paths and options are defined:

18

image_build ’/v1.49/build’ post
image_commit ’/v1.49/commit’ post
image_create ’/v1.49/images/create’ post
image_delete ’/v1.49/images/{name}’ delete
image_get ’/v1.49/images/{name}/get’ get
image_get_all ’/v1.49/images/get’ get
image_history ’/v1.49/images/{name}/history’ get
image_inspect ’/v1.49/images/{name}/json’ get
image_list ’/v1.49/images/json’ get
image_load ’/v1.49/images/load’ post
image_prune ’/v1.49/images/prune’ post
image_push ’/v1.49/images/{name}/push’ post
image_search ’/v1.49/images/search’ get
image_tag ’/v1.49/images/{name}/tag’ post

For network operations, the following paths and options are defined:

network_connect ’/v1.49/networks/{id}/connect’ post
network_create ’/v1.49/networks/create’ post
network_delete ’/v1.49/networks/{id}’ delete
network_disconnect ’/v1.49/networks/{id}/disconnect’ post
network_inspect ’/v1.49/networks/{id}’ get
network_list ’/v1.49/networks’ get
network_prune ’/v1.49/networks/prune’ post

For node operations, the following paths and options are defined:

node_delete ’/v1.49/nodes/{id}’ delete
node_inspect ’/v1.49/nodes/{id}’ get
node_list ’/v1.49/nodes’ get
node_update ’/v1.49/nodes/{id}/update’ post

For plugin operations, the following paths and options are defined:

plugin_create ’/v1.49/plugins/create’ post
plugin_delete ’/v1.49/plugins/{name}’ delete
plugin_disable ’/v1.49/plugins/{name}/disable’ post
plugin_enable ’/v1.49/plugins/{name}/enable’ post
plugin_inspect ’/v1.49/plugins/{name}/json’ get
plugin_list ’/v1.49/plugins’ get
plugin_pull ’/v1.49/plugins/pull’ post
plugin_push ’/v1.49/plugins/{name}/push’ post
plugin_set ’/v1.49/plugins/{name}/set’ post
plugin_upgrade ’/v1.49/plugins/{name}/upgrade’ post
get_plugin_privileges ’/v1.49/plugins/privileges’ get

19

secret_create ’/v1.49/secrets/create’ post
secret_delete ’/v1.49/secrets/{id}’ delete
secret_inspect ’/v1.49/secrets/{id}’ get
secret_list ’/v1.49/secrets’ get
secret_update ’/v1.49/secrets/{id}/update’ post

For service operations, the following paths and options are defined:

service_create ’/v1.49/services/create’ post
service_delete ’/v1.49/services/{id}’ delete
service_inspect ’/v1.49/services/{id}’ get
service_list ’/v1.49/services’ get
service_logs ’/v1.49/services/{id}/logs’ get
service_update ’/v1.49/services/{id}/update’ post

For session operations, the following paths and options are defined:

session ’/v1.49/session’ post

For swarm operations, the following paths and options are defined:

swarm_init ’/v1.49/swarm/init’ post
swarm_inspect ’/v1.49/swarm’ get
swarm_join ’/v1.49/swarm/join’ post
swarm_leave ’/v1.49/swarm/leave’ post
swarm_unlock ’/v1.49/swarm/unlock’ post
swarm_unlockkey ’/v1.49/swarm/unlockkey’ get
swarm_update ’/v1.49/swarm/update’ post

For system operations, the following paths and options are defined:

system_auth ’/v1.49/auth’ post
system_data_usage ’/v1.49/system/df’ get
system_events ’/v1.49/events’ get
system_info ’/v1.49/info’ get
system_ping ’/v1.49/_ping’ get
system_ping_head ’/v1.49/_ping’ head
system_version ’/v1.49/version’ get

For task operations, the following paths and options are defined:

task_inspect ’/v1.49/tasks/{id}’ get
task_list ’/v1.49/tasks’ get
task_logs ’/v1.49/tasks/{id}/logs’ get

For volume operations, the following paths and options are defined:

20

volume_create ’/v1.49/volumes/create’ post
volume_delete ’/v1.49/volumes/{name}’ delete
volume_inspect ’/v1.49/volumes/{name}’ get
volume_list ’/v1.49/volumes’ get
volume_prune ’/v1.49/volumes/prune’ post
volume_update ’/v1.49/volumes/{name}’ put

Arguments
Operation The operation to perform, which determines the path

and method, as well as any additional options.
Path The path for the operation, which is derived from the

Docker API specification.
Options List of options for the HTTP request, such as method and

accept.

21

Chapter 9

library(canny/endian): Big- and
little-endian grammars

The endian predicates unify big- and little-endian words, longs and long words with
lists of octets by applying shifts and masks to correctly align integer values with
their endian-specific octet positions. They utilise integer-relational finite domain
CLP(FD) predicates in order to implement forward and reverse translation between
octets and integers.

Use of CLP allows the DCG clauses to express the integer relations between octets
and their integer interpretations implicitly. The constraints simultaneously define
a byte in terms of an octet and vice versa.

byte(?Byte:integer) // [semidet]
Parses or generates an octet for Byte. Bytes are eight bits wide and unify with
octets between 0 and 255 inclusive. Fails for octets falling outside this valid
range.

Arguments
Byte value of octet.

big_endian(?Width:integer, ?Word:integer) // [semidet]
Unifies big-endian words with octets.
Example as follows: four octets to one big-endian 32-bit word.

?- phrase(big_endian(32, A), [4, 3, 2, 1]),
format(’~16r~n’, [A]).

4030201

little_endian(?Width:integer, ?Word:integer) // [semidet]
Unifies little-endian words with octet stream.

22

Chapter 10

library(canny/exe)

exe(+Executable, +Arguments, +Options) [semidet]
Implements an experimental approach to wrapping process_create/3 using
concurrent/3. It operates concurrent pipe reads, pipe writes and process
waits. Predicate parameters match process_create/3 but with a few minor
but key improvements. New Options terms offer additional enhanced pipe
streaming arguments. See partially-enumerated list below.

• stdin(codes(Codes))
• stdin(atom(Atom))
• stdin(string(String))
• stdout(codes(Codes))
• stdout(atom(Atom))
• stdout(string(String))
• stderr(codes(Codes))
• stderr(atom(Atom))
• stderr(string(String))
• status(Status)

If Options specifies any of the above terms, exe/3 prepares goals to write, read
and wait concurrently as necessary according to the required configuration.
This implies that reading standard output and waiting for the process status
happens at the same time. Same goes for writing to standard input. The num-
ber of concurrent threads therefore exactly matches the number of concurrent
process goals. This goes for clean-up goals as well. Predicate concurrent/3
does not allow zero threads however; it throws a type_error. The implementa-
tion always assigns at least one thread which amounts to reusing the calling
thread non-concurrently.
All the std terms above can also take a stream options list, so can override
default encoding on the process pipes. The following example illustrates. It
sends a friendly "hello" in Mandarin Chinese through the Unix tee command
which relays the stream to standard output and tees it off to /dev/stderr or
standard error for that process. Note that exe/3 decodes the output and error
separately, one as an atom but the other as a string.

23

exe(path(tee),
[’/dev/stderr’
],
[stdin(atom(你好, [encoding(utf8)])),

stdout(atom(A, [encoding(utf8)])),
stderr(string(B, [encoding(utf8)])),
status(exit(0))

]).

10.0.1 Implementation Notes

Important to close the input stream immediately after writing and during the
call phase. Do not wait for the clean-up phase to close the input stream, oth-
erwise the process will never terminate. It will hang while waiting for standard
input to close, assuming the sub-process reads the input.
This leads to a key caveat when using a single concurrent thread. A single
callee thread executes the primary read-write goals in sequential order. The
current implementation preserves the Options ordering. Hence output should
always preceed input, i.e. writing to standard input should go first before at-
tempting to read from standard output. Otherwise the sequence will block
indefinitely. For this reason, the number of concurrent threads matches the
number of concurrent goals. This abviates the sequencing of the goals because
all goals implicitly execute concurrently.

To be done Take care when using the status(Status) option unless you have
stdin(null) on Windows because, for some sub-processes, the goals never com-
plete.

24

Chapter 11

library(canny/files)

absolute_directory(+Absolute, -Directory) [nondet]
Finds the directories of Absolute by walking up the absolute path until it
reaches the root. Operates on paths only; it does not check that Absolute
actually exists. Absolute can be a directory or file path.
Fails if Absolute is not an absolute file name, according to
is_absolute_file_name/2. Works correctly for Unix and Windows paths.
However, it finally unifies with the drive letter under Windows, and the root
directory (/) on Unix.

Arguments
Absolute specifies an absolute path name. On Windows it must

typically include a driver letter, else not absolute in the
complete sense under Microsoft Windows since its file
system supports multiple root directories on different
mounted drives.

25

Chapter 12

library(canny/hdx)

hdx(+StreamPair, +Term, -Codes, +TimeOut) [semidet]
hdx(+In, -Codes, +TimeOut) [semidet]
hdx(+Out, +Term) [semidet]

Performs a single half-duplex stream interaction with StreamPair. Flushes
Term to the output stream. Reads pending Codes from the input stream within
TimeOut seconds. Succeeds when a write-read cycle completes without timing
out; fails on time-out expiry.
Filling a stream buffer blocks the calling thread if there is no input ready. Pend-
ing read operations also block for the same reason. Hence the wait_for_input/3
must precede them.

Arguments
StreamPair connection from client to server, a closely-associated

input and output stream pairing used for half-duplex
communication.

Term to write and flush.
Codes waited for and extracted from the pending input

stream.
TimeOut in seconds.

26

Chapter 13

library(canny/maths)

frem(+X:number, +Y:number, -Z:number) [det]
Z is the remainder after dividing X by Y, calculated by X - N * Y where N is the
nearest integral to X / Y.

fmod(+X:number, +Y:number, -Z:number) [det]
Z is the remainder after dividing X by Y, equal to X - N * Y where N is X over Y
after truncating its fractional part.

epsilon_equal(+X:number, +Y:number) [semidet]
epsilon_equal(+Epsilons:number, +X:number, +Y:number) [semidet]

Succeeds only when the absolute difference between the two given numbers
X and Y is less than or equal to epsilon, or some factor (Epsilons) of epsilon
according to rounding limitations.

frexp(+X:number, -Y:number, -Exp:integer) [det]
Answers mantissa Y and exponent Exp for floating-point number X.

Arguments
Y is the floating-point mantissa falling within the interval

[0.5, 1.0). Note the non-inclusive upper bound.

ldexp(+X:number, -Y:number, +Exp:integer) [det]
Loads exponent. Multiplies X by 2 to the power Exp giving Y. Mimics the C
math ldexp(x, exp) function.
Uses an unusual argument order. Ordering aligns X, Y and Exp with frexp/3.
Uses ** rather than ^ operator. Exp is an integer.

Arguments
X is some floating-point value.
Y is X times 2 to the power Exp.
Exp is the exponent, typically an integer.

27

Chapter 14

library(canny/octet)

octet_bits(?Octet:integer, ?Fields:list) [semidet]
Unifies integral eight-bit Octet with a list of Value:Width terms where the
Width integers sum to eight and the Value terms unify with the shifted bit
values encoded within the eight-bit byte.

Arguments
Octet an eight-bit byte by another name.
Fields colon-separated value-width terms. The shifted value

of the bits comes first before the colon followed by its
integer bit width. The list of terms specify an octet by
sub-spans of bits, or bit fields.

28

Chapter 15

library(canny/pack)

load_pack_modules(+Pack, -Modules) [semidet]
Finds and loads all Prolog module sources for Pack. Also loads test files having
once loaded the pack. Modules becomes a list of successfully-loaded pack
modules.

load_prolog_module(+Directory, -Module) [nondet]
Loads Prolog source recursively at Directory for Module. Does not load non-
module sources, e.g. scripts without a module. Operates non-deterministically
for Module. Finds and loads all the modules within a given directory; typically
amounts to a pack root directory. You can find the File from which the module
loaded using module properties, i.e. module_property(Module, file(File)).

29

Chapter 16

library(canny/payloads): Local
Payloads

Apply and Property terms must be non-variable. The list below indicates the valid
forms of Apply, indicating determinism. Note that only peek and pop perform non-
deterministically for all thread-local payloads.

• reset is det
• push is semi-det
• peek(Payload) is non-det
• pop(Payload) is non-det
• [Apply0|Applies] is semi-det
• Apply is semi-det for payload

Properties as follows.

• top(Property) is semi-det for payload
• Property is semi-det for payload

The first form top/1 peeks at the latest payload once. It behaves semi-
deterministically for the top-most payload.

payload(:PI) [det]
Makes public multi-file apply-to and property-of predicates using the pred-
icate indicator PI of the form M:Payload/{ToArity, OfArity} where arity
specifications define the arity or arities for a payload. Defines predicates
M:apply_to_Payload/ToArity and M:property_of_Payload/OfArity for module
M. Allows comma-separated lists of arities.

apply_to(+Apply, :To) [nondet]
apply_to(+Applies, :To) [semidet]

30

Arguments
Applies is a list of Apply terms. It succeeds when all its Apply

terms succeed, and fails when the first one fails, possi-
bly leaving side effects if the apply-to predicate gener-
ates addition effects; though typically not for mutation
arity-3 apply-to predicates.

property_of(+Property, :Of) [nondet]
Finds Property of some payload where the second argument M:Of defines the
module M and payload atom Of.
Property top/1 peeks semi-deterministically at the top-most payload for some
given property.

31

Chapter 17

library(canny/permutations)

permute_sum_of_int(+N:nonneg, -Integers:list(integer)) [nondet]
Permute sum. Non-deterministically finds all combinations of integer sums
between 1 and N. Assumes that 0<=N. The number of possible permutations
amounts to 2-to-the-power of N-1; for N=3 there are four as follows: 1+1+1,
1+2, 2+1 and 3.

permute_list_to_grid(+List0:list, -List:list(list)) [nondet]
Permutes a list to two-dimensional grid, a list of lists. Given an ordered List0
of elements, unifies List with all possible rows of columns. Given a, b and c
for example, permutes three rows of single columns a, b, c; then a in the first
row with b and c in the second; then a and b in the first row, c alone in the
second; finally permutes a, b, c on a single row. Permutations always preserve
the order of elements from first to last.

32

Chapter 18

library(canny/placeholders):
Formatting Placeholders

author Roy Ratcliffe
version 0.1.0

This module provides predicates for formatting strings with placeholders. Place-
holders are specified in the form of {name} within a format string. The placeholders
are replaced with corresponding values from a list of options, where each option
is specified as name(Value). The result is an atom containing the formatted string.
The module uses DCG rules to parse the format string and replace the placeholders
with the corresponding values.

The main predicate is format_placeholders/3, which takes a format string, an
atom to hold the result, and a list of options. It processes the format string, replacing
placeholders with their corresponding values from the options list. If a placeholder
does not have a corresponding value, it will fail.

The format_placeholders/3 predicate formats a string with placeholders, while
format_placeholders/4 allows for additional options to be returned; namely, the re-
maining options after processing the placeholders.

format_placeholders(+Format, -Atom, +Options) [det]
format_placeholders(+Format, -Atom, +Options, -RestOptions) [det]

Formats a string with placeholders in the form of {name}. The placeholders
are replaced with corresponding values from the options list. The result is an
atom with the formatted string.
The Format string can be any atom or string containing placeholders. The
Options list should contain terms of the form name(Value), where name is the
placeholder name and Value is the value to replace it with. If a placeholder
does not have a corresponding value in the Options list, it will not be replaced,
and the placeholder will remain in the resulting atom.

Arguments

33

Format The format string containing placeholders.
Atom The resulting atom with placeholders replaced.
Options The list of options containing values for placeholders.
RestOptions The remaining options after processing the placehold-

ers.

placeholders(-Terms, ?Options) // [det]
Formats a list of terms by replacing placeholders in the form of {name} with
corresponding values from the options list. The placeholders are replaced with
the values associated with the names in the options list.
The result is a list of atoms and values, and a completed options list.

Arguments
Terms The list of terms to be formatted.
Options The list of options containing values for placeholders.

placeholders(+Terms0, -Terms, +Options0, -Options) // [det]
Processes a format string with placeholders using a list of terms and options.
The format string is the difference list of codes, where placeholders are
replaced with values from the options list. The result is a list of atomics and
an updated options list.
Scans the input, replacing placeholders of the form {name} with values from the
options list. The result is a list of atoms and values, and an updated options
list. Uses DCG rules for flexible parsing and substitution.
The resulting list of terms contains atoms and values, where each placeholder
is replaced with the corresponding value from the options list. The options list
is updated to include any new options found in the format string.
Unifies the same placeholder with the same value in the options list if it appears
more than once. Placeholders can appear in the format string multiple times,
and each occurrence will be replaced with the same value.

Arguments
Terms0 The initial list of terms to be processed.
Terms The resulting list of terms after processing.
Options0 The initial list of options to be processed.
Options The resulting list of options after processing.

34

Chapter 19

library(canny/pop)

pop_lsbs(+A:nonneg, -L:list) [det]
Unifies non-negative integer A with its set bits L in least-significate priority
order. Defined only for non-negative A. Throws a domain error otherwise.

Errors domain_error(not_less_than_one, A) if A less than 0.

35

Chapter 20

library(canny/redis)

redis_last_streams(+Reads, -Streams:list) [det]
redis_last_streams(+Reads, ?Tag, -Streams:dict) [det]

Collates the last Streams for a given list of Reads, the reply from an XREAD
command. The implementation assumes that each stream’s read reply has
one entry at least, else the stream does not present a reply.

redis_last_stream_entry(+Entries, -StreamId, -Fields) [semidet]
redis_last_stream_entry(+Entries:list(list), -StreamId:atom, ?Tag:atom, -Fields:dict)[semidet]

Unifies with the last StreamId and Fields. It fails for empty Entries. Each entry
comprises a StreamId and a set of Fields.

redis_keys_and_stream_ids(+Streams, ?Tag, -Keys, -StreamIds) [det]
redis_keys_and_stream_ids(+Pairs, -Keys, -StreamIds) [det]

Streams or Pairs of Keys and StreamIds. Arity-3 exists with Tag in order to
unify with a dictionary by Tag.

Arguments
Streams is a dictionary of stream identifiers, indexed by stream

key.
Keys is a list of stream keys.
StreamIds is a list of corrected stream identifiers. The predicate

applies redis_stream_id/3 to the incoming identifiers,
allowing for arbitrary milliseconds-sequence pairs in-
cluding implied missing zero sequence number.

redis_stream_read(+Reads, -Key, -StreamId, -Fields) [nondet]
redis_stream_read(+Reads, -Key, -StreamId, ?Tag, -Fields) [nondet]

Unifies with all Key, StreamId and array of Fields for all Reads.
Arguments

Reads is a list of [Key, Entries] lists, a list of lists. The sub-lists
always have two items: the Key of the stream followed
by another sub-list of stream entries.

redis_stream_entry(+Entries, -StreamId, -Fields) [nondet]
redis_stream_entry(+Entries:list, -StreamId:pair(nonneg,nonneg), ?Tag:atom, -Fields:dict)[nondet]
redis_stream_entry(+Reads:list, -Key:atom, -StreamId:pair(nonneg,nonneg), ?Tag:atom, -Fields:dict)[nondet]

36

Unifies non-deterministically with all Entries, or Fields dictionaries embedded
with multi-stream Reads. Decodes the stream identifier and the Entry.

Arguments
Entries is a list of [StreamId, Fields] lists, another list of lists.

Each sub-list describes an "entry" within the stream, a
pairing between an identifier and some fields.

redis_stream_id(?RedisTimeSeqPair) [semidet]
redis_stream_id(?StreamId:text, ?RedisTimeSeqPair) [semidet]
redis_stream_id(?StreamId:text, ?RedisTime:nonneg, ?Seq:nonneg) [semidet]

Stream identifier to millisecond and sequence numbers. In practice, the
numbers always convert to integers.
Deliberately validates incoming Redis time and sequence numbers. Both must
be integers and both must be zero or more. The predicates fail otherwise.
Internally, Redis stores stream identifiers as 128-bit unsigned integers split in
half for the time and sequence values, each of 64 bits.
The 3-arity version of the predicate handles extraction of time and sequence
integers from arbitrary stream identifiers: text or compound terms, includ-
ing implied zero-sequence stream identifier with a single non-negative integer
representing a millisecond Unix time.

Arguments
StreamId identifies a stream message or entry, element or item.

All these terms apply to the contents of a stream, but
Redis internally refers to the content as entries.

RedisTimeSeqPair is a pair of non-negative integers, time and sequence.
The Redis time equals Unix time multiplied by 1,000;
in other words, Unix time in milliseconds.

redis_time(+RedisTime) [semidet]
Successful when RedisTime is a positive integer. Redis times amount to
millisecond-scale Unix times.

Arguments
RedisTime in milliseconds since 1970.

redis_date_time(+RedisTime, -DateTime, +TimeZone) [det]
Converts RedisTime to DateTime within TimeZone.

37

Chapter 21

library(canny/redis_streams)

xrange(+Redis, +Key:atom, -Entries:list, +Options:list) [det]
Applies range selection to Key stream. Options optionally specify the start
and end stream identifiers, defaulting to - and + respectively or in reverse if
rev(true) included in Options list; the plus stream identifier stands for the
maximum identifier, or the newest, whereas the minus identifier stands for
the oldest. Option count(Count) limits the number of entries to read by Count
items.
The following always unifies Entries with [].

xrange(Server, Key, Entries, [start(+)]).
xrange(Server, Key, Entries, [rev(true), start(-)]).

xread(+Redis, +Streams:dict, -Reads:list, +Options:list) [semidet]
Unifies Reads from Streams. Fails on time-out, if option block(Milliseconds)
specifies a non-zero blocking delay.

Arguments
Reads by stream key. The reply has the form [Key, Entries]

for each stream where each member of Entries has the
form [StreamID, Fields] where Fields is an array of keys
and values.

xread_call(+Redis, +Streams, :Goal, -Fields, +Options) [semidet]
xread_call(+Redis, +Streams, :Goal, ?Tag, -Fields, +Options) [semidet]

Reads Streams continuously until Goal succeeds or times out. Also supports a
Redis time limit option so that blocking, if used, does not continue indefinately
even on a very busy stream set. The limit applies to any of the given streams;
it acts as a time threshold for continuous blocking failures.

38

Chapter 22

library(canny/shifter)

bit_shift(+Shifter, ?Left, ?Right) [semidet]
Shifts bits left or right depending on the argument mode. Mode (+, -, +)
shifts left whereas mode (+, +, -) shifts right. The first argument specifies
the position of the bit or bits in Left, the second argument, while the third
argument specifies the aligned Right bits. The shift moves in the direction of
the variable argument, towards the (-) mode argument.
The Shifter argument provides three different ways to specify a bit shift and bit
width: either by an exclusive range using + and - terms; or an inclusive range
using : terms; or finally just a single bit shift which implies a width of one
bit. Colons operate inclusively whereas plus and minus apply exclusive upper
ranges.
It first finds the amount of Shift required and the bit Width. After computing
the lefthand and righthand bit masks, it finally performs a shift-mask or mask-
shift for left and right shifts respectively.

Arguments
Shifter is a Shift+Width, Shift-Width, High:Low, Low:High or

just a single integer Shift for single bits.
Left is the left-shifted integer.
Right is the right-shifted integer.

39

Chapter 23

library(canny/situations)

situation_apply(?Situation:any, ?Apply) [nondet]
Mutates Situation. Apply term to Situation, where Apply is one of the following.
Note that the Apply term may be nonground. It can contain variables if the
situation mutation generates new information.

module(?Module)
Sets up Situation using Module. Establishes the dynamic predicate
options for the temporary situation module used for persisting situation
Now-At and Was-When tuples.
An important side effect occurs for ground Situation terms. The imple-
mentation creates the situation’s temporary module and applies default
options to its new dynamic predicates. The module(Module) term unifies
with the newly-created or existing situation module.
The predicate’s determinism collapses to semi-determinism for ground sit-
uations. Otherwise with variable Situation components, the predicate
unifies with all matching situations, unifying with module(Module) non-
deterministically.

now(+Now:any)
now(+Now:any, +At:number)

Makes some Situation become Now for time index At, at the next fixation.
Effectively schedules a pending update one or more times; the next
situation fix/0 fixes the pending situation changes at some future point.
The now/1 form applies Now to Situation at the current Unix epoch time.
Uses canny:apply_to_situation/2 when Situation is ground, but uses
canny:property_of_situation/2 otherwise. Asserts therefore for multiple
situations if Situation comprises variables. You cannot therefore have non-
ground situations.

fix
fix(+Now:any)

Fixating situations does three important things. First, it adds new
Previous-When pairs to the situation history. They become was/2 dynamic
facts (clauses without rules). Second, it adds, replaces or removes the

40

most current Current-When pair. This allows detection of non-events, e.g.
when something disappears. Some types of situation might require such
event edges. Finally, fixating broadcasts situation-change messages.
The rule for fixing the Current-When pair goes like this: Is there a new
now/2, at least one? The latest becomes the new current. Any others
become Previous-When. If there is no now/2, then the current disappears.
Messages broadcast accordingly. If there is more than one now/2, only the
latest becomes current. Hence currently-previously only transitions once
in-between fixations.
Term fix/1 is a shortcut for now(Now, At) and fix where At becomes the
current Unix epoch time. Fixes but does not retract history terms.

retract(+When:number)
retract(?When:number, +Delay:number)

Retracts all was/2 clauses for all matching Situation terms. Term
retract(_, Delay) retracts all was/2 history terms using the last term’s
latest time stamp. In this way, you can retract situations without knowing
their absolute time. For example, you can retract everything older than
60 seconds from the last known history term when you retract(_, 60).

The second argument Apply can be a list of terms to apply, including nested
lists of terms. All terms apply in order first to last, and depth first.

Arguments
Now is the state of a Situation at some point in time. The Now

term must be non-variable but not necessarily ground.
Dictionaries with unbound tags can exist within the
situation calculus.

situation_property(?Situation:any, ?Property) [nondet]
Property of Situation.

module(?Module)
Marries situation terms with universally-unique modules, one for one.
All dynamic situations link a situation term with a module. This design
addresses performance. Retracts take a long time, relatively, especially for
dynamic predicates with very many clauses; upwards of 10,000 clauses
for example. Note, you can never delete the situation-module association,
but you can retract all the dynamic clauses belonging to a situation.

defined
Situation is defined whenever a unique situation module already exists
for the given Situation. Amounts to the same as asking for module(_)
property.

currently(?Current:any)
currently(?Current:any, ?When:number)
currently(Current:any, for(Seconds:number))

Unifies with Current for Situation and When it happened. Unifies with the

41

one and only Current state for all the matching Situation terms. Unifies
non-deterministically for all Situation solutions, but semi-deterministically
for Current state. Thus allows for multiple matching situations but only
one Current solution.
You can replace the When term with for(Seconds) in order to measure
elapsed interval since fixing Situation. Same applies to previously/2 ex-
cept that the current situation time stamp serves as the baseline time,
else defaults to the current time.

previously(?Previous:any)
previously(?Previous:any, ?When:number)
previously(Previous:any, for(Seconds:number))

Finds Previous state of Situation, non-deterministically resolving zero or
more matching Situation terms. Fails if no previous Situation condition.

history(?History:list(compound))
Unifies History with all current and previous situation conditions, in-
cluding their time stamps. History is a sequence of compounds of the
form was(Was, When) where Situation is effectively a primitive condition
coordinate, Was is a sensing outcome and When marks the moment that
the outcome transpired.

42

Chapter 24

library(canny/situations_debugging)

print_situation_history_lengths [det]
Finds all situations. Samples their histories and measures the history lengths.
Uses = when sorting; do not remove duplicates. Prints a table of situations
by their history length, longest history comes first. Filters out single-element
histories for the sake of noise minimisation.

43

Chapter 25

library(canny/z)

enz(+Data:list, +File) [semidet]
Zips Data to File. Writes zip(Name:atom, Info:dict, MemFile:memory_file)
functor triples to File where Name is the key; MemFile is the content as
a memory file. Converts the Info dictionary to new-member options when
building up the zipper. Ignores any non-valid key pairs, including offset plus
compressed and uncompressed sizes.
The implementation asserts octet encoding for new files with a zipper. The
predicate for creating a zipper member does not allow for an encoding option.
It encodes as binary by default.

unz(+File, -Data:list) [semidet]
Unzips File to Data, a list of zip functors with Name atom, Info dictionary and
MemFile content arguments.
You cannot apply unz/2 to an empty zip File. A bug crashes the entire Prolog
run-time virtual machine.

44

Chapter 26

library(data/frame)

columns_to_rows(?ListOfColumns, ?ListOfRows) [semidet]
Transforms ListOfColumns to ListOfRows, where a row is a list of key-value
pairs, one for each cell. By example,

[a=[1, 2], b=[3, 4]]

becomes

[[a-1, b-3], [a-2, b-4]]

Else fails if rows or columns do not match. The output list of lists suitably con-
forms to dict_create/3 Data payloads from which you can build dictionaries.

?- columns_to_rows([a=[1, 2], b=[3, 4]], A),
maplist([B, C]>>dict_create(C, row, B), A, D).

A = [[a-1, b-3], [a-2, b-4]],
D = [row{a:1, b:3}, row{a:2, b:4}].

45

Chapter 27

library(dcg/endian)

endian(?BigOrLittle, ?Width, ?Value) // [semidet]
Applies big or little-endian ordering grammar to an integer Value of any
Width.
Divides the problem in two: firstly the ’endianness’ span which unifies an input
or output phrase with the bit width of a value, and secondly the shifted bitwise-
OR phase that translates between coded eight-bit octets and un-encoded inte-
gers of unlimited bit width by accumulation.

Arguments
BigOrLittle is the atom big or little specifying the endianness of

the coded Value.
Width is the multiple-of-eight bit width of the endian-ordered

octet phrase.
Value is the un-encoded integer value of unlimited bit width.

big_endian(?Width, ?Value) // [semidet]
Implements the grammar for endian(big, Width, Value) super-grammar.
In (-, +) mode the accumulator recurses first and then the residual Value_
merges with the accumulated Value because the first octet code is the most-
significant byte of the value for big-endian integer representations, rather than
the least-significant. The 0 =< H, H =< 255 guard conditions ensure failure for
non-octet code items in the list.

little_endian(?Width, ?Value) // [semidet]
Implements endian(little, Width, Value) grammar.
Little-endian accumulators perform the same logical unification as for big-
endian only in reverse. The only difference between big and little: recurse
first or recurse last. Apart from that subtle but essential difference, the inner
computation behaves identically.

46

Chapter 28

library(dcg/files)

directory_entry(+Directory, ?Entry) // [nondet]
Neatly traverses a file system using a grammar.
Finds files and skips the special dot entries. Here, Entry refers to a file. The
grammar recursively traverses sub-directories beneath the given Directory and
yields every existing file path at Entry. The directory acts as the root of the
scan; it joins with the entry to yield the full path of the file, but not with the
difference list. The second List argument of phrase/2 unifies with a list of the
corresponding sub-path components without the root. The caller sees the full
path and the relative sub-components.
Note that the second clause appears in the DCG expanded form with the two
hidden arguments: the pre-parsed input list S0 and the post-parsed output list
S. For non-directory entries, the input list unifies with nil [] because it repre-
sents a terminal node in the directory tree, and the post-parsed terms amount
to the accumulated Entries spanning the sub-directory entries in-between the
original root directory and the file itself.

directory_entry(+Directory, ?Entry) [nondet]
Finds files and directories in the Directory except special files: dot, the current
directory; and double dot, the parent directory.
No need to check if the Entry exists. It does exist at the time of directory
iteration. That could easily change by deleting, moving or renaming the entry.

47

Chapter 29

library(doc/latex)

latex_for_pack(+Spec, +OutFile, +Options) [det]

48

Chapter 30

library(docker/random_names)

random_name(?Name) [nondet]
Non-deterministically generates Docker-style random names. Uses
random_permutation/2 and member/2, rather than random_member/2, in or-
der to generate all possible random names by back-tracking if necessary.
The engine-based implementation has two key features: generates random per-
mutations of both left and right sub-names independently; does not repeat
until after unifying all permutations. This implies that two consecutive names
will never be the same up until the boundary event between two consecutive
randomisations. There is a possibility, albeit small, that the last random name
from one sequence might accidentally match the first name in the next random
sequence. There are 23,500 possible combinations.
The implementation is not the most efficient, but does perform accurate ran-
domisation over all left-right name permutations.
Allows Name to collapse to semi-determinism with ground terms without con-
tinuous random-name generation since it will never match an atom that
does not belong to the Docker-random name set. The engine-based non-
determinism only kicks in when Name unbound.

random_name_chk(-Name:atom) [det]
Generates a random Name.
Only ever fails if Name is bound and fails to match the next random Name,
without testing for an unbound argument. That makes little sense, so fails
unless Name is a variable.

random_name_chk(?LHS:atom, ?RHS:atom) [semidet]
Unifies LHS-RHS with one random name, a randomised selection from all
possible names.
Note, this does not naturally work in (+, ?) or (?, +) or (+, +) modes, even
if required. Predicate random_member/2 fails semi-deterministically if the given
atom fails to match the randomised selection. Unifies semi-deterministically
for ground atoms in order to work correctly for non-variable arguments. It col-
lapses to failure if the argument cannot unify with random-name possibilities.

49

Chapter 31

library(gh/api): GitHub API

author Roy Ratcliffe

You need a personal access token for updates. You do not require them for public
access.

ghapi_update_gist(+GistID, +Data, -Reply, +Options) [det]
Updates a Gist by its unique identifier. Data is the patch payload as a JSON
object, or dictionary if you include json_object(dict) in Options. Reply is the
updated Gist in JSON on success.
The example below illustrates a Gist update using a JSON term. Notice the
doubly-nested json/1 terms. The first sets up the HTTP request for JSON while
the inner term specifies a JSON object payload. In this example, the update
adds or replaces the cov.json file with content of "{}" as serialised JSON. Up-
date requests for Gists have a files object with a nested filename-object com-
prising a content string for the new contents of the file.

ghapi_update_gist(
ec92ac84832950815861d35c2f661953,
json(json([files=json([’cov.json’=json([content=’{}’

])
])

])), _, []).

See also https://docs.github.com/en/rest/reference/gists#update-a-gist

ghapi_get(+PathComponents, +Data, +Options) [det]
Accesses the GitHub API. Supports JSON terms and dictionaries. For exam-
ple, the following goal accesses the GitHub Gist API looking for a particular
Gist by its identifier and unifies A with a JSON term representing the Gist’s
current contents and state.

ghapi_get([gists, ec92ac84832950815861d35c2f661953], A, []).

50

https://docs.github.com/en/rest/reference/gists#update-a-gist

Supports all HTTP methods despite the predicate name. The "get" mirrors the
underlying http_get/3 method which also supports all methods. POST and
PATCH send data using the post/1 option and override the default HTTP verb
using the method/1 option. Similarly here.
Handles authentication via settings, and from the system environment indi-
rectly. Option ghapi_access_token/1 overrides both. Order of overriding pro-
ceeds as: option, setting, environment, none. Empty atom counts as none.
Abstracts away the path using path components. Argument PathComponents
is an atomic list specifying the URL path.

51

Chapter 32

library(html/scrapes)

scrape_row(+URL, -Row) [nondet]
Scrapes all table rows non-deterministically by row within each table. Tables
must have table headers, thead elements.
Scrapes distinct rows. Distinct is important because HTML documents contain
tables within tables within tables. Attempts to permit some flexibility. Asking
for sub-rows finds head sub-rows; catches and filters out by disunifying data
with heads.

52

Chapter 33

library(ieee/754)

ieee_754_float(+Bits, ?Word, ?Float) [det]
ieee_754_float(-Bits, ?Word, ?Float) [nondet]

Performs two-way pack and unpack for IEEE 754 floating-point numbers
represented as words.
Not designed for performance. Uses CLP(FD) for bit manipulation. and hence
remains within the integer domain. Float arithmetic applies outside the finite-
domain constraints.

Arguments
Word is a non-negative integer. This implementation does not

handle negative integers. Negative support implies a
non-determinate solution for packing. A positive and
negative answer exists for any given Float.

Sig is the floating-point significand between plus and mi-
nus 1. Uses Sig rather than Mantissa; Sig short for
Significand, another word for mantissa.

53

Chapter 34

library(linear/algebra): Linear
algebra

"The introduction of numbers as coordinates is an act of violence."–Hermann Weyl,
1885-1955.

Vectors are just lists of numbers, or scalars. These scalars apply to arbitrary ab-
stract dimensions. For example, a two-dimensional vector [1, 2] applies two scalars,
1 and 2, to dimensional units i and j; known as the basis vectors for the coordinate
system.

Is it possible, advisable, sensible to describe vector and matrix operations using
Constraint Logic Programming (CLP) techniques? That is, since vectors and matri-
ces are basically columns and rows of real-numeric scalars, their operators amount
to constrained relationships between real numbers and hence open to the applica-
tion of CLP over reals. The simple answer is yes, the linear_algebra predicates let
you express vector operators using real-number constraints.

Constraint logic adds some important features to vector operations. Suppose
for instance that you have a simple addition of two vectors, a vector translation of
U+V=W. Add U to V giving W. The following statements all hold true. Note that the
CLP-based translation unifies correctly when W is unknown but also when U or V
is unknown. Given any two, you can ask for the missing vector.

?- vector_translate([1, 1], [2, 2], W).
W = [3.0, 3.0] ;
false.
?- vector_translate([1, 1], V, [3, 3]).
V = [2.0, 2.0] ;
false.
?- vector_translate(U, [2, 2], [3, 3]).
U = [1.0, 1.0] ;
false.

Note also that the predicate answers non-deterministically with back-tracking
until no alternative answer exists. This presumes that alternatives could exist at
least in theory if not in practice. Trailing choice-points remain unless you cut them.

54

matrix_dimensions(?Matrix:list(list(number)), ?Rows:nonneg, ?Columns:nonneg)[semidet]
Dimensions of Matrix where dimensions are Rows and Columns.
A matrix of M rows and N columns is an M-by-N matrix. A matrix with a single
row is a row vector; one with a single column is a column vector. Because the
linear_algebra module uses lists to represent vectors and matrices, you need
never distinguish between row and column vectors.
Boundary cases exist. The dimensions of an empty matrix [] equals [0, _]
rather than [0, 0]. And this works in reverse; the matrix unifying with dimen-
sions [0, _] equals [].

matrix_identity(+Order:nonneg, -Matrix:list(list(number))) [semidet]
Matrix becomes an identity matrix of Order dimensions. The result is a square
diagonal matrix of Order rows and Order columns.
The first list of scalars (call it a row or column) becomes 1 followed by Order-1
zeros. Subsequent scalar elements become an Order-1 identity matrix with
a 0-scalar prefix for every sub-list. Operates recursively albeit without tail
recursion.
Fails when matrix size Order is less than zero.

matrix_transpose(?Matrix0:list(list(number)), ?Matrix:list(list(number))) [semidet]
Transposes matrices. The matrix is a list of lists. Fails unless all the
sub-lists share the same length. Works in both directions, and works with
non-numerical elements. Only operates at the level of two-dimensional lists,
a list with sub-lists. Sub-sub-lists remain lists and un-transposed if sub-lists
comprise list elements.

matrix_rotation(?Theta:number, ?Matrix:list(list(number))) [nondet]
The constructed matrix applies to column vectors [X, Y] where positive Theta
rotates X and Y anticlockwise; negative rotates clockwise. Transpose the
rotation matrix to reverse the angle of rotation; positive for clockwise, negative
anticlockwise.

vector_distance(?V:list(number), ?Distance:number) [semidet]
vector_distance(?U:list(number), ?V:list(number), ?Distance:number) [semidet]

Distance of the vector V from its origin. Distance is Euclidean distance between
two vectors where the first vector is the origin. Note that Euclidean is just one
of many distances, including Manhattan and chessboard, etc. The predicate
is called distance, rather than length. The term length overloads on the
dimension of a vector, its number of numeric elements.

vector_translate(?U, ?V, ?W) [nondet]
Translation works forwards and backwards. Since U+V=W it follows that
U=W-V and also V=W-U. So for unbound U, the vector becomes W-V and
similarly for V.

vector_scale(?Scalar:number, ?U:list(number), ?V:list(number)) [nondet]
Vector U scales by Scalar to V.

55

What is the difference between multiply and scale? Multiplication multiplies
two vectors whereas scaling multiplies a vector by a scalar; hence the verb to
scale. Why is the scalar at the front of the argument list? This allows the
meta-call of vector_scale(Scalar) passing two vector arguments, e.g. when
mapping lists of vectors.
The implementation performs non-deterministically because the CLP(R) library
leaves a choice point when searching for alternative arithmetical solutions.

vector_heading(?V:list(number), ?Heading:number) [semidet]
Heading in radians of vector V. Succeeds only for two-dimensional vectors.
Normalises the Heading angle in (+, -) mode; negative angles wrap to the range
between pi and two-pi. Similarly, normalises the vector V in (-, +) mode; V has
unit length.

scalar_power(?X:number, ?Y:number, ?Z:number) [nondet]
Z is Y to the power X.
The first argument X is the exponent rather than Y, first rather than second
argument. This allows you to curry the predicate by fixing the first exponent
argument. In other words, scalar_power(2, A, B) squares A to B.

56

Chapter 35

library(ollama/chat): Ollama Chat

Idiomatic SWI-Prolog HTTP client module for interacting with an Ollama chat API.

35.1 Usage

How to use and abuse the interface? Take some examples. The following queries
run with HTTP debugging enabled. Notice the headers.

For streaming:

?- ollama_chat([_{role:user, content:"Hello"}], Message, [stream(true)]).
% http_open: Connecting to localhost:11434 ...
% ok <stream>(000001a4454d2630) ---> <stream>(000001a4454d2740)
% HTTP/1.1 200 OK
% Content-Type: application/x-ndjson
% Date: Sat, 31 May 2025 10:48:49 GMT
% Connection: close
% Transfer-Encoding: chunked
Message = _{content:" Hello", role:"assistant"} ;
Message = _{content:"!", role:"assistant"} ;
Message = _{content:" How", role:"assistant"} ;
Message = _{content:" can", role:"assistant"} ;
Message = _{content:" I", role:"assistant"} ;
Message = _{content:" assist", role:"assistant"} ;
Message = _{content:" you", role:"assistant"} ;
Message = _{content:" today", role:"assistant"} ;
Message = _{content:"?", role:"assistant"} ;
Message = _{content:"", role:"assistant"}.

The streaming content type is not "application/json" but rather newline-
delimited JSON. This is correct. Our addition to the JSON type multifile predicate
catches this.

For non-streaming:

?- ollama_chat([_{role:user, content:"Hello"}], Message, [stream(false)]).
% http_open: Connecting to localhost:11434 ...
% ok <stream>(000001a4454d3ea0) ---> <stream>(000001a4454d4e90)
% HTTP/1.1 200 OK
% Content-Type: application/json; charset=utf-8
% Date: Sat, 31 May 2025 10:50:04 GMT
% Content-Length: 347
% Connection: close
Message = _{content:" Sure, I’m here to help! How can I assist you today?", role:"assistant"}.

57

ollama_chat(+Messages:list(dict), -Message:dict, +Options:list) [nondet]
Leverages SWI-Prolog’s HTTP libraries for Ollama chat API interaction. To
stream or not to stream? That becomes an option, specify either stream(true)
or stream(false), defaulting to streaming. This option selects the predicate’s
determinism. Predicate ollama_chat/3 becomes non-deterministic when
streaming, but falls back to deterministic when not.
Pulls out the message from the reply; it becomes the result of the chat interac-
tion: many messages in, one message out. Taking only the message assumes
that the other keys within the reply dictionary have less value. Callers can
usually ignore them. The predicate unifies with reply(Reply) in the Options
argument if the caller wants to view the detailed response information.
Assumes that the reply is always a dictionary type without first checking. The
implementation relies on the lower-level HTTP layers for parsing and rendering
the correct term type. It also assumes that the dictionary always contains a
"message" pair. Throws an exception when this presumption fails; this is a
design feature because all responses must have a message.

58

Chapter 36

library(os/apps): Operation
system apps

What is an app? In this operating-system os_apps module context, simply something
you can start and stop using a process. It has no standard input, and typically none
or minimal standard output and error.

There is an important distinction between apps and processes. These predicates
use processes to launch apps. An application typically has one process instance;
else if not, has differing arguments to distinguish one running instance of the app
from another. Hence for the same reason, the app model here ignores "standard
input." Apps have no such input stream, conceptually speaking.

Is "app" the right word to describe such a thing? English limits the alternatives:
process, no because that means something that loads an app; program, no because
that generally refers the app’s image including its resources.

36.1 App configuration

Apps start by creating a process. Processes have four distinct specification parame-
ter groups: a path specification, a list of arguments, possibly some execution options
along with some optional encoding and other run-time related options. Call this the
application’s configuration.

The os_apps predicates rely on multi-file os:property_for_app/2 to configure the
app launch path, arguments and options. The property-for-app predicate sup-
plies an app’s configuration non-deterministically using three sub-terms for the first
Property argument, as follows.

• os:property_for_app(path(Path), App)

• os:property_for_app(argument(Argument), App)

• os:property_for_app(option(Option), App)

Two things to note about these predicates; (1) App is a compound describing the
app and its app-specific configuration information; (2) the first Property argument
collates arguments and options non-deterministically. Predicate app_start/1 finds
all the argument- and option-solutions in the order defined.

59

36.2 Start up and shut down

By default, starting an app does not persist the app. It does not restart if the user
or some other agent, including bugs, causes the app to exit. Consequently, this
module offers a secondary app-servicing layer. You can start up or shut down any
app. This amounts to starting and upping or stopping and downing, but substitutes
shut for stop. Starting up issues a start but also watches for stopping.

36.3 Broadcasts

Sends three broadcast messages for any given App, as follows:

• os:app_started(App)

• os:app_decoded(App, stdout(Codes))

• os:app_decoded(App, stderr(Codes))

• os:app_stopped(App, Status)

Running apps send zero or more os:app_decoded(App, Term) messages, one for
every line appearing in their standard output and standard error streams. Removes
line terminators. App termination broadcasts an exit(Code) term for its final Status.

36.4 Usage

You can start or stop an app.

app_start(App)
app_stop(App)

App is some compound that identifies which app to start and stop. You define
an App using os:property_for_app/2 multi-file predicate. You must at least define
an app’s path using, as an example:

os:property_for_app(path(path(mspaint)), mspaint) :- !.

Note that the Path is a path Spec used by process_create/3, so can include a
path-relative term as above. This is enough to launch the Microsoft Paint app on
Windows. No need for arguments and options for this example. Starting a running
app does not start a new instance. Rather, it succeeds for the existing instance. The
green cut prevents unnecessary backtracking.

You can start and continuously restart apps using app_up/1, and subsequently
shut them down with app_down/1.

60

36.4.1 Apps testing

On a Windows system, try the following for example. It launches Microsoft Paint.
Exit the Paint app after app_up/1 below and it will relaunch automatically.

?- [library(os/apps), library(os/apps_testing)].
true.

?- app_up(mspaint).
true.

?- app_down(mspaint).
true.

app_property(?App:compound, ?Property) [nondet]
Property of App.
Note that app_property(App, defined) should not throw an exception. Some
apps have an indeterminate number of invocations where App is a compound
with variables. Make sure that the necessary properties are ground, rather
than unbound.
Collapses non-determinism to determinism by collecting App and Property
pairs before expanding the bag to members non-deterministically.

app_start(?App:compound) [nondet]
Starts an App if not already running. Starts more than one apps non-
deterministically if App binds with more than one specifier. Does not restart
the app if launching fails. See app_up/1 for automatic restarts. An app’s
argument and option properties execute non-deterministically.
Options can include the following:

encoding(Encoding)
an encoding option for the output and error streams.

alias(Alias)
an alias prefix for the detached watcher thread.

Checks for not-running after unifying with the App path. Succeeds if already
running.

app_stop(?App:compound) [nondet]
Kills the App process. Stopping the app does not prevent subsequent
automatic restart.
Killing does not retract the app_pid/2 by design. Doing so would trigger a
failure warning. (The waiting PID-monitor thread would die on failure because
its retract attempt fails.)

61

app_up(?App:compound) [nondet]
Starts up an App.
Semantics of this predicate rely on app_start/1 succeeding even if already
started. That way, you can start an app then subsequently up it, meaning stay
up. Hence, you can app_stop(App) to force a restart if already app_up(App).
Stopping an app does not down it!
Note that app_start/1 will fail for one of two reasons: (1) because the App has
not been defined yet; (2) because starting it fails for some reason.

app_down(?App:compound) [nondet]
Shuts down an App. Shuts down multiple apps non-deterministically if the
App compound matches more than one app definition.

62

Chapter 37

library(os/lc)

lc_r(+Extensions:list) [det]
Recursively counts and prints a table of the number of lines within read-access
files having one of the given Extensions found in the current directory or one of
its sub-directories. Prints the results in line-count descending order with the
total count appearing first against an asterisk, standing for all lines counted.

lc_r(-Pairs, +Options) [det]
Counts lines in files recursively within the current directory.

lc_r(+Directory, -Pairs, +Options) [det]
Counts lines within files starting at Directory.

lc(+Directory, -Pairs, +Options) [det]
Counts lines in files starting at Directory and using Options. Counts for each
file concurrently in order to maintain high performance.

Arguments
Pairs is a list of atom-integer pairs where the relative path

of a matching text file is the first pair-element, and the
number of lines counted is the second pair-element.

63

Chapter 38

library(os/search_paths)

search_path_prepend(+Name:atom, +Directory:atom) [det]
Adds Directory to a search-path environment variable. Note, this is not natu-
rally an atomic operation but the prepend makes it thread safe by wrapping
the fetching and storing within a mutex.
Prepends Directory to the environment search path by Name, unless already
present. Uses semi-colon as the search-path separator on Windows operating
systems, or colon everywhere else. Adds Directory to the start of an existing
path. Makes Directory the first and only directory element if the search path
does not yet exist.
Note that Directory should be an operating-system compatible search path be-
cause non-Prolog software needs to search using the included directory paths.
Automatically converts incoming directory paths to operating-system compat-
ible paths.
Note also, the environment variable Name is case insensitive on Windows, but
not so on Unix-based operating systems.

search_path(+Name:atom, -Directories:list(atom)) [semidet]
search_path(+Name:atom, +Directories:list(atom)) [det]

Only fails if the environment does not contain the given search-path variable.
Does not fail if the variable does not identify a proper separator-delimited
variable.

search_path_separator(?Separator:atom) [semidet]
Separator used for search paths: semi-colon on the Microsoft Windows
operating system; colon elsewhere.

64

Chapter 39

library(os/windows): Microsoft
Windows Operating System

By design, the following extensions for Windows avoid underscores in order not to
clash with existing standard paths, e.g. app_path which Prolog defines by default.

userprofile
onedrive
onedrivecommercial
onedrivepersonal
programfiles
temp
documents
savedgames
appdata
applocal
localprograms

65

Chapter 40

library(paxos/http_handlers):
Paxos HTTP Handlers

These handlers spool up a JSON-based HTTP interface to the Paxos predicates,
namely

• paxos_property/1 as JSON object on GET at /paxos/properties,

• paxos_get/2 as arbitrary JSON on GET at /paxos/Key and

• paxos_set/2 as arbitrary JSON on POST at /paxos/Key

Take the example below. Uses http_server/1 to start a HTTP server on some
given port.

?- [library(http/http_server), library(http/http_client)].
true.

?- http_server([port(8080)]).
% Started server at http://localhost:8080/
true.

?- http_get(’http://localhost:8080/paxos/properties’, A, []).
A = json([node=0, quorum=1, failed=0]).

Getting and setting using JSON encoding works as follows.

?- http_get(’http://localhost:8080/paxos/hello’, A, [status_code(B)]).
A = ’’,
B = 204.

?- http_post(’http://localhost:8080/paxos/hello’, json(world), A, []).
A = @true.

?- http_get(’http://localhost:8080/paxos/hello’, A, [status_code(B)]).
A = world,
B = 200.

Note that the initial GET fails. It replies with the empty atom since no content
exists. Predicate paxos_get/2 is semi-deterministic; it can fail. Empty atom is not

66

valid Prolog-encoding for JSON. Status code of 204 indicates no content. The Paxos
ledger does not contain data for that key.

Thereafter, POST writes a string value for the key and a repeated GET attempt
now answers the new consensus data. Status code 200 indicates a successful ledger
concensus.

40.1 Serialisation

Serialises unknowns. Paxos ledgers may contain non-JSON compatible data. Any-
thing that does not correctly serialise as JSON becomes an atomicly rendered Prolog
term. Take a consensus value of term a(1) for example; GET requests see "a(1)" as
a rendered Prolog string. The ledger comprises Prolog terms, fundamentally, rather
than JSON-encoded strings.

Setting a Paxos value reads JSON from the POST request body. It can be any
valid JSON value including atomic values as well as objects and arrays.

67

Chapter 41

library(paxos/udp_broadcast):
Paxos on UDP

Sets up Paxos over UDP broadcast on port 20005. Hooks up Paxos messaging to
UDP broadcast bridging using the paxos scope.

Initialisation order affects success. First initialises UDP broadcasting then ini-
tialises Paxos. The result is two additional threads: the UDP inbound proxy and the
Paxos replicator.

You can override the UDP host, port and broadcast scope. Load settings first
if you want to override using file-based settings. Back-up defaults derive from the
environment and finally fall on hard-wired values of 0.0.0.0, port 20005 via paxos
scope. You can also override the automatic Paxos node ordinal; it defaults to -1
meaning automatic discovering of unique node number. Numbers start at 0 and
increase by one, translating to binary power indices for the quorum bit mask.

Note that environment defaults require upper-case variable names for Linux.
Variable names match case-sensitively on Unix platforms.

41.1 Docker Stack

For Docker in production mode, your nodes want to interact using the UDP broad-
cast port. This port is not automatically available unless you publish it. See exam-
ple snippet below. The ports setting lists port 20005 for UDP broadcasts across the
stack.

version: "3"

services:

my-service:
image: my/image
ports:

- 20005:20005/udp
- 8080:8080/tcp

68

Chapter 42

library(print/(table))

print_table(:Goal) [det]
print_table(:Goal, +Variables:list) [det]

Prints all the variables within the given non-deterministic Goal term formatted
as a table of centre-padded columns to current_output. One Goal solution
becomes one line of text. Solutions to free variables become printed cells.
Makes an important assumption: that codes equate to character columns; one
code, one column. This will be true for most languages on a teletype like ter-
minal. Ignores any exceptions by design.

?- print_table(user:prolog_file_type(_, _)).
+------+----------+
pl	prolog
prolog	prolog
qlf	prolog
qlf	qlf
dll	executable
+------+----------+

69

Chapter 43

library(proc/loadavg)

loadavg(-Avg1, -Avg5, -Avg15, -RunnablesRatio, -LastPID) // [semidet]
Parses the Linux /proc/loadavg process pseudo-file. One space separates
all fields except the runnable processes and total processes, a forward slash
separates these two figures.
Load-average statistics comprise: three floating point numbers, one integer
ratio and one process identifier.

• Load average for last minute
• Load average for last five minutes
• Load average for last 15 minutes
• Number of currently-runnable processes, meaning either actually running

or ready to run
• Total number of processes
• Last created process identifier

It follows logically that runnable processes is always less than or equal to total
processes.
One space separates all fields except the runnable processes and total pro-
cesses, a forward slash separates these two figures. The implementation ap-
plies this requirement explicitly. The grammar fails if more than one space
exists, or if finds the terminating newline missing. This approach allows you to
reverse the grammar to generate the load-average codes from the load-average
figures.

loadavg(-Avg1, -Avg5, -Avg15, -RunnablesRatio, -LastPID) [det]
Captures and parses the current processor load average statistics on Linux
systems. Does not work on Windows systems.

throws existence_error(source_sink, ’/proc/loadavg’) on Windows, or other op-
erating systems that do not have a proc subsystem.

70

Chapter 44

library(random/temporary)

random_temporary_module(-M:atom) [nondet]
Finds a module that does not exist. Makes it exist. The new module has a
module class of temporary. Operates non-deterministically by continuously
generating a newly unique temporary module. Surround with once/1 when
generating just a single module.
Utilises the uuid/1 predicate which never fails; the implementation relies on
that prerequisite. Nor does uuid/1 automatically generate a randomly unique
identifier. The implementation repeats on failure to find a module that does not
already exist. If the generation of a new unique module name always fails, the
predicate will continue an infinite failure-driven loop running until interrupted
within the calling thread.
The predicate allows for concurrency by operating a mutex across the clauses
testing for an existing module and its creation. Succeeds only for mode (-).

71

Chapter 45

library(read/until)

read_stream_to_codes_until_end_of_file(+In, -Codes) [nondet]
read_stream_to_codes_until(+In, -Codes, +Until) [nondet]

Reads Codes from a stream until it finds a specific code term, such as
end_of_file. The predicate reads the stream until it encounters the Until
code term, which defaults to end_of_file. It succeeds non-deterministically
for each chunk read before reaching the Until code term. Use this predicate
to process multiple messages or data chunks from a stream, handling each
chunk separately. The Codes variable contains the codes read from the
stream, and the predicate succeeds until it reaches the Until condition.

Arguments
In The input stream to read from.
Codes The codes read from the stream.
Until The code term that terminates the reading.

72

Chapter 46

library(scasp/just_dot)

scasp_just_dot_print(+Stream, +Src, +Options) [det]
Reads a JSON file from Src, which is expected to be in the format produced by
the s(CASP) solver, and prints a DOT representation of the justification graph
to the specified Stream. The Options parameter allows customisation of the
output, such as indentation size, graph direction, background colour, node
attributes, edge attributes, and nodes to elide.
The JSON source should contain a dictionary with the following structure,
simplified for clarity:

{
"solver": {...},
"query": {...},
"answers": [

{
"bindings": {...},
"model": [{"truth": ..., "value": {...}}],
"tree": {

"node": {"value": {...}},
"children": [

{
"node": {"value": {...}},
"children": [...]

},
...

]
}

},
...

]
}

The answers field is a list of answers, each containing bindings, a model, and
a tree structure. The tree field represents the justification tree, where each
node has a value and may have children, forming a hierarchical structure of
implications.
The output is a DOT graph representation of the justification tree, where each
node corresponds to a term in the justification, and edges represent implica-
tions between nodes. The graph is directed, with arrows indicating the direc-
tion of implications from one node to another.

73

The output is formatted as a DOT graph, which can be visualised using graph
visualisation tools like Graphviz. The output can be customised using the
Options parameter, which allows for setting various attributes of the graph,
such as:

• tab(Width): Specifies the indentation width for the output.
• rankdir(Direction): Sets the direction of the graph layout, e.g. ’LR’ for

left-to-right.
• bgcolor(Color): Sets the background colour of the graph.
• node(Attributes): Specifies attributes for the nodes in the graph.
• edge(Attributes): Specifies attributes for the edges in the graph.
• elides(Nodes): A list of nodes to elide in the graph, meaning they will not

be displayed.

This predicate is useful for visualising the justification structure of s(CASP)
queries, making it easier to understand the relationships between different
terms and their implications in the context of logic programming and answer
set programming.

74

Chapter 47

library(swi/atoms)

restyle_identifier_ex(+Style, +Text, ?Atom) [semidet]
Restyles Text to Atom. Predicate restyle_identifier/3 fails for incom-
ing text with leading underscore. Standard atom:restyle_identifier/3
fails for ’_’ because underscore fails for atom_codes(’_’, [Code]),
code_type(Code, prolog_symbol). Underscore (code 95) is a Prolog vari-
able start and identifier continuation symbol, not a Prolog symbol.
Strips any leading underscore or underscores. Succeeds only for text, includ-
ing codes, but does not throw.

Arguments
Text string, atom or codes.
Atom restyled.

prefix_atom_suffix(?Prefix, ?Atom0, ?Suffix, ?Atom) [nondet]
Non-deterministically unifies Prefix, Atom0 and Suffix with Atom. Applies two
atom_concat/3 predicates in succession. Unifies from prefix to suffix for modes
(?, ?, ?, -) else backwards from suffix to prefix. Empty atom is a valid atom
and counts as a Prefix, Suffix or any other argument if unbound.

75

Chapter 48

library(swi/codes)

split_lines(?Codes, ?Lines:list(list)) [semidet]
Splits Codes into Lines of codes, or vice versa. Lines split by newlines. The
last line does not require newline termination. The reverse unification however
always appends a trailing newline to the last line.

76

Chapter 49

library(swi/compounds)

flatten_slashes(+Components0:compound, ?Components:compound) [semidet]
Flattens slash-delimited components. Components0 unifies flatly with Com-
ponents using mode(+, ?). Fails if Components do not match the incoming
Components0 correctly with the same number of slashes.
Consecutive slash-delimited compound terms decompose in Prolog as nested
slash-functors. Compound a/b/c decomposes to /(a/b, c) for example. Sub-
term a/b decomposes to nested /(a, b). The predicate converts any /(a, b/c)
to /(a/b, c) so that the shorthand flattens from a/(b/c) to a/b/c.
Note that Prolog variables match partially-bound compounds; A matches
A/(B/C). The first argument must therefore be fully ground in order to avoid
infinite recursion.

To be done Enhance the predicate modes to allow variable components such as
A/B/C; mode (?, ?).

append_path(?Left, ?Right, ?LeftAndRight) [semidet]
LeftAndRight appends Left path to Right path. Paths in this context amount
to any slash-separated terms, including atoms and compounds. Paths can
include variables. Use this predicate to split or join arbitrary paths. The
solutions associate to the left by preference and collate at Left, even though the
slash operator associates to the right. Hence append_path(A, B/5, 1/2/3/4/5)
gives one solution of A = 1/2/3 and B = 4.
There is an implementation subtlety. Only find the Right hand key if the ar-
gument is really a compound, not just unifies with a slash compound since
Path/Component unifies with any unbound variable.

77

Chapter 50

library(swi/dicts): SWI-Prolog
dictionary extensions

This module provides extensions to the SWI-Prolog dictionary implementation. It
includes predicates for merging dictionaries, putting values into dictionaries with
custom merge behavior, and handling dictionary members and leaves in a more flexi-
ble way. It also includes predicates for creating dictionaries from lists and converting
dictionaries to compounds.

50.0.1 Non-deterministic ‘dict_member(?Dict, ?Member)‘

This predicate offers an alternative approach to dictionary iteration in Prolog. It
makes a dictionary expose its leaves as a list exposes its elements, one by one non-
deterministically. It does not unify with non-leaves, as for empty dictionaries.

?- dict_member(a{b:c{d:e{f:g{h:i{j:999}}}}}, Key-Value).
Key = a^b/c^d/e^f/g^h/i^j,
Value = 999.

?- dict_member(Dict, a^b/c^d/e^f/g^h/i^j-999).
Dict = a{b:c{d:e{f:g{h:i{j:999}}}}}.

put_dict(+Key, +Dict0:dict, +OnNotEmpty:callable, +Value, -Dict:dict) [det]
Updates dictionary pair calling for merge if not empty. Updates Dict0 to
Dict with Key-Value, combining Value with any existing value by calling
OnNotEmpty/3. The callable can merge its first two arguments in some way,
or replace the first with the second, or even reject the second.
The implementation puts Key and Value in Dict0, unifying the result at Dict.
However, if the dictionary Dict0 already contains another value for the indicated
Key then it invokes OnNotEmpty with the original Value0 and the replacement
Value, finally putting the combined or selected Value_ in the dictionary for the
Key.

78

merge_dict(+Dict0:dict, +Dict1:dict, -Dict:dict) [semidet]
Merges multiple pairs from a dictionary Dict1, into dictionary Dict0, unifying
the results at Dict. Iterates the pairs for the Dict1 dictionary, using them to
recursively update Dict0 key-by-key. Discards the tag from Dict1; Dict carries
the same tag as Dict0.
Merges non-dictionaries according to type. Appends lists when the value in a
key-value pair has list type. Only replaces existing values with incoming values
when the leaf is not a dictionary, and neither existing nor incoming is a list.
Note the argument order. The first argument specifies the base dictionary start-
ing point. The second argument merges into the first. The resulting merge
unifies at the third argument. The order only matters if keys collide. Pairs
from Dict1 replace key-matching pairs in Dict0.
Merging does not replace the original dictionary tag. This includes an unbound
tag. The tag of Dict0 remains unchanged after merge.

merge_pair(+Dict0:dict, +Pair:pair, -Dict:dict) [det]
Merges Pair with dictionary. Merges a key-value Pair into dictionary Dict0,
unifying the results at Dict.
Private predicate merge_dict_/3 is the value merging predicate; given the orig-
inal Value0 and the incoming Value, it merges the two values at Value_.

merge_dicts(+Dicts:list(dict), -Dict:dict) [semidet]
Merges one or more dictionaries. You cannot merge an empty list of dictionar-
ies. Fails in such cases. It does not unify Dict with a tagless empty dictionary.
The implementation merges two consecutive dictionaries before tail recursion
until eventually one remains.
Merging ignores tags.

dict_member(?Dict:dict, ?Member) [nondet]
Unifies with members of dictionary. Unifies Member with all dictionary
members, where Member is any non-dictionary leaf, including list elements,
or empty leaf dictionary.
Keys become tagged keys of the form Tag^Key. The caret operator neatly fits
by operator precedence in-between the pair operator (-) and the sub-key slash
delimiter (/). Nested keys become nested slash-functor binary compounds of
the form TaggedKeys/TaggedKey. So for example, the compound Tag^Key-Value
translates to Tag{Key:Value} in dictionary form. Tag^Key-Value decomposes
term-wise as [-, Tag^Key, Value]. Note that tagged keys, including super-sub
tagged keys, take precedence within the term.
This is a non-standard approach to dictionary unification. It turns nested sub-
dictionary hierarchies into flatten pair-lists of tagged-key paths and their leaf
values.

dict_leaf(-Dict, +Pair) [semidet]
dict_leaf(+Dict, -Pair) [nondet]

Unifies Dict with its leaf nodes non-deterministically. Each Pair is either

79

an atom for root-level keys, or a compound for nested-dictionary keys. Pair
thereby represents a nested key path Leaf with its corresponding Value.
Fails for integer keys because integers cannot serve as functors. Does not at-
tempt to map integer keys to an atom, since this will create a reverse conversion
disambiguation issue. This does work for nested integer leaf keys, e.g. a(1),
provided that the integer key does not translate to a functor.

Arguments
Dict is either a dictionary or a list of key-value pairs whose

syntax conforms to valid dictionary data.

dict_pair(+Dict, -Pair) [nondet]
dict_pair(-Dict, +Pair) [det]

Finds all dictionary pairs non-deterministically and recursively where each
pair is a Path-Value. Path is a slash-delimited dictionary key path. Note, the
search fails for dictionary leaves; succeeds only for non-dictionaries. Fails
therefore for empty dictionaries or dictionaries of empty sub-dictionaries.

findall_dict(?Tag, ?Template, :Goal, -Dicts:list(dict)) [det]
Finds all dictionary-only solutions to Template within Goal. Tag selects which
tags to select. What happens when Tag is variable? In such cases, unites with
the first bound tag then all subsequent matching tags.

dict_tag(+Dict, ?Tag) [semidet]
Tags Dict with Tag if currently untagged. Fails if already tagged but not
matching Tag, just like is_dict/2 with a ground tag. Never mutates ground
tags as a result. Additionally Tags all nested sub-dictionaries using Tag and
the sub-key for the sub-dictionary. An underscore delimiter concatenates the
tag and key.
The implementation uses atomic concatenation to merge Tag and the dictio-
nary sub-keys. Note that atomic_list_concat/3 works for non-atomic keys,
including numbers and strings. Does not traverse sub-lists. Ignores sub-
dictionaries where a dictionary value is a list containing dictionaries. Perhaps
future versions will.

create_dict(?Tag, +Dict0, -Dict) [semidet]
Creates a dictionary just like dict_create/3 does but with two important dif-
ferences. First, the argument order differs. Tag comes first to make maplist/3
and convlist/3 more convenient where the Goal argument includes the Tag.
The new dictionary Dict comes last for the same reason. Secondly, always
applies the given Tag to the new Dict, even if the incoming Data supplies one.
Creating a dictionary using standard dict_create/3 overrides the tag argu-
ment from its Data dictionary, ignoring the Tag if any. For example, using
dict_create/3 for tag xyz and dictionary abc{} gives you abc{} as the outgoing
dictionary. This predicate reverses this behaviour; the Tag argument replaces
any tag in a Data dictionary.

is_key(+Key:any) [semidet]
Succeeds for terms that can serve as keys within a dictionary. Dictionary keys

80

are atoms or tagged integers, otherwise known as constant values. Integers
include negatives.

Arguments
Key successfully unites for all dictionary-key conforming

terms: atomic or integral.

dict_compound(+Dict:dict, ?Compound:compound) [nondet]
Finds all compound-folded terms within Dict. Unifies with all pairs within Dict
as compounds of the form key(Value) where key matches the dictionary key
converted to one-two style and lower-case.
Unfolds lists and sub-dictionaries non-deterministically. For most occa-
sions, the non-deterministic unfolding of sub-lists results in multiple non-
deterministic solutions and typically has a plural compound name. This is not
a perfect solution for lists of results, since the order of the solutions defines
the relations between list elements.
Dictionary keys can be atoms or integers. Converts integers to compound
names using integer-to-atom translation. However, compounds for sub-
dictionaries re-wrap the sub-compounds by inserting the integer key as the
prefix argument of a two or more arity compound.

list_dict(?List, ?Tag, ?Dict) [semidet]
List to Dict by zipping up items from List with integer indexed keys starting at
1. Finds only the first solution, even if multiple solutions exist.

81

Chapter 51

library(swi/lists)

zip(?List1:list, ?List2:list, ?ListOfLists:list(list)) [semidet]
Zips two lists, List1 and List2, where each element from the first list pairs with
the same element from the second list. Alternatively unzips one list of lists
into two lists.
Only succeeds if the lists and sub-lists have matching lengths.

pairs(?Items:list, ?Pairs:list(pair)) [semidet]
Pairs up list elements, or unpairs them in (-, +) mode. Pairs are First-Second
terms where First and Second match two consecutive Items. Unifies a list with
its paired list.
There needs to be an even number of list elements. This requirement proceeds
from the definition of pairing; it pairs the entire list including the last. The
predicate fails otherwise.

indexed(?Items:list, ?Pairs:list(pair)) [semidet]
indexed(?List1:list, ?Index:integer, ?List2:list) [semidet]

Unifies List1 of items with List2 of pairs where the first pair element is an
increasing integer index. Index has some arbitrary starting point, or defaults
to 1 for one-based indexing. Unification works in all modes.

take_at_most(+Length:integer, +List0, -List) [semidet]
List takes at most Length elements from List0. List for Length of zero is always
an empty list, regardless of the incoming List0. List is always empty for an
empty List0, regardless of Length. Finally, elements from List0 unify with List
until either Length elements have been seen, or until no more elements at
List0 exist.

select1(+Indices, +List0, -List) [det]
Selects List elements by index from List0. Applies nth1/3 to each element of
Indices. The 1 suffix of the predicate name indicates one-based Indices used
for selection. Mirrors select/3 except that the predicate picks elements from
a list by index rather than by element removal.

See also
- nth1/3
- select/3

82

select_apply1(+Indices, :Goal, +Extra) [nondet]
Selects one-based index arguments from Extra and applies these extras to
Goal.

See also apply/2

comb2(?List1, ?List2) [nondet]
Unifies List2 with all combinations of List1. The length of List2 defines the
number of elements in List1 to take at one time. It follows that length of List1
must not be less than List2. Fails otherwise.

See also http://kti.ms.mff.cuni.cz/~bartak/prolog/combinatorics.html

83

http://kti.ms.mff.cuni.cz/~bartak/prolog/combinatorics.html

Chapter 52

library(swi/memfilesio): I/O on
Memory Files

author Roy Ratcliffe

52.1 Bytes and octets

Both terms apply herein. Variable names reflect the subtle but essential distinction.
All octets are bytes but not all bytes are octets. Byte is merely eight bits, nothing
more implied, whereas octet implies important inter-byte ordering according to some
big- or little-endian convention.

with_output_to_memory_file(:Goal, +MemoryFile, +Options) [det]
Opens MemoryFile for writing. Calls Goal using once/1, writing to
current_output collected in MemoryFile according to the encoding within
Options. Defaults to UTF-8 encoding.

memory_file_bytes(?MemoryFile, ?Bytes:list) [det]
Unifies MemoryFile with Bytes.

put_bytes(+Bytes:list) [det]
Puts zero or more Bytes to current output.
A good reason exists for putting bytes rather than writing codes. The put_byte/1
predicate throws with permission error when writing to a text stream. Bytes
are not Unicode text; they have an entirely different ontology.

See also Character representation manual section at https://www.swi-prolog.org/
pldoc/man?section=chars for more details about the difference between codes,
characters and bytes.

same_memory_file(+MemoryFile1, +MemoryFile2) [semidet]
Succeeds if, and only if, two memory files compare equal by content. Compar-
ison operates byte-by-byte and so ignores any underlying encoding.

84

https://www.swi-prolog.org/pldoc/man?section=chars
https://www.swi-prolog.org/pldoc/man?section=chars

Chapter 53

library(swi/options)

select_options(+Options, +RestOptions0, -RestOptions, +Defaults) [det]
Applies multiple select_option/4 predicate calls to a list of Options. Applies
the list of Options using a list of Defaults. Argument terms from Options unify
with RestOptions0.
Defaults are unbound if not present. The implementation selects an option’s
Default from the given list of Defaults using select_option/4. Option terms
must have one variable. This is because select_option/4’s fourth argument
is a single argument. It never unifies with multiple variables even though it
succeeds, e.g. select_option(a(A, B), [], Rest, 1) unifies A with 1, leaving
B unbound.
There is a naming issue. What to call the incoming list of Option arguments
and the Options argument with which the Option terms unify? One possibility:
name the Options argument RestOptions0 since they represent the initial set
of RestOptions from which Options select. This clashes with select_option/4’s
naming convention since Options is the argument name for RestOptions0’s role
in the option-selection process. Nevertheless, this version follows this renamed
argument convention.
The predicate is useful for selecting options from a list of options, especially
when the options are not known in advance or when they need to be filtered
based on certain criteria.
Example:

?- select_options([a(A), b(B)], [a(1), b(2), c(3)], Rest, [a(0), b(0)]).
Rest = [c(3)],
A = 1,
B = 2.

Arguments
Options The list of options to select from.
RestOptions0 The initial list of remaining options.
RestOptions The remaining options after selection.
Defaults The list of default values for options.

85

Chapter 54

library(swi/paxos)

paxos_quorum_nodes(-Nodes:list(nonneg)) [semidet]
Nodes is a list of Paxos consensus nodes who are members of the quorum.
Fails if Paxos not yet initialised.

Arguments
Nodes is a list of node indices in low-to-high order.

paxos_quorum_nth1(?Nth1:nonneg) [semidet]
Unifies Nth1 with the order of this node within the quorum. Answers 1 if this
node comes first in the known quorum of consensus nodes, for example.

86

Chapter 55

library(swi/pengines)

pengine_collect(-Results, +Options) [det]
pengine_collect(?Template, +Goal, -Results, +Options) [det]

Collects Prolog engine results. Repackages the collect predicate used by the
Prolog engine tests. There is only one minor difference. The number of replies
maps to replies/1 in Options. Succeeds if not provided but unites with the
integer number of replies from all engines whenever passed to Options. Options
partitions into three sub-sets: next options, state options and ask options.
The implementation utilises a mutable state dictionary to pass event-loop argu-
ments and accumulate results. So quite useful. Note also that the second Goal
argument is not module sensitive. There consequently is no meta-predicate
declaration for it.
The arity-2 form of pengine_collect expects that the pengine_create options
have asked a query. Otherwise the collect waits indefinitely for the engines to
stop.
It is possible that the engine could exit before the collector asks for results.
Prolog engines operate asynchronously. The collect handler pre-empts fail-
ure and avoids an ask-triggered exception by only asking existing engines for
results. This does not eliminate the possibility entirely. It only narrows the
window of opportunity to the interval in-between checking for existence and
asking.

Arguments
Results are the result terms, a list of successful Goal results

accumulated by appending results from all the running
engines.

pengine_wait(Options) [semidet]
Waits for Prolog engines to die. It takes time to die. If alive, wait for the engines
by sampling the current engine and child engines periodically. Options allows
you to override the default number of retries (10) and the default number of
retry delays (10 milliseconds). Fails if times out while waiting for engines to
die; failure means that engines remain alive (else something when wrong).
The implementation makes internal assumptions about the pengines module.

87

It accesses the dynamic and volatile predicates current_pengine/6 and child/2.
The latter is thread local.

88

Chapter 56

library(swi/settings)

local_settings_file(-LocalFile:atom) [semidet]
Breaks the module interface by asking for the current local settings file from
the settings module. The local_file/1 dynamic predicate retains the path
of the current local file based on loading. Loading a new settings file using
load_settings/1 pushes a new local file without replacing the old one, so that
the next save_settings/0 keeps saving to the original file.

Arguments
LocalFile is the absolute path of the local settings file to be

utilised by the next save_settings/1 predicate call.

setting(:Name, ?Value, :Goal) [semidet]
Semi-deterministic version of setting/2. Succeeds only if Value succeeds for
Goal; fails otherwise. Calls Goal with Value.
Take the following example where you only want the setting predicate to suc-
ceed when it does not match the empty atom.

setting(http:public_host, A, \==(’’))

89

Chapter 57

library(swi/streams)

close_streams(+Streams:list, -Catchers:list) [det]
Closes zero or more Streams while accumulating any exceptions at Catchers.

90

Chapter 58

library(swi/zip)

zip_file_info(+File, -Name, -Attrs, -Zipper) [nondet]
Non-deterministically walks through the members of a zip File, moving the
Zipper current member. It does not read the contents of the zip members,
by design. You can use the Name argument to select a member or members
before reading.

Arguments
Zipper unifies with the open Zipper for reading using

zipper_codes/3 or zipper_open_current/3.

zipper_codes(+Zipper, -Codes, +Options) [semidet]
Reads the current Zipper file as Codes. Options may be:

• encoding(utf8) for UTF-8 encoded text, or
• type(binary) for binary octets, and so on.

91

Chapter 59

library(with/output)

with_output_to(+FileType, ?Spec, :Goal) [semidet]
Runs Goal with current_output pointing at a file with UTF-8 encoding. In (+,
-, :) mode, creates a randomly-generated file with random new name unified
at Spec. With Spec unbound, generates a random one-time name. Does not
try to back-track in order to create a unique random name. Hence overwrites
any existing file.
This is an arity-three version of with_output_to/2; same name, different arity.
Writes the results of running Goal to some file given by Spec and FileType.
Fails if Spec and FileType fail to specify a writable file location.
When Spec unbound, generates a random name. Binds the name to Spec.

with_output_to_pl(?Spec, :Goal) [semidet]
Runs Goal with current_output pointing at a randomly-generated Prolog
source file with UTF-8 encoding. In (+, :) mode, creates a Prolog file with name
given by Spec.

92

Index

a_star/3, 5
absolute_directory/2, 25
app_down/1, 62
app_property/2, 61
app_start/1, 61
app_stop/1, 61
app_up/1, 62
append_path/3, 77
apply_to/2, 30
arities/2, 7

big_endian//2, 22, 46
bit_fields/3, 8
bit_fields/4, 8
bit_shift/3, 39
bits/3, 8
bits/4, 8
bits/5, 8
byte//1, 22

close_streams/2, 90
columns_to_rows/2, 45
comb2/2, 83
coverage_for_modules/4, 10
coverages_by_module/2, 10
crc/2, 11
crc/3, 11
crc_16_mcrf4xx/1, 11
crc_16_mcrf4xx/3, 11
crc_property/2, 11
create_dict/3, 80
current_arch/1, 6
current_arch_os/2, 6
current_os/1, 6

dict_compound/2, 81
dict_leaf/2, 79
dict_member/2, 79
dict_pair/2, 80
dict_tag/2, 80

directory_entry//2, 47
directory_entry/2, 47
docker/2, 15
docker/3, 16
docker_path_options/3, 17

endian//3, 46
enz/2, 44
epsilon_equal/2, 27
epsilon_equal/3, 27
exe/3, 23

findall_dict/4, 80
flatten_slashes/2, 77
fmod/3, 27
format_placeholders/3, 33
format_placeholders/4, 33
frem/3, 27
frexp/3, 27

ghapi_get/3, 50
ghapi_update_gist/4, 50

hdx/2, 26
hdx/3, 26
hdx/4, 26

ieee_754_float/3, 53
indexed/2, 82
indexed/3, 82
is_key/1, 80

latex_for_pack/3, 48
lc/3, 63
lc_r/1, 63
lc_r/2, 63
lc_r/3, 63
ldexp/3, 27
list_dict/3, 81
little_endian//2, 22, 46

93

load_pack_modules/2, 29
load_prolog_module/2, 29
loadavg//5, 70
loadavg/5, 70
local_settings_file/1, 89

matrix_dimensions/3, 54
matrix_identity/2, 55
matrix_rotation/2, 55
matrix_transpose/2, 55
memory_file_bytes/2, 84
merge_dict/3, 79
merge_dicts/2, 79
merge_pair/3, 79

octet_bits/2, 28
ollama_chat/3, 58

pairs/2, 82
paxos_quorum_nodes/1, 86
paxos_quorum_nth1/1, 86
payload/1, 30
pengine_collect/2, 87
pengine_collect/4, 87
pengine_wait/1, 87
permute_list_to_grid/2, 32
permute_sum_of_int/2, 32
placeholders//2, 34
placeholders//4, 34
pop_lsbs/2, 35
prefix_atom_suffix/4, 75
print_situation_history_lengths/0, 43
print_table/1, 69
print_table/2, 69
property_of/2, 31
put_bytes/1, 84
put_dict/5, 78

random_name/1, 49
random_name_chk/1, 49
random_name_chk/2, 49
random_temporary_module/1, 71
rbit/3, 8
read_stream_to_codes_until/3, 72
read_stream_to_codes_until_end_of_file/2,

72
redis_date_time/3, 37
redis_keys_and_stream_ids/3, 36

redis_keys_and_stream_ids/4, 36
redis_last_stream_entry/3, 36
redis_last_stream_entry/4, 36
redis_last_streams/2, 36
redis_last_streams/3, 36
redis_stream_entry/3, 36
redis_stream_entry/4, 36
redis_stream_entry/5, 37
redis_stream_id/1, 37
redis_stream_id/2, 37
redis_stream_id/3, 37
redis_stream_read/4, 36
redis_stream_read/5, 36
redis_time/1, 37
restyle_identifier_ex/3, 75

same_memory_file/2, 84
scalar_power/3, 56
scasp_just_dot_print/3, 73
scrape_row/2, 52
search_path/2, 64
search_path_prepend/2, 64
search_path_separator/1, 64
select1/3, 82
select_apply1/3, 83
select_options/4, 85
setting/3, 89
situation_apply/2, 40
situation_property/2, 41
split_lines/2, 76

take_at_most/3, 82

unz/2, 44

vector_distance/2, 55
vector_distance/3, 55
vector_heading/2, 56
vector_scale/3, 55
vector_translate/3, 55

with_output_to/3, 92
with_output_to_memory_file/3, 84
with_output_to_pl/2, 92

xrange/4, 38
xread/4, 38
xread_call/5, 38

94

xread_call/6, 38

zip/3, 82
zip_file_info/4, 91
zipper_codes/3, 91

95

	Canny bag o' Tudor
	library(canny/a)
	library(canny/arch)
	library(canny/arity)
	library(canny/bits)
	library(canny/cover)
	library(canny/crc)
	library(canny/docker): Canny Docker
	Docker API Operations
	Example container operations
	Example network operations
	Restyling Keys

	Low-Level HTTP Requests
	Example usage

	library(canny/endian): Big- and little-endian grammars
	library(canny/exe)
	Implementation Notes

	library(canny/files)
	library(canny/hdx)
	library(canny/maths)
	library(canny/octet)
	library(canny/pack)
	library(canny/payloads): Local Payloads
	library(canny/permutations)
	library(canny/placeholders): Formatting Placeholders
	library(canny/pop)
	library(canny/redis)
	library(canny/redis_streams)
	library(canny/shifter)
	library(canny/situations)
	library(canny/situations_debugging)
	library(canny/z)
	library(data/frame)
	library(dcg/endian)
	library(dcg/files)
	library(doc/latex)
	library(docker/random_names)
	library(gh/api): GitHub API
	library(html/scrapes)
	library(ieee/754)
	library(linear/algebra): Linear algebra
	library(ollama/chat): Ollama Chat
	Usage

	library(os/apps): Operation system apps
	App configuration
	Start up and shut down
	Broadcasts
	Usage
	Apps testing

	library(os/lc)
	library(os/search_paths)
	library(os/windows): Microsoft Windows Operating System
	library(paxos/http_handlers): Paxos HTTP Handlers
	Serialisation

	library(paxos/udp_broadcast): Paxos on UDP
	Docker Stack

	library(print/(table))
	library(proc/loadavg)
	library(random/temporary)
	library(read/until)
	library(scasp/just_dot)
	library(swi/atoms)
	library(swi/codes)
	library(swi/compounds)
	library(swi/dicts): SWI-Prolog dictionary extensions
	Non-deterministic `dict_member(?Dict, ?Member)`

	library(swi/lists)
	library(swi/memfilesio): I/O on Memory Files
	Bytes and octets

	library(swi/options)
	library(swi/paxos)
	library(swi/pengines)
	library(swi/settings)
	library(swi/streams)
	library(swi/zip)
	library(with/output)

