
SWI-Prolog SSL Interface

Markus Triska, Jan van der Steen, Matt Lilley and Jan Wielemaker

E-mail: jan@swi-prolog.org

September 25, 2017

Abstract

The SWI-Prolog SSL (Secure Socket Layer) library implements a pair of filtered streams that
realises an SSL encrypted connection on top of a pair of Prolog wire streams, typically a network
socket. SSL provides public key based encryption and digitally signed identity information of the
peer. The SSL library is well integrated with SWI-Prolog’s HTTP library for both implementing
HTTPS servers and communicating with HTTPS servers. It is also used by the smtp pack for
accessing secure mail agents. Plain SSL can be used to realise secure connections between e.g.,
Prolog agents.

1

https://www.metalevel.at
http://www.swi-prolog.org/pack/list?p=smtp

Contents

1 Introduction 3

2 library(ssl): Secure Socket Layer (SSL) library 3

3 library(crypto): Cryptography and authentication library 10
3.1 Introduction . 10
3.2 Design principle: Secure default algorithms . 10
3.3 Representing binary data . 10
3.4 Cryptographically secure random numbers . 11
3.5 Hashes . 12

3.5.1 Hashes of data and files . 12
3.5.2 Hashes of passwords . 13
3.5.3 HMAC-based key derivation function (HKDF) 14
3.5.4 Hashing incrementally . 14

3.6 Digital signatures . 15
3.6.1 ECDSA . 15
3.6.2 RSA . 16

3.7 Asymmetric encryption and decryption . 17
3.8 Symmetric encryption and decryption . 17
3.9 Number theory . 20
3.10 Elliptic curves . 20
3.11 Example: Establishing a shared secret . 21

4 XML cryptographic libraries 22
4.1 library(saml): SAML Authentication . 22
4.2 library(xmlenc): XML encryption library . 23
4.3 library(xmldsig): XML Digital signature . 23

5 SSL Security 24

6 CRLs and Revocation 25
6.0.1 Disabling certificate checking . 26
6.0.2 Establishing a safe connection . 26

7 Example code 26
7.1 Accessing an HTTPS server . 26
7.2 Creating an HTTPS server . 27
7.3 HTTPS behind a proxy . 28

8 Acknowledgments 29

2

1 Introduction

Raw TCP/IP networking is dangerous for two reasons:

1. It is hard to tell whether the party you think you are talking to is indeed the right one.

2. Anyone with access to a subnet through which your data flows can ‘tap’ the wire and listen for
sensitive information such as passwords, credit card numbers, etc.

Transport Layer Security (TLS) and its predecessor Secure Socket Layer (SSL), which are both
often collectively called SSL, solve both problems. SSL uses:

• certificates to establish the identity of the peer

• encryption to make it useless to tap into the wire.

SSL allows agents to talk in private and create secure web services.
The SWI-Prolog ssl library provides an API to turn a pair of arbitrary Prolog wire streams into

SSL powered encrypted streams. Note that secure protocols such as secure HTTP simply run the plain
protocol over (SSL) encrypted streams.

The crypto library provides additional predicates related to cryptography and authentication,
secure hashes and elliptic curves.

Cryptography is a difficult topic. If you just want to download documents from an HTTPS server
without worrying much about security, http open/3 will do the job for you. As soon as you
have higher security demands we strongly recommend you to read enough background material to
understand what you are doing. See section 5 for some remarks regarding this implementation. This
The Linux Documentation Project page provides some additional background and tips for managing
certificates and keys.

2 library(ssl): Secure Socket Layer (SSL) library
See also library(socket), library(http/http_open), library(crypto)

An SSL server and client can be built with the (abstracted) predicate calls from the table below.
The tcp_ predicates are provided by library(socket). The predicate ssl context/3 de-
fines properties of the SSL connection, while ssl negotiate/5 establishes the SSL connection
based on the wire streams created by the TCP predicates and the context.

The SSL Server The SSL Client
ssl context/3 ssl context/3
tcp socket/1
tcp accept/3 tcp connect/3
tcp open socket/3 stream pair/3
ssl negotiate/5 ssl negotiate/5

The library is abstracted to communication over streams, and is not reliant on those streams being
directly attached to sockets. The tcp_ calls here are simply the most common way to use the library.
Other two-way communication channels such as (named), pipes can just as easily be used.

3

http://www.tldp.org/HOWTO/SSL-Certificates-HOWTO/index.html

ssl context(+Role, -SSL, :Options) [det]

Create an SSL context. The context defines several properties of the SSL connection such
as involved keys, preferred encryption, and passwords. After establishing a context, an SSL
connection can be negotiated using ssl negotiate/5, turning two arbitrary plain Prolog
streams into encrypted streams. This predicate processes the options below.

host(+HostName)
For the client, the host to which it connects. This option should be specified when Role
is client. Otherwise, certificate verification may fail when negotiating a secure
connection.

certificate file(+FileName)
Specify where the certificate file can be found. This can be the same as the
key_file(+FileName) option. A server must have at least one certificate be-
fore clients can connect. A client must have a certificate only if the server demands
the client to identify itself with a client certificate using the peer_cert(true)
option. If a certificate is provided, it is necessary to also provide a match-
ing private key via the key file/1 option. To configure multiple certifi-
cates, use the option certificate key pairs/1 instead. Alternatively, use
ssl add certificate key/4 to add certificates and keys to an existing context.

key file(+FileName)
Specify where the private key that matches the certificate can be found. If the key is
encrypted with a password, this must be supplied using the password(+Text) or
pem_password_hook(:Goal) option.

certificate key pairs(+Pairs)
Alternative method for specifying certificates and keys. The argument is a list of pairs
of the form Certificate-Key, where each component is a string or an atom that holds,
respectively, the PEM-encoded certificate and key. To each certificate, further certificates
of the chain can be appended. Multiple types of certificates can be present at the
same time to enable different ciphers. Using multiple certificate types with completely
independent certificate chains requires OpenSSL 1.0.2 or greater.

password(+Text)
Specify the password the private key is protected with (if any). If you do not want to store
the password you can also specify an application defined handler to return the password
(see next option). Text is either an atom or string. Using a string is preferred as strings are
volatile and local resources.

pem password hook(:Goal)
In case a password is required to access the private key the supplied predicate will be
called to fetch it. The hook is called as call(Goal, +SSL, -Password) and
typically unifies Password with a string containing the password.

require crl(+Boolean)
If true (default is false), then all certificates will be considered invalid unless they can
be verified as not being revoked. You can do this explicity by passing a list of CRL
filenames via the crl/1 option, or by doing it yourself in the cert verify hook. If you
specify require_crl(true) and provide neither of these options, verification will
necessarily fail

4

crl(+ListOfFileNames)
Provide a list of filenames of PEM-encoded CRLs that will be given to the context to
attempt to establish that a chain of certificates is not revoked. You must also set
require_crl(true) if you want CRLs to actually be checked by OpenSSL.

cacert file(+FileName)
Specify a file containing certificate keys of trusted certificates. The peer is trusted if its
certificate is signed (ultimately) by one of the provided certificates. Using the FileName
system(root_certificates) uses a list of trusted root certificates as provided by
the OS. See system root certificates/1 for details.
Additional verification of the peer certificate as well as accepting certificates that are not
trusted by the given set can be realised using the hook cert verify hook(:Goal).

cert verify hook(:Goal)
The predicate ssl negotiate/5 calls Goal as follows:

call(Goal, +SSL,
+ProblemCertificate, +AllCertificates, +FirstCertificate,
+Error)

In case the certificate was verified by one of the provided certifications from the
cacert_file option, Error is unified with the atom verified. Otherwise it con-
tains the error string passed from OpenSSL. Access will be granted iff the predicate
succeeds. See load certificate/2 for a description of the certificate terms. See
cert accept any/5 for a dummy implementation that accepts any certificate.

cipher list(+Atom)
Specify a cipher preference list (one or more cipher strings separated by colons, commas
or spaces).

ecdh curve(+Atom)
Specify a curve for ECDHE ciphers. If this option is not specified, the OpenSSL default
parameters are used. With OpenSSL prior to 1.1.0, prime256v1 is used by default.

peer cert(+Boolean)
Trigger the request of our peer’s certificate while establishing the SSL layer. This option
is automatically turned on in a client SSL socket. It can be used in a server to ask the
client to identify itself using an SSL certificate.

close parent(+Boolean)
If true, close the raw streams if the SSL streams are closed. Default is false.

close notify(+Boolean)
If true (default is false), the server sends TLS close_notify when closing the
connection. In addition, this mitigates truncation attacks for both client and server role:
If EOF is encountered without having received a TLS shutdown, an exception is raised.
Well-designed protocols are self-terminating, and this attack is therefore very rarely a
concern.

min protocol version(+Atom)
Set the minimum protocol version that can be negotiated. Atom is one of sslv3, tlsv1,
tlsv1_1 and tlsv1_2. This option is available with OpenSSL 1.1.0 and later, and
should be used instead of disable_ssl_methods/1.

5

max protocol version(+Atom)
Set the maximum protocol version that can be negotiated. Atom is one of sslv3, tlsv1,
tlsv1_1 and tlsv1_2. This option is available with OpenSSL 1.1.0 and later, and
should be used instead of disable_ssl_methods/1.

disable ssl methods(+List)
A list of methods to disable. Unsupported methods will be ignored. Methods include
sslv2, sslv3, sslv23, tlsv1, tlsv1_1 and tlsv1_2. This option is
deprecated starting with OpenSSL 1.1.0. Use min protocol version/1 and
max protocol version/1 instead.

ssl method(+Method)
Specify the explicit Method to use when negotiating. For allowed values, see the list
for disable_ssl_methods above. Using this option is discouraged. When using
OpenSSL 1.1.0 or later, this option is ignored, and a version-flexible method is used
to negotiate the connection. Using version-specific methods is deprecated in recent
OpenSSL versions, and this option will become obsolete and ignored in the future.

sni hook(:Goal)
This option provides Server Name Indication (SNI) for SSL servers. This means that
depending on the host to which a client connects, different options (certificates etc.) can
be used for the server. This TLS extension allows you to host different domains using
the same IP address and physical machine. When a TLS connection is negotiated with a
client that has provided a host name via SNI, the hook is called as follows:

call(Goal, +SSL0, +HostName, -SSL)

Given the current context SSL0, and the host name of the client request, the predicate
computes SSL which is used as the context for negotiating the connection. The first so-
lution is used. If the predicate fails, the default options are used, which are those of the
encompassing ssl context/3 call. In that case, if no default certificate and key are
specified, the client connection is rejected.

Arguments
Role is one of server or client and denotes whether the SSL in-

stance will have a server or client role in the established connec-
tion.

SSL is a SWI-Prolog blob of type ssl_context, i.e., the type-test for
an SSL context is blob(SSL, ssl_context).

ssl add certificate key(+SSL0, +Certificate, +Key, -SSL)
Add an additional certificate/key pair to SSL0, yielding SSL. Certificate and Key are either
strings or atoms that hold the PEM-encoded certificate plus certificate chain and private key,
respectively. Using strings is preferred for security reasons.

This predicate allows dual-stack RSA and ECDSA servers (for example), and is an alternative
for using the certificate_key_pairs/1 option. As of OpenSSL 1.0.2, multiple certifi-
cate types with completely independent certificate chains are supported. If a certificate of the
same type is added repeatedly to a context, the result is undefined. Currently, up to 12 additional
certificates of different types are admissible.

6

ssl set options(+SSL0, -SSL, +Options)
SSL is the same as SSL0, except for the options specified in Options. The following options
are supported: close notify/1, close parent/1, host/1, peer cert/1,
ecdh curve/1, min protocol version/1, max protocol version/1,
disable ssl methods/1, sni hook/1, cert verify hook/1. See
ssl context/3 for more information about these options. This predicate allows you
to tweak existing SSL contexts, which can be useful in hooks when creating servers with the
HTTP infrastructure.

ssl negotiate(+SSL, +PlainRead, +PlainWrite, -SSLRead, -SSLWrite) [det]

Once a connection is established and a read/write stream pair is available, (PlainRead and
PlainWrite), this predicate can be called to negotiate an SSL session over the streams. If the
negotiation is successful, SSLRead and SSLWrite are returned.

After a successful handshake and finishing the communication
the user must close SSLRead and SSLWrite, for example using
call_cleanup(close(SSLWrite), close(SSLRead)). If the SSL context
(created with ssl context/3 has the option close_parent(true) (default false),
closing SSLRead and SSLWrite also closes the original PlainRead and PlainWrite streams.
Otherwise these must be closed explicitly by the user.

Errors ssl_error(Code, LibName, FuncName, Reason) is raised if the negotiation
fails. The streams PlainRead and PlainWrite are not closed, but an unknown amount of data
may have been read and written.

ssl peer certificate(+Stream, -Certificate) [semidet]

True if the peer certificate is provided (this is always the case for a client connection) and
Certificate unifies with the peer certificate. The example below uses this to obtain the Common
Name of the peer after establishing an https client connection:

http_open(HTTPS_url, In, []),
ssl_peer_certificate(In, Cert),
memberchk(subject(Subject), Cert),
memberchk(’CN’ = CommonName), Subject)

ssl peer certificate chain(+Stream, -Certificates) [det]

Certificates is the certificate chain provided by the peer, represented as a list of certificates.

ssl session(+Stream, -Session) [det]

Retrieves (debugging) properties from the SSL context associated with Stream. If Stream is not
an SSL stream, the predicate raises a domain error. Session is a list of properties, containing
the members described below. Except for Version, all information are byte arrays that are
represented as Prolog strings holding characters in the range 0..255.

ssl version(Version)
The negotiated version of the session as an integer.

cipher(Cipher)
The negotiated cipher for this connection.

7

session key(Key)
The key material used in SSLv2 connections (if present).

master key(Key)
The key material comprising the master secret. This is generated from the server random,
client random and pre-master key.

client random(Random)
The random data selected by the client during handshaking.

server random(Random)
The random data selected by the server during handshaking.

session id(SessionId)
The SSLv3 session ID. Note that if ECDHE is being used (which is the default for newer
versions of OpenSSL), this data will not actually be sent to the server.

load certificate(+Stream, -Certificate) [det]

Loads a certificate from a PEM- or DER-encoded stream, returning a term which will unify with
the same certificate if presented in cert verify hook. A certificate is a list containing the fol-
lowing terms: issuer name/1, hash/1, signature/1, signature algorithm/1,
version/1, notbefore/1, notafter/1, serial/1, subject/1 and key/1.
subject/1 and issuer name/1 are both lists of =/2 terms representing the name. With
OpenSSL 1.0.2 and greater, to be signed/1 is also available, yielding the hexadecimal
representation of the TBS (to-be-signed) portion of the certificate.

Note that the OpenSSL CA.pl utility creates certificates that have a human readable textual
representation in front of the PEM representation. You can use the following to skip to the
certificate if you know it is a PEM certificate:

skip_to_pem_cert(In) :-
repeat,
(peek_char(In, ’-’)
-> !
; skip(In, 0’\n),

at_end_of_stream(In), !
).

load crl(+Stream, -CRL) [det]

Loads a CRL from a PEM- or DER-encoded stream, returning a term contain-
ing terms hash/1, signature/1, issuer name/1 and revocations/1,
which is a list of revoked/2 terms. Each revoked/2 term is of the form
revoked(+Serial, DateOfRevocation)

system root certificates(-List) [det]

List is a list of trusted root certificates as provided by the OS. This is the list used by
ssl context/3 when using the option system(root_certificates). The list is
obtained using an OS specific process. The current implementation is as follows:

• On Windows, CertOpenSystemStore() is used to import the "ROOT" certificates from the
OS.

8

• On MacOSX, the trusted keys are loaded from the SystemRootCertificates key chain. The
Apple API for this requires the SSL interface to be compiled with an XCode compiler,
i.e., not with native gcc.

• Otherwise, certificates are loaded from a file defined by the Prolog flag
system_cacert_filename. The initial value of this flag is operating system
dependent. For security reasons, the flag can only be set prior to using the SSL library.
For example:

:- use_module(library(ssl)).
:- set_prolog_flag(system_cacert_filename,

’/home/jan/ssl/ca-bundle.crt’).

load private key(+Stream, +Password, -PrivateKey) [det]

Load a private key PrivateKey from the given stream Stream, using Password to decrypt the
key if it is encrypted. Note that the password is currently only supported for PEM files.
DER-encoded keys which are password protected will not load. The key must be an RSA
or EC key. DH and DSA keys are not supported, and PrivateKey will be bound to an atom
(dh key or dsa key) if you try and load such a key. Otherwise PrivateKey will be unified with
private_key(KeyTerm) where KeyTerm is an rsa/8 term representing an RSA key, or
ec/3 for EC keys.

load public key(+Stream, -PublicKey) [det]

Load a public key PublicKey from the given stream Stream. Supports loading both DER- and
PEM-encoded keys. The key must be an RSA or EC key. DH and DSA keys are not supported,
and PublicKey will be bound to an atom (dh key or dsa key) if you try and load such a key.
Otherwise PublicKey will be unified with public_key(KeyTerm) where KeyTerm is an
rsa/8 term representing an RSA key, or ec/3 for EC keys.

cert accept any(+SSL, +ProblemCertificate, +AllCertificates, +FirstCertificate, +Error) [det]

Implementation for the hook ‘cert verify hook(:Hook)‘ that accepts any certificate. This is
intended for http open/3 if no certificate verification is desired as illustrated below.

http_open(’https:/...’, In,
[cert_verify_hook(cert_accept_any)
])

ssl secure ciphers(-Ciphers:atom) [det]

Secure ciphers must guarantee forward secrecy, and must mitigate all known criti-
cal attacks. As of 2017, using the following ciphers allows you to obtain grade A on
https://www.ssllabs.com. For A+, you must also enable HTTP Strict Transport
Security (HSTS) by sending a suitable header field in replies.

Note that obsolete ciphers must be disabled to reliably prevent protocol downgrade attacks.

The Ciphers list is read from the setting ssl:secure_ciphers and can be controlled using
set setting/2 and other predicates from library(settings).

BEWARE: This list must be changed when attacks on these ciphers become known!
Keep an eye on this setting and adapt it as necessary in the future.

9

https://www.ssllabs.com.

3 library(crypto): Cryptography and authentication library
author Markus Triska
author Matt Lilley

3.1 Introduction

This library provides bindings to functionality of OpenSSL that is related to cryptography and authen-
tication, not necessarily involving connections, sockets or streams.

3.2 Design principle: Secure default algorithms

A basic design principle of this library is that its default algorithms are cryptographically secure at
the time of this writing. We will change the default algorithms if an attack on them becomes known,
and replace them by new defaults that are deemed appropriate at that time.

This may mean, for example, that where sha256 is currently the default algorithm,
blake2s256 or some other algorithm may become the default in the future.

To preserve interoperability and compatibility and at the same time allow us to transparently up-
date default algorithms of this library, the following conventions are used:

1. If an explicit algorithm is specified as an option, then that algorithm is used.

2. If no algorithm is specified, then a cryptographically secure algorithm is used.

3. If an option that normally specifies an algorithm is present, and a logical variable appears
instead of a concrete algorithm, then that variable is unified with the secure default value.

This allows application programmers to inspect which algorithm was actually used, and store it
for later reference.

For example:

?- crypto_data_hash(test, Hash, [algorithm(A)]).
Hash = ’9f86d081884c7d659a2feaa0c55ad015a3bf4f1b2b0b822cd15d6c15b0f00a08’,
A = sha256.

This shows that at the time of this writing, sha256 was deemed sufficiently secure, and was used
as default algorithm for hashing.

You therefore must not rely on which concrete algorithm is being used by default. However, you
can rely on the fact that the default algorithms are secure. In other words, if they are not secure, then
this is a mistake in this library, and we ask you to please report such a situation as an urgent security
issue.

3.3 Representing binary data

In the context of this library, bytes can be represented as lists of integers between 0 and 255. Such
lists can be converted to and from hexadecimal notation with the following bidirectional relation:

10

https://www.metalevel.at

hex bytes(?Hex, ?List) [det]

Relation between a hexadecimal sequence and a list of bytes. Hex is an atom, string, list
of characters or list of codes in hexadecimal encoding. This is the format that is used by
crypto data hash/3 and related predicates to represent hashes. Bytes is a list of integers
between 0 and 255 that represent the sequence as a list of bytes. At least one of the arguments
must be instantiated. When converting List to Hex, an atom is used to represent the sequence
of hexadecimal digits.

Example:

?- hex_bytes(’501ACE’, Bs).
Bs = [80, 26, 206].

See also base64 encoded/3 for Base64 encoding, which is often used to transfer or embed binary
data in applications.

3.4 Cryptographically secure random numbers

Almost all cryptographic applications require the availability of numbers that are sufficiently unpre-
dictable. Examples are the creation of keys, nonces and salts. With this library, you can generate
cryptographically strong pseudo-random numbers for such use cases:

crypto n random bytes(+N, -Bytes) [det]

Bytes is unified with a list of N cryptographically secure pseudo-random bytes. Each byte is
an integer between 0 and 255. If the internal pseudo-random number generator (PRNG) has
not been seeded with enough entropy to ensure an unpredictable byte sequence, an exception is
thrown.

One way to relate such a list of bytes to an integer is to use CLP(FD) constraints as follows:

:- use_module(library(clpfd)).

bytes_integer(Bs, N) :-
foldl(pow, Bs, 0-0, N-_).

pow(B, N0-I0, N-I) :-
B in 0..255,
N #= N0 + B*256ˆI0,
I #= I0 + 1.

With this definition, you can generate a random 256-bit integer from a list of 32 random bytes:

?- crypto_n_random_bytes(32, Bs),
bytes_integer(Bs, I).

Bs = [98, 9, 35, 100, 126, 174, 48, 176, 246|...],
I = 109798276762338328820827...(53 digits omitted).

11

The above relation also works in the other direction, letting you translate an integer to a list of
bytes. In addition, you can use hex bytes/2 to convert bytes to tokens that can be easily
exchanged in your applications. This also works if you have compiled SWI-Prolog without
support for large integers.

3.5 Hashes

A hash, also called digest, is a way to verify the integrity of data. In typical cases, a hash is signifi-
cantly shorter than the data itself, and already miniscule changes in the data lead to different hashes.

The hash functionality of this library subsumes and extends that of library(sha),
library(hash_stream) and library(md5) by providing a unified interface to all available
digest algorithms.

The underlying OpenSSL library (libcrypto) is dynamically loaded if either
library(crypto) or library(ssl) are loaded. Therefore, if your application uses
library(ssl), you can use library(crypto) for hashing without increasing the memory
footprint of your application. In other cases, the specialised hashing libraries are more lightweight
but less general alternatives to library(crypto).

3.5.1 Hashes of data and files

The most important predicates to compute hashes are:

crypto data hash(+Data, -Hash, +Options) [det]

Hash is the hash of Data. The conversion is controlled by Options:

algorithm(+Algorithm)
One of md5, sha1, sha224, sha256, sha384, sha512, ripemd160,
blake2s256 or blake2b512. The BLAKE digest algorithms require OpenSSL
1.1.0 or greater. The default is a cryptographically secure algorithm. If you specify a
variable, then that variable is unified with the algorithm that was used.

encoding(+Encoding)
If Data is a sequence of character codes, this must be translated into a sequence of bytes,
because that is what the hashing requires. The default encoding is utf8. The other
meaningful value is octet, claiming that Data contains raw bytes.

hmac(+Key)
If this option is specified, a hash-based message authentication code (HMAC) is com-
puted, using the specified Key which is either an atom, string or list of bytes. Any of
the available digest algorithms can be used with this option. The cryptographic strength
of the HMAC depends on that of the chosen algorithm and also on the key. This option
requires OpenSSL 1.1.0 or greater.

Arguments
Data is either an atom, string or code-list
Hash is an atom that represents the hash in hexadecimal encoding.

See also
- hex bytes/2 for conversion between hexadecimal encoding and lists of bytes.
- crypto password hash/2 for the important use case of passwords.

12

crypto file hash(+File, -Hash, +Options) [det]

True if Hash is the hash of the content of File. For Options, see crypto data hash/3.

3.5.2 Hashes of passwords

For the important case of deriving hashes from passwords, the following specialised predicates are
provided:

crypto password hash(+Password, ?Hash) [semidet]

If Hash is instantiated, the predicate succeeds iff the hash matches the given password. Other-
wise, the call is equivalent to crypto_password_hash(Password, Hash, []) and
computes a password-based hash using the default options.

crypto password hash(+Password, -Hash, +Options) [det]

Derive Hash based on Password. This predicate is similar to crypto data hash/3 in that
it derives a hash from given data. However, it is tailored for the specific use case of passwords.
One essential distinction is that for this use case, the derivation of a hash should be as slow as
possible to counteract brute-force attacks over possible passwords.

Another important distinction is that equal passwords must yield, with very high probability,
different hashes. For this reason, cryptographically strong random numbers are automatically
added to the password before a hash is derived.

Hash is unified with an atom that contains the computed hash and all parameters that were used,
except for the password. Instead of storing passwords, store these hashes. Later, you can verify
the validity of a password with crypto password hash/2, comparing the then entered
password to the stored hash. If you need to export this atom, you should treat it as opaque
ASCII data with up to 255 bytes of length. The maximal length may increase in the future.

Admissible options are:

algorithm(+Algorithm)
The algorithm to use. Currently, the only available algorithm is pbkdf2-sha512,
which is therefore also the default.

cost(+C)
C is an integer, denoting the binary logarithm of the number of iterations used for the
derivation of the hash. This means that the number of iterations is set to 2ˆC. Currently,
the default is 17, and thus more than one hundred thousand iterations. You should set this
option as high as your server and users can tolerate. The default is subject to change and
will likely increase in the future or adapt to new algorithms.

salt(+Salt)
Use the given list of bytes as salt. By default, cryptographically secure random numbers
are generated for this purpose. The default is intended to be secure, and constitutes the
typical use case of this predicate.

Currently, PBKDF2 with SHA-512 is used as the hash derivation function, using 128 bits of salt.
All default parameters, including the algorithm, are subject to change, and other algorithms will
also become available in the future. Since computed hashes store all parameters that were used
during their derivation, such changes will not affect the operation of existing deployments. Note
though that new hashes will then be computed with the new default parameters.

13

See also crypto data hkdf/4 for generating keys from Hash.

3.5.3 HMAC-based key derivation function (HKDF)

The following predicate implements the Hashed Message Authentication Code (HMAC)-based key
derivation function, abbreviated as HKDF. It supports a wide range of applications and requirements
by concentrating possibly dispersed entropy of the input keying material and then expanding it to
the desired length. The number and lengths of the output keys depend on the specific cryptographic
algorithms for which the keys are needed.

crypto data hkdf(+Data, +Length, -Bytes, +Options) [det]

Concentrate possibly dispersed entropy of Data and then expand it to the desired length. Bytes
is unified with a list of bytes of length Length, and is suitable as input keying material and
initialization vectors to the symmetric encryption predicates.

Admissible options are:

algorithm(+Algorithm)
A hashing algorithm as specified to crypto data hash/3. The default is a cryp-
tographically secure algorithm. If you specify a variable, then it is unified with the
algorithm that was used.

info(+Info)
Optional context and application specific information, specified as an atom, string or list
of bytes. The default is the zero length atom ”.

salt(+List)
Optionally, a list of bytes that are used as salt. The default is all zeroes.

encoding(+Atom)
Either utf8 (default) or octet, denoting the representation of Data as in
crypto data hash/3.

The info/1 option can be used to generate multiple keys from a single master key, using for
example values such as key and iv, or the name of a file that is to be encrypted.

This predicate requires OpenSSL 1.1.0 or greater.

See also crypto n random bytes/2 to obtain a suitable salt.

3.5.4 Hashing incrementally

The following predicates are provided for building hashes incrementally. This works
by first creating a context with crypto context new/2, then using this context with
crypto data context/3 to incrementally obtain further contexts, and finally extract the result-
ing hash with crypto context hash/2.

crypto context new(-Context, +Options) [det]

Context is unified with the empty context, taking into account Options. The context can be
used in crypto data context/3. For Options, see crypto data hash/3.

Arguments

Context is an opaque pure Prolog term that is subject to garbage collection.

14

crypto data context(+Data, +Context0, -Context) [det]

Context0 is an existing computation context, and Context is the new context after hashing Data
in addition to the previously hashed data. Context0 may be produced by a prior invocation of
either crypto context new/2 or crypto data context/3 itself.

This predicate allows a hash to be computed in chunks, which may be important while working
with Metalink (RFC 5854), BitTorrent or similar technologies, or simply with big files.

crypto context hash(+Context, -Hash)
Obtain the hash code of Context. Hash is an atom representing the hash code that is associated
with the current state of the computation context Context.

The following hashing predicates work over streams:

crypto open hash stream(+OrgStream, -HashStream, +Options) [det]

Open a filter stream on OrgStream that maintains a hash. The hash can be retrieved at
any time using crypto stream hash/2. Available Options in addition to those of
crypto data hash/3 are:

close parent(+Bool)
If true (default), closing the filter stream also closes the original (parent) stream.

crypto stream hash(+HashStream, -Hash) [det]

Unify Hash with a hash for the bytes sent to or read from HashStream. Note that the hash is
computed on the stream buffers. If the stream is an output stream, it is first flushed and the
Digest represents the hash at the current location. If the stream is an input stream the Digest
represents the hash of the processed input including the already buffered data.

3.6 Digital signatures

A digital signature is a relation between a key and data that only someone who knows the key can
compute.

Signing uses a private key, and verifying a signature uses the corresponding public key of
the signing entity. This library supports both RSA and ECDSA signatures. You can use
load private key/3 and load public key/2 to load keys from files and streams.

In typical cases, we use this mechanism to sign the hash of data. See hashing (section 3.5). For
this reason, the following predicates work on the hexadecimal representation of hashes that is also
used by crypto data hash/3 and related predicates.

Signatures are also represented in hexadecimal notation, and you can use hex bytes/2 to con-
vert them to and from lists of bytes (integers).

3.6.1 ECDSA

ecdsa sign(+Key, +Data, -Signature, +Options)
Create an ECDSA signature for Data with EC private key Key. Among the most common
cases is signing a hash that was created with crypto data hash/3 or other predicates of
this library. For this reason, the default encoding (hex) assumes that Data is an atom, string,
character list or code list representing the data in hexadecimal notation. See rsa sign/4 for
an example.

Options:

15

encoding(+Encoding)
Encoding to use for Data. Default is hex. Alternatives are octet, utf8 and text.

ecdsa verify(+Key, +Data, +Signature, +Options) [semidet]

True iff Signature can be verified as the ECDSA signature for Data, using the EC public key
Key.

Options:

encoding(+Encoding)
Encoding to use for Data. Default is hex. Alternatives are octet, utf8 and text.

3.6.2 RSA

rsa sign(+Key, +Data, -Signature, +Options) [det]

Create an RSA signature for Data with private key Key. Options:

type(+Type)
SHA algorithm used to compute the digest. Values are sha1, sha224, sha256,
sha384 or sha512. The default is a cryptographically secure algorithm. If you specify
a variable, then it is unified with the algorithm that was used.

encoding(+Encoding)
Encoding to use for Data. Default is hex. Alternatives are octet, utf8 and text.

This predicate can be used to compute a sha256WithRSAEncryption signature as follows:

sha256_with_rsa(PemKeyFile, Password, Data, Signature) :-
Algorithm = sha256,
read_key(PemKeyFile, Password, Key),
crypto_data_hash(Data, Hash, [algorithm(Algorithm),

encoding(octet)]),
rsa_sign(Key, Hash, Signature, [type(Algorithm)]).

read_key(File, Password, Key) :-
setup_call_cleanup(

open(File, read, In, [type(binary)]),
load_private_key(In, Password, Key),
close(In)).

Note that a hash that is computed by crypto data hash/3 can be directly used in
rsa sign/4 as well as ecdsa sign/4.

rsa verify(+Key, +Data, +Signature, +Options) [semidet]

Verify an RSA signature for Data with public key Key.

Options:

16

type(+Type)
SHA algorithm used to compute the digest. Values are sha1, sha224, sha256,
sha384 or sha512. The default is the same as for rsa sign/4. This option must
match the algorithm that was used for signing. When operating with different parties, the
used algorithm must be communicated over an authenticated channel.

encoding(+Encoding)
Encoding to use for Data. Default is hex. Alternatives are octet, utf8 and text.

3.7 Asymmetric encryption and decryption

The following predicates provide asymmetric RSA encryption and decryption. This means that the
key that is used for encryption is different from the one used to decrypt the data:

rsa private decrypt(+PrivateKey, +CipherText, -PlainText, +Options) [det]

rsa private encrypt(+PrivateKey, +PlainText, -CipherText, +Options) [det]

rsa public decrypt(+PublicKey, +CipherText, -PlainText, +Options) [det]

rsa public encrypt(+PublicKey, +PlainText, -CipherText, +Options) [det]

RSA Public key encryption and decryption primitives. A string can be safely communicated by
first encrypting it and have the peer decrypt it with the matching key and predicate. The length
of the string is limited by the key length.

Options:

encoding(+Encoding)
Encoding to use for Data. Default is utf8. Alternatives are utf8 and octet.

padding(+PaddingScheme)
Padding scheme to use. Default is pkcs1. Alternatives are pkcs1_oaep, sslv23
and none. Note that none should only be used if you implement cryptographically
sound padding modes in your application code as encrypting unpadded data with RSA is
insecure

Errors ssl_error(Code, LibName, FuncName, Reason) is raised if there is an error,
e.g., if the text is too long for the key.

See also load private key/3, load public key/2 can be use to load keys from a file. The
predicate load certificate/2 can be used to obtain the public key from a certificate.

3.8 Symmetric encryption and decryption

The following predicates provide symmetric encryption and decryption. This means that the same key
is used in both cases.

crypto data encrypt(+PlainText, +Algorithm, +Key, +IV, -CipherText, +Options)
Encrypt the given PlainText, using the symmetric algorithm Algorithm, key Key, and initializa-
tion vector (or nonce) IV, to give CipherText.

PlainText must be a string, atom or list of codes or characters, and CipherText is created as
a string. Key and IV are typically lists of bytes, though atoms and strings are also permitted.
Algorithm must be an algorithm which your copy of OpenSSL knows about.

Keys and IVs can be chosen at random (using for example crypto n random bytes/2) or
derived from input keying material (IKM) using for example crypto data hkdf/4. This

17

input is often a shared secret, such as a negotiated point on an elliptic curve, or the hash that
was computed from a password via crypto password hash/3 with a freshly generated
and specified salt.

Reusing the same combination of Key and IV typically leaks at least some information about the
plaintext. For example, identical plaintexts will then correspond to identical ciphertexts. For
some algorithms, reusing an IV with the same Key has disastrous results and can cause the loss of
all properties that are otherwise guaranteed. Especially in such cases, an IV is also called a nonce
(number used once). If an IV is not needed for your algorithm (such as ’aes-128-ecb’) then
any value can be provided as it will be ignored by the underlying implementation. Note that
such algorithms do not provide semantic security and are thus insecure. You should use stronger
algorithms instead.

It is safe to store and transfer the used initialization vector (or nonce) in plain text, but the key
must be kept secret.

Commonly used algorithms include:

’chacha20-poly1305’ A powerful and efficient authenticated encryption scheme, pro-
viding secrecy and at the same time reliable protection against undetected modifications
of the encrypted data. This is a very good choice for virtually all use cases. It is a stream
cipher and can encrypt data of any length up to 256 GB. Further, the encrypted data has
exactly the same length as the original, and no padding is used. It requires OpenSSL 1.1.0
or greater. See below for an example.

’aes-128-gcm’ Also an authenticated encryption scheme. It uses a 128-bit (i.e., 16 bytes)
key and a 96-bit (i.e., 12 bytes) nonce. It requires OpenSSL 1.1.0 or greater.

’aes-128-cbc’ A block cipher that provides secrecy, but does not protect against unin-
tended modifications of the cipher text. This algorithm uses 128-bit (16 bytes) keys and
initialization vectors. It works with all supported versions of OpenSSL. If possible, con-
sider using an authenticated encryption scheme instead.

Options:

encoding(+Encoding)
Encoding to use for PlainText. Default is utf8. Alternatives are utf8 and octet.

padding(+PaddingScheme)
For block ciphers, the padding scheme to use. Default is block. You can disable padding
by supplying none here. If padding is disabled for block ciphers, then the length of the
ciphertext must be a multiple of the block size.

tag(-List)
For authenticated encryption schemes, List is unified with a list of bytes holding the tag.
This tag must be provided for decryption. Authenticated encryption requires OpenSSL
1.1.0 or greater.

tag length(+Length)
For authenticated encryption schemes, the desired length of the tag, specified as the
number of bytes. The default is 16. Smaller numbers are not recommended.

18

For example, with OpenSSL 1.1.0 and greater, we can use the ChaCha20 stream cipher with the
Poly1305 authenticator. This cipher uses a 256-bit key and a 96-bit nonce, i.e., 32 and 12 bytes,
respectively:

?- Algorithm = ’chacha20-poly1305’,
crypto_n_random_bytes(32, Key),
crypto_n_random_bytes(12, IV),
crypto_data_encrypt("this is some input", Algorithm,

Key, IV, CipherText, [tag(Tag)]),
crypto_data_decrypt(CipherText, Algorithm,

Key, IV, RecoveredText, [tag(Tag)]).
Algorithm = ’chacha20-poly1305’,
Key = [65, 147, 140, 197, 27, 60, 198, 50, 218|...],
IV = [253, 232, 174, 84, 168, 208, 218, 168, 228|...],
CipherText = <binary string>,
Tag = [248, 220, 46, 62, 255, 9, 178, 130, 250|...],
RecoveredText = "this is some input".

In this example, we use crypto n random bytes/2 to generate a key and nonce from
cryptographically secure random numbers. For repeated applications, you must ensure that a
nonce is only used once together with the same key. Note that for authenticated encryption
schemes, the tag that was computed during encryption is necessary for decryption. It is safe to
store and transfer the tag in plain text.

See also
- crypto data decrypt/6.
- hex bytes/2 for conversion between bytes and hex encoding.

crypto data decrypt(+CipherText, +Algorithm, +Key, +IV, -PlainText, +Options)
Decrypt the given CipherText, using the symmetric algorithm Algorithm, key Key, and ini-
tialization vector IV, to give PlainText. CipherText must be a string, atom or list of codes or
characters, and PlainText is created as a string. Key and IV are typically lists of bytes, though
atoms and strings are also permitted. Algorithm must be an algorithm which your copy of
OpenSSL knows. See crypto data encrypt/6 for an example.

encoding(+Encoding)
Encoding to use for CipherText. Default is utf8. Alternatives are utf8 and octet.

padding(+PaddingScheme)
For block ciphers, the padding scheme to use. Default is block. You can disable padding
by supplying none here.

tag(+Tag)
For authenticated encryption schemes, the tag must be specified as a list of bytes exactly
as they were generated upon encryption. This option requires OpenSSL 1.1.0 or greater.

min tag length(+Length)
If the tag length is smaller than 16, this option must be used to permit such shorter tags.
This is used as a safeguard against truncation attacks, where an attacker provides a short
tag that is easier to guess.

19

3.9 Number theory

This library provides operations from number theory that frequently arise in cryptographic applica-
tions, complementing the existing built-ins and GMP bindings:

crypto modular inverse(+X, +M, -Y) [det]

Compute the modular multiplicative inverse of the integer X. Y is unified with an integer such
that X*Y is congruent to 1 modulo M.

crypto generate prime(+N, -P, +Options) [det]

Generate a prime P with at least N bits. Options is a list of options. Currently, the only supported
option is:

safe(Boolean)
If Boolean is true (default is false), then a safe prime is generated. This means that P
is of the form 2*Q + 1 where Q is also prime.

crypto is prime(+P, +Options) [semidet]

True iff P passes a probabilistic primality test. Options is a list of options. Currently, the only
supported option is:

iterations(N)
N is the number of iterations that are performed. If this option is not specified, a number
of iterations is used such that the probability of a false positive is at most 2ˆ(-80).

3.10 Elliptic curves

This library provides functionality for reasoning over elliptic curves. Elliptic curves are represented
as opaque objects. You acquire a handle for an elliptic curve via crypto name curve/2.

A point on a curve is represented by the Prolog term point(X, Y), where X and Y are integers
that represent the point’s affine coordinates.

The following predicates are provided for reasoning over elliptic curves:

crypto name curve(+Name, -Curve) [det]

Obtain a handle for a named elliptic curve. Name is an atom, and Curve is unified with an
opaque object that represents the curve. Currently, only elliptic curves over prime fields are
supported. Examples of such curves are prime256v1 and secp256k1.

If you have OpenSSL installed, you can get a list of supported curves via:

$ openssl ecparam -list_curves

crypto curve order(+Curve, -Order) [det]

Obtain the order of an elliptic curve. Order is an integer, denoting how many points on the
curve can be reached by multiplying the curve’s generator with a scalar.

crypto curve generator(+Curve, -Point) [det]

Point is the generator of the elliptic curve Curve.

crypto curve scalar mult(+Curve, +N, +Point, -R) [det]

R is the result of N times Point on the elliptic curve Curve. N must be an integer, and Point
must be a point on the curve.

20

3.11 Example: Establishing a shared secret

As one example that involves most predicates of this library, we explain a way to establish a shared
secret over an insecure channel. We shall use elliptic curves for this purpose.

Suppose Alice wants to establish an encrypted connection with Bob. To achieve this even over
a channel that may be subject to eavesdrooping and man-in-the-middle attacks, Bob performs the
following steps:

1. Choose an elliptic curve C, using crypto name curve/2.

2. Pick a random integer k such that k is greater than 0 and smaller than the order of C. This can
be done using crypto curve order/2 and crypto n random bytes/2.

3. Use crypto curve generator/2 to obtain the generator G of C, and use
crypto curve scalar mult/4 to compute the scalar product k*G. We call this result
R, denoting a point on the curve.

4. Sign R (using for example rsa sign/4 or ecdsa sign/4) and send this to Alice.

This mechanism hinges on a way for Alice to establish the authenticity of the signed message
(using predicates like rsa verify/4 and ecdsa verify/4), for example by means of a public
key that was previously exchanged or is signed by a trusted party in such a way that Alice can be
sufficiently certain that it belongs to Bob. However, none of these steps require any encryption!

Alice in turn performs the following steps:

1. Create a random integer j such that j is greater than 0 and smaller than the order of C. Alice can
also use crypto curve order/2 and crypto n random bytes/2 for this.

2. Compute the scalar product j*G, where G is again the generator of C as obtained via
crypto curve generator/2.

3. Further, compute the scalar product j*R, which is a point on the curve that we shall call Q. We
can derive a shared secret from Q, using for example crypto data hkdf/4, and encrypt
any message with it (using for example crypto data encrypt/6).

4. Send the point j*G and the encrypted message to Bob.

Bob receives j*G in plain text and can arrive at the same shared secret by performing the calcula-
tion k*(j*G), which is - by associativity and commutativity of scalar multiplication - identical to the
point j*(k*G), which is again Q from which the shared secret can be derived, and the message can be
decrypted with crypto data decrypt/6.

This method is known as Diffie-Hellman-Merkle key exchange over elliptic curves, abbreviated
as ECDH. It provides forward secrecy (FS): Even if the private key that was used to establish the
authenticity of Bob is later compromised, the encrypted messages cannot be decrypted with it.

A major attraction of using elliptic curves for this purpose is found in the comparatively small key
size that suffices to make any attacks unrealistic as far as we currently know. In particular, given any
point on the curve, we currently have no efficient way to determine by which scalar the generator was
multiplied to obtain that point. The method described above relies on the hardness of this so-called
elliptic curve discrete logarithm problem (ECDLP). On the other hand, some of the named curves have

21

been suspected to be chosen in such a way that they could be prone to attacks that are not publicly
known.

As an alternative to ECDH, you can use the original DH key exchange scheme, where the prime
field GF(p) is used instead of an elliptic curve, and exponentiation of a suitable generator is used in-
stead of scalar multiplication. You can use crypto generate prime/3 to generate a sufficiently
large prime for this purpose.

4 XML cryptographic libraries

The SSL package provides several libraries dealing with cryptographic operations of XML documents.
These libraries depend on the sgml package. These libraries are part of this package because the
sgml package has no external dependencies and will thus be available in any SWI-Prolog installation
while configuring and building this ssl package is much more involved.

4.1 library(saml): SAML Authentication
See also https://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.

pdf

There are four primary integration points for applications to use this code:
1) You must declare at least one service provider (SP) 2) You must de-
clare at least one identity provider (IdP) per SP 3) Finally, you can call
saml_authenticate(+SP, +IdP, +Callback, +Request) to obtain asser-
tions The asynchronous nature of the SAML process means that a callback must be used.
Assuming that the IdP was able to provide at least some valid assertions about the user, af-
ter calling Callback with 2 extra arguments (a list of the assertion terms and the URL being
request by the user), the user will be redirected back to their original URL. It is therefore
up to the callback to ensure that this does not simply trigger another round of SAML ne-
gotiations - for example, by throwing http_reply(forbidden(RequestURL)) if
the assertions are not strong enough 4) Finally, your SP metadata will be available from
the web server directly. This is required to configure the IdP. This will be available at
’./metadata.xml’, relative to the LocationSpec provided when the SP was declared.

Configuring an SP: To declare an SP, use the declaration :
-saml_sp(+ServiceProvider: atom, +LocationSpec: term, +PrivateKeySpec: term, +Password: atom +CertificateSpec: term, +Options: list).

The ServiceProvider is the identifier of your service. Ideally, this should be a fully-
qualified URI The LocationSpec is a location that the HTTP dispatch layer will understand
for example ’.’ or root(’saml’). The Private KeySpec is a ’file specifier’ that resolves
to a private key (see below for specifiers) The Password is a password used for reading
the private key. If the key is not encrypted, any atom can be supplied as it will be ignored
The CertificateSpec is a file specifier that resolves to a certificate holding the public key
corresponding to PrivateKeySPec There are currently no implemented options (the list is
ignored).

Configuring an IdP: To declare an IdP, use the declaration
:-saml_idp(+ServiceProvider: atom, +MetadataSpec: term). ServiceProvider
is the identifier used when declaring your SP. You do not need to declare them in a particular order,
but both must be present in the system before running saml authenticate/4. MetadataSpec is

a file specifier that resolves to the metadata for the IdP. Most IdPs will be able to provide this on
request

File Specifiers: The following specifiers are supported for locating files:

• file(Filename): The local file Filename
• resource(Resource): The prolog resource Resource. See resource/3

22

https://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
https://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf

• url(URL): The file identified by the HTTP (or HTTPS if you have the HTTPS plugin loaded)
URL

This library uses SAML to exchange messages with an Identity Provider to establish assertions
about the current user’s session. It operates only as the service end, not the identity provider end.

4.2 library(xmlenc): XML encryption library
See also

- https://www.w3.org/TR/xmlenc-core1/
- https://en.wikipedia.org/wiki/Security_Assertion_Markup_Language

This library is a partial implementation of the XML encryption standard. It implements the de-
cryption part, which is needed by SAML clients.

decrypt xml(+DOMIn, -DOMOut, :KeyCallback, +Options) [det]

Arguments
KeyCallback may be called as follows:

• call(KeyCallback, name, KeyName, Key)

• call(KeyCallback, public_key, public_key(RSA), Key)

• call(KeyCallback, certificate, Certificate, Key)

load certificate from base64 string(+String, -Certificate) [det]

Loads a certificate from a string, adding newlines and header where appropriate so that
OpenSSL 1.0.1+ will be able to parse it

4.3 library(xmldsig): XML Digital signature
See also

- http://www.di-mgt.com.au/xmldsig.html
- https://www.bmt-online.org/geekisms/RSA_verify
- http://stackoverflow.com/questions/5576777/
whats-the-difference-between-nid-sha-and-nid-sha1-in-openssl

This library deals with XMLDSIG, RSA signed XML documents.

xmld signed DOM(+DOM, -SignedDOM, +Options) [det]

Translate an XML DOM structure in a signed version. Options:

key file(+File)
File holding the private key needed to sign

key password(+Password)
String holding the password to op the private key.

23

https://www.w3.org/TR/xmlenc-core1/
https://en.wikipedia.org/wiki/Security_Assertion_Markup_Language
http://www.di-mgt.com.au/xmldsig.html
https://www.bmt-online.org/geekisms/RSA_verify
http://stackoverflow.com/questions/5576777/whats-the-difference-between-nid-sha-and-nid-sha1-in-openssl
http://stackoverflow.com/questions/5576777/whats-the-difference-between-nid-sha-and-nid-sha1-in-openssl

The SignedDOM must be emitted using xml write/3 or xml write canonical/3. If
xml write/3 is used, the option layout(false) is needed to avoid changing the layout
of the SignedInfo element and the signed DOM, which will cause the signature to be invalid.

xmld verify signature(+DOM, +SignatureDOM, -Certificate, +Options) [det]

Confirm that an ds:Signature element contains a valid signature. Certificate is bound
to the certificate that appears in the element if the signature is valid. It is up to the caller to
determine if the certificate is trusted or not.

Note: The DOM and SignatureDOM must have been obtained using the load structure/3
option keep_prefix(true) otherwise it is impossible to generate an identical document
for checking the signature. See also xml write canonical/3.

5 SSL Security

Using SSL (in this particular case based on the OpenSSL implementation) to connect to SSL services
(e.g., an https:// address) easily gives a false sense of security. This section explains some of the
pitfalls.1. As stated in the introduction, SSL aims at solving two issues: tapping information from the
wire by means of encryption and make sure that you are talking to the right address.

Encryption is generally well arranged as long as you ensure that the underlying SSL library has
all known security patches installed and you use an encryption that is not known to be weak. The
Windows version and MacOS binaries of SWI-Prolog ships with its own binary of the OpenSSL
library. Ensure this is up-to-date. On systems that ship with the OpenSSL library SWI-Prolog uses
the system version. This applies notably for all Linux packages. Check the origin and version of
the OpenSSL libraries and verify there are no more recent security patches regularly if security is
important to you. The OpenSSL library version as reported by SSLeay version() is available in the
Prolog flag ssl library version as illustrated below on Ubuntu 14.04.

?- [library(ssl)].
?- current_prolog_flag(ssl_library_version, X).
X = ’OpenSSL 1.0.1f 6 Jan 2014’.

Whether you are talking to the right address is a complicated issue. The core of the validation is that
the server provides a certificate that identifies the server. This certificate is digitally signed by another
certificate, and ultimately by a root certificate. (There may be additional links in this chain as well, or
there may just be one certificate signed by itself) Verifying the peer implies:

1. Verifying the chain or digital signatures until a trusted root certificate is found, taking care that
the chain does not contain any invalid certificates, such as certificates which have expired, are
not yet valid, have altered or forged signatures, are valid for the purposes of SSL (and in the
case of an issuer, issuing child certificates)

2. Verifying that the signer of a certificate did not revoke the signed certificate.

3. Verifying that the host we connected to is indeed the host claimed in the certificate.
1We do not claim to be complete, just to start warning you if security is important to you. Please make sure you

understand (Open)SSL before relying on it.

24

The default https client plugin (http/http ssl plugin) registers the system trusted root cer-
tificate with OpenSSL. This is achieved using the option cacert file(system(root certificates)) of
ssl context/3. The verification is left to OpenSSL. To the best of our knowledge, the current
(1.0) version of OpenSSL only implements step (1) of the verification process outlined above. This
implies that an attacker that can control DNS mapping (host name to IP) or routing (IP to physical
machine) can fake to be a secure host as long as they manage to obtain a certificate that is signed from
a recognised authority. Version 1.0.2 supports hostname checking, and will not validate a certificate
chain if the leaf certificate does not match the hostname. ’Match’ here is not a simple string compari-
son; certificates are allowed (subject to many rules) to have wildcards in their SubjectAltName field.
Care must also be taken to ensure that the name we are checking against does not contain embedded
NULLs. If SWI-Prolog is compiled against a version of OpenSSL that does NOT have hostname
checking (ie 1.0.0 or earlier), it will attempt to do the validation itself. This is not guaranteed to
be perfect, and it only supports a small subset of allowed wildcards. If security is important, use
OpenSSL 1.0.2 or higher.

After validation, the predicate ssl peer certificate/2 can be used to obtain the peer cer-
tificate and inspect its properties.

6 CRLs and Revocation

Certificates must sometimes be revoked. Unfortunately this means that the elegant chain-of-trust
model breaks down, since the information you need to determine whether a certificate is trustworthy
no longer depends on just the certificate and whether the issuer is trustworthy, but now on a third
piece of data - whether the certificate has been revoked. These are managed in two ways in OpenSSL:
CRLs and OCSP. SWI-Prolog supports CRLs only. (Typically OCSP responders are configured in
such a way as to just consult CRLs anyway. This gives the illusion of up-to-the-minute revocation
information because OCSP is an interactive, online, real-time protocol. However the information
provided can still be several weeks out of date!)

To do CRL checking, pass require crl(true) as an option to the ssl context/3 (or
http open/3) option list. If you do this, a certificate will not be validated unless it can be checked
for on a revocation list. There are two options for this:

First, you can pass a list of filenames in as the option crl/1. If the CRL corresponds to an issuer
in the chain, and the issued certificate is not on the CRL, then it is assumed to not be revoked. Note
that this does NOT prove the certificate is actually trustworthy - the CRL you pass may be out of
date! This is quite awkward to get right, since you do not necessarily know in advance what the chain
of certificates the other party will present are, so you cannot reasonably be expected to know which
CRLs to pass in.

Secondly, you can handle the CRL checking in the cert verify hook when the Error is bound to
unknown crl. At this point you can obtain the issuer certificate (also given in the hook), find the CRL
distribution point on it (the crl/1 argument), try downloading the CRL (the URL can have literally
any protocol, most commonly HTTP and LDAP, but theoretically anything else, too, including the
possibility that the certificate has no CRL distribution point given, and you are expected to obtain
the CRL by email, fax, or telegraph. Therefore how to actually obtain a CRL is out of scope of
this document), load it using load crl/2, then check to see whether the certificate currently under
scrutiny appears in the list of revocations. It is up to the application to determine what to do if the
CRL cannot be obtained - either because the protocol to obtain it is not supported or because the place
you are obtaining it from is not responding. Just because the CRL server is not responding does not

25

mean that your certificate is safe, of course - it has been suggested that an ideal way to extend the life
of a stolen certificate key would be to force a denial of service of the CRL server.

6.0.1 Disabling certificate checking

In some cases clients are not really interested in host validation of the peer and whether or not the
certificate can be trusted. In these cases the client can pass cert verify hook(cert accept any),
calling cert accept any/5 which accepts any certificate. Note that this will accept literally ANY
certificate presented - including ones which have expired, have been revoked, and have forged signa-
tures. This is probably not a good idea!

6.0.2 Establishing a safe connection

Applications that exchange sensitive data with e.g., a backend server typically need to ensure they
have a secure connection to their peer. To do this, first obtain a non-secure connection to the
peer (eg via a TCP socket connection). Then create an SSL context via ssl context/3. For
the client initiating the connection, the role is ’client’, and you should pass options host/1 and
cacert file/1 at the very least. If you expect the peer to have a certificate which would be ac-
cepted by your host system, you can pass cacert file(system(root certificates)), otherwise you
will need a copy of the CA certificate which was used to sign the peer’s certificate. Alternatively,
you can pass cert verify hook/1 to write your own custom validation for the peer’s certifi-
cate. Depending on the requirements, you may also have to provide your /own/ certificate if the peer
demands mutual authentication. This is done via the certificate file/1, key file/1 and
either password/1 or pem password hook/1.

Once you have the SSL context and the non-secure stream, you can call ssl negotiate/5
to obtain a secure stream. ssl negotiate/5 will raise an exception if there were any certificate
errors that could not be resolved.

The peer behaves in a symmetric fashion: First, a non-secure connection is obtained, and
a context is created using ssl context/3 with the role set to server. In the server case,
you must provide certificate file/1 and key file/1, and then either password/1 or
pem password hook/1. If you require the other party to present a certificate as well, then
peer cert(true) should be provided. If the peer does not present a certificate, or the certificate can-
not be validated as trusted, the connection will be rejected.

By default, revocation is not checked. To enable certificate revocation checking, pass re-
quire crl(true) when creating the SSL context. See section 6 for more information about revocations.

7 Example code

Examples of a simple server and client (server.pl and client.pl as well as a simple HTTPS
server (https.pl) can be found in the example directory which is located in doc/packages/
examples/ssl relative to the SWI-Prolog installation directory. The etc directory contains ex-
ample certificate files as well as a README on the creation of certificates using OpenSSL tools.

7.1 Accessing an HTTPS server

Accessing an https:// server can be achieved using the code skeleton below. The line
:- use_module(library(http/http_ssl_plugin)). can actually be omitted because

26

the plugin is dynamically loaded by http open/3 if the https scheme is detected. See section 5
for more information about security aspects.

:- use_module(library(http/http_open)).
:- use_module(library(http/http_ssl_plugin)).

...,
http_open(HTTPS_url, In, []),
...

7.2 Creating an HTTPS server

The SWI-Prolog infrastructure provides two main ways to launch an HTTPS server:

• Using library(http/thread httpd), the server is started in HTTPS mode by adding
an option ssl/1 to http server/2. The argument of ssl/1 is an option list that is passed
as the third argument to ssl context/3.

• Using library(http/http unix daemon), an HTTPS server is started by using the
command line argument --https.

Two items are typically specified as, respectively, options or additional command line arguments:

• server certificate. This identifies the server and acts as a public key for the encryption.

• private key of the server, which must be kept secret. The key may be protected by a password.
If this is the case, the server must provide the password by means of the password option,
the pem password hook callback or, in case of the Unix daemon, via the --pwfile or
--password command line options.

Here is an example that uses the self-signed demo certificates distributed with the SSL package.
As is typical for publicly accessible HTTPS servers, this version does not require a certificate from
the client:

:- use_module(library(http/thread_httpd)).
:- use_module(library(http/http_ssl_plugin)).

https_server(Port, Options) :-
http_server(reply,

[port(Port),
ssl([certificate_file(’etc/server/server-cert.pem’),

key_file(’etc/server/server-key.pem’),
password("apenoot1")

])
| Options
]).

27

There are two hooks that let you extend HTTPS servers with custom definitions:

• http:ssl server create hook(+SSL0, -SSL, +Options): This extensible
predicate is called exactly once, after creating an HTTPS server with Options. If this predicate
succeeds, SSL is the context that is used for negotiating all new connections. Otherwise, SSL0
is used, which is the context that was created with the given options.

• http:ssl server open client hook(+SSL0, -SSL, +Options): This predi-
cate is called before each connection that the server negotiates with a client. If this predicate
succeeds, SSL is the context that is used for the new connection. Otherwise, SSL0 is used,
which is the context that was created when launching the server.

Important use cases of these hooks are running dual-stack RSA/ECDSA servers, updating cer-
tificates while the server keeps running, and tweaking SSL parameters for connections. Use
ssl set options/3 to create and configure copies of existing contexts in these hooks.

The example file https.pl also provides a server that does require the client to show its cer-
tificate. This provides an additional level of security, often used to allow a selected set of clients to
perform sensitive tasks.

Note that a single Prolog program can call http server/2with different parameters to provide
services at several security levels as described below. These servers can either use their own dispatch-
ing or commonly use http dispatch/1 and check the port property of the request to verify they
are called with the desired security level. If a service is approached at a too low level of security, the
handler can deny access or use HTTP redirect to send the client to to appropriate interface.

• A plain HTTP server at port 80. This can either be used for non-sensitive information or for
redirecting to a more secure service.

• An HTTPS server at port 443 for sensitive services to the general public.

• An HTTPS server that demands for a client key on a selected port for administrative tasks or
sensitive machine-to-machine communication.

7.3 HTTPS behind a proxy

The above expects Prolog to be accessible directly from the internet. This is becoming more popular
now that services are often deployed using virtualization. If the Prolog services are placed behind a
reverse proxy, HTTPS implementation is the task of the proxy server (e.g., Apache or Nginx). The
communication from the proxy server to the Prolog server can use either plain HTTP or HTTPS. As
plain HTTP is easier to setup and faster, this is typically preferred if the network between the proxy
server and Prolog server can be trusted.

Note that the proxy server must decrypt the HTTPS traffic because it must decide on the destina-
tion based on the encrypted HTTP header. Port forwarding provides another option to make a server
running on a machine that is not directly connected to the internet visible. It is not needed to decrypt
the traffic using port forwarding, but it is also not possible to realise virtual hosts or path-based proxy
rules.

Virtual hosts for HTTPS are available via Server Name Indication (SNI). This is a TLS extension
that allows servers to host different domains from the same IP address. See the sni hook/1 option
of ssl context/3 for more information.

28

8 Acknowledgments

The development of the SWI-Prolog SSL interface has been sponsored by Scientific Software and Sys-
tems Limited. The current version contains contributions from many people. Besides the mentioned
authors, Markus Triska has submitted several patches, and improved and documented the integration
of this package with the HTTP infrastructure.

References

29

http://www.sss.co.nz
http://www.sss.co.nz
https://www.metalevel.at

Index
cacert file/1, 26
cert accept any/5, 9, 26
cert verify hook/1, 26
certificate file/1, 26
crl/1, 25
crypto library, 3
crypto context hash/2, 15
crypto context new/2, 14
crypto curve generator/2, 20
crypto curve order/2, 20
crypto curve scalar mult/4, 20
crypto data context/3, 15
crypto data decrypt/6, 19
crypto data encrypt/6, 17
crypto data hash/3, 12
crypto data hkdf/4, 14
crypto file hash/3, 13
crypto generate prime/3, 20
crypto is prime/2, 20
crypto modular inverse/3, 20
crypto n random bytes/2, 11
crypto name curve/2, 20
crypto open hash stream/3, 15
crypto password hash/2, 13
crypto password hash/3, 13
crypto stream hash/2, 15

decrypt xml/4, 23

ecdsa sign/4, 15
ecdsa verify/4, 16

hex bytes/2, 11
host/1, 26
http/http ssl plugin library, 25
http dispatch/1, 28
http open/3, 3, 25, 27
http server/2, 27, 28

key file/1, 26

load certificate/2, 8
load certificate from base64 string/2, 23
load crl/2, 8, 25
load private key/3, 9

load public key/2, 9

password/1, 26
pem password hook/1, 26

rsa private decrypt/4, 17
rsa private encrypt/4, 17
rsa public decrypt/4, 17
rsa public encrypt/4, 17
rsa sign/4, 16
rsa verify/4, 16

sni hook/1, 28
ssl library, 3
ssl add certificate key/4, 6
ssl context/3, 4, 25–28
ssl negotiate/5, 7, 26
ssl peer certificate/2, 7, 25
ssl peer certificate chain/2, 7
ssl secure ciphers/1, 9
ssl session/2, 7
ssl set options/3, 7, 28
system root certificates/1, 8

xmld signed DOM/3, 23
xmld verify signature/4, 24

30

	Introduction
	library(ssl): Secure Socket Layer (SSL) library
	library(crypto): Cryptography and authentication library
	Introduction
	Design principle: Secure default algorithms
	Representing binary data
	Cryptographically secure random numbers
	Hashes
	Hashes of data and files
	Hashes of passwords
	HMAC-based key derivation function (HKDF)
	Hashing incrementally

	Digital signatures
	ECDSA
	RSA

	Asymmetric encryption and decryption
	Symmetric encryption and decryption
	Number theory
	Elliptic curves
	Example: Establishing a shared secret

	XML cryptographic libraries
	library(saml): SAML Authentication
	library(xmlenc): XML encryption library
	library(xmldsig): XML Digital signature

	SSL Security
	CRLs and Revocation
	Disabling certificate checking
	Establishing a safe connection

	Example code
	Accessing an HTTPS server
	Creating an HTTPS server
	HTTPS behind a proxy

	Acknowledgments

