
SWI-Prolog C-library

Jan Wielemaker
HCS,

University of Amsterdam
The Netherlands

E-mail: J.Wielemaker@cs.vu.nl

September 27, 2012

Abstract

This document describes commonly used foreign language extensions to SWI-Prolog dis-
tributed as a package known under the name clib. The package defines a number of Prolog li-
braries with accompagnying foreign libraries.

On Windows systems, the unix library can only be used if the whole SWI-Prolog suite is
compiled using Cygwin. The other libraries have been ported to native Windows.

1

Contents

1 Introduction 3

2 Unix Process manipulation library 3

3 library(process): Create processes and redirect I/O 5

4 library(filesex): Extended operations on files 8

5 library(uid): User and group management on Unix systems 10

6 Socket library 12
6.1 Server applications . 14
6.2 Client applications . 15
6.3 The stream pool library . 16
6.4 UDP protocol support . 17

7 library(uri): Process URIs 18

8 CGI Support library 21
8.1 Some considerations . 22

9 library(mime): Parse MIME documents 22

10 Password encryption library 23

11 SHA1 and SHA2 Secure Hash Algorithms 24
11.1 License terms . 25

12 Memory files 26

13 Time and alarm library 27

14 Limiting process resources 28

15 library(udp broadcast): A UDP Broadcast Bridge 29
15.1 Caveats: . 31

2

1 Introduction

Many useful facilities offered by one or more of the operating systems supported by SWI-Prolog are
not supported by the SWI-Prolog kernel distribution. Including these would enlarge the footprint and
complicate portability matters while supporting only a limited part of the user-community.

This document describes unix to deal with the Unix process API, socket to deal with inet-
domain TCP and UDP sockets, cgi to deal with getting CGI form-data if SWI-Prolog is used as
a CGI scripting language, crypt to provide password encryption and verification, sha providing
cryptographic hash functions and memfile providing in-memorty pseudo files.

2 Unix Process manipulation library

The unix library provides the commonly used Unix primitives to deal with process management.
These primitives are useful for many tasks, including server management, parallel computation, ex-
ploiting and controlling other processes, etc.

The predicates are modelled closely after their native Unix counterparts. Higher-level primitives,
especially to make this library portable to non-Unix systems are desirable. Using these primitives and
considering that process manipulation is not a very time-critical operation we anticipate these libraries
to be developed in Prolog.

fork(-Pid)
Clone the current process into two branches. In the child, Pid is unified to child. In the
original process, Pid is unified to the process identifier of the created child. Both parent and
child are fully functional Prolog processes running the same program. The processes share
open I/O streams that refer to Unix native streams, such as files, sockets and pipes. Data is not
shared, though on most Unix systems data is initially shared and duplicated only if one of the
programs attempts to modify the data.

Unix fork() is the only way to create new processes and fork/2 is a simple direct interface
to it.

exec(+Command(...Args...))
Replace the running program by starting Command using the given commandline arguments.
Each command-line argument must be atomic and is converted to a string before passed to the
Unix call execvp().

Unix exec() is the only way to start an executable file executing. It is commonly used together
with fork/1. For example to start netscape on an URL in the background, do:

run_netscape(URL) :-
(fork(child),

exec(netscape(URL))
; true
).

Using this code, netscape remains part of the process-group of the invoking Prolog process and
Prolog does not wait for netscape to terminate. The predicate wait/2 allows waiting for a
child, while detach IO/0 disconnects the child as a deamon process.

3

wait(-Pid, -Status)
Wait for a child to change status. Then report the child that changed status as well as the
reason. Status is unified with exited(ExitCode) if the child with pid Pid was terminated by
calling exit() (Prolog halt/[0,1]). ExitCode is the return=status. Status is unified with
signaled(Signal) if the child died due to a software interrupt (see kill/2). Signal contains
the signal number. Finally, if the process suspended execution due to a signal, Status is unified
with stopped(Signal).

kill(+Pid, +Signal)
Deliver a software interrupt to the process with identifier Pid using software-interrupt number
Signal. See also on signal/2. Signals can be specified as an integer or signal name, where
signal names are derived from the C constant by dropping the SIG prefix and mapping to
lowercase. E.g. int is the same as SIGINT in C. The meaning of the signal numbers can be
found in the Unix manual.1.

pipe(-InSream, -OutStream)
Create a communication-pipe. This is normally used to make a child communicate to its parent.
After pipe/2, the process is cloned and, depending on the desired direction, both processes
close the end of the pipe they do not use. Then they use the remaining stream to communicate.
Here is a simple example:

:- use_module(library(unix)).

fork_demo(Result) :-
pipe(Read, Write),
fork(Pid),
(Pid == child
-> close(Read),

format(Write, ’˜q.˜n’,
[hello(world)]),

flush_output(Write),
halt

; close(Write),
read(Read, Result),
close(Read)

).

dup(+FromStream, +ToStream)
Interface to Unix dup2(), copying the underlying filedescriptor and thus making both streams
point to the same underlying object. This is normally used together with fork/1 and pipe/2
to talk to an external program that is designed to communicate using standard I/O.

Both FromStream and ToStream either refer to a Prolog stream or an integer descriptor number
to refer directly to OS descriptors. See also demo/pipe.pl in the source-distribution of this
package.

1kill/2 should support interrupt-names as well

4

detach IO
This predicate is intended to create Unix deamon-processes. It preforms two actions. First
of all, the I/O streams user input, user output and user error are closed and
rebound to a Prolog stream that returns end-of-file on any attempt to read and starts writing
to a file named /tmp/pl-out.pid (where 〈pid〉 is the process-id of the calling Prolog) on
any attempt to write. This file is opened only if there is data available. This is intended for
debugging purposes.2 Finally, the process is detached from the current process-group and its
controlling terminal.

3 library(process): Create processes and redirect I/O
Compatibility SICStus 4
To be done Implement detached option in process create/3

The module library(process) implements interaction with child processes and unifies older inter-
faces such as shell/[1,2], open(pipe(command), ...) etc. This library is modelled after SICStus 4.

The main interface is formed by process create/3. If the process id is requested the pro-
cess must be waited for using process wait/2. Otherwise the process resources are reclaimed
automatically.

In addition to the predicates, this module defines a file search path (see
user:file search path/2 and absolute file name/3) named path that locates
files on the system’s search path for executables. E.g. the following finds the executable for ls:

?- absolute_file_name(path(ls), Path, [access(execute)]).

Incompatibilities and current limitations

• Where SICStus distinguishes between an internal process id and the OS process id, this imple-
mentation does not make this distinction. This implies that is process/1 is incomplete and
unreliable.

• SICStus only supports ISO 8859-1 (latin-1). This implementation supports arbitrary OS multi-
byte interaction using the default locale.

• It is unclear what the detached(true) option is supposed to do. Disable signals in the child? Use
setsid() to detach from the session? The current implementation uses setsid() on Unix systems.

• An extra option env([Name=Value, ...]) is added to process create/3.

process create(+Exe, +Args:list, +Options) [det]

Create a new process running the file Exe and using arguments from the given list. Exe is a file
specification as handed to absolute file name/3. Typically one use the path file alias
to specify an executable file on the current PATH. Args is a list of arguments that are handed to

2More subtle handling of I/O, especially for debugging is required: communicate with the syslog deamon and optionally
start a debugging dialog on a newly created (X-)terminal should be considered.

5

the new process. On Unix systems, each element in the list becomes a seperate argument in the
new process. In Windows, the arguments are simply concatenated to form the commandline.
Each argument itself is either a primitive or a list of primitives. A primitive is either atomic
or a term file(Spec). Using file(Spec), the system inserts a filename using the OS filename
conventions which is properly quoted if needed.

Options:

stdin(Spec)

stdout(Spec)

stderr(Spec)
Bind the standard streams of the new process. Spec is one of the terms below. If pipe(Pipe)
is used, the Prolog stream is a stream in text-mode using the encoding of the default
locale. The encoding can be changed using set stream/2. The options stdout and
stderr may use the same stream, in which case both output streams are connected to
the same Prolog stream.

std
Just share with the Prolog I/O streams

null
Bind to a null stream. Reading from such a stream returns end-of-file, writing pro-
duces no output

pipe(-Stream)
Attach input and/or output to a Prolog stream.

cwd(+Directory)
Run the new process in Directory. Directory can be a compound specification, which is
converted using absolute file name/3.

env(+List)
Specify the environment for the new process. List is a list of Name=Value terms. Note
that the current implementation does not pass any environment variables. If unspecified,
the environment is inherited from the Prolog process.

process(-PID)
Unify PID with the process id of the created process.

detached(+Bool)
In Unix: If true, detach the process from the terminal Currently mapped to set-
sid(); In Windows: If true, detach the process from the current job via the CRE-
ATE BREAKAWAY FROM JOB flag. In Vista and beyond, processes launched from
the shell directly have the ’compatibility assistant’ attached to them automatically unless
they have a UAC manifest embedded in them. This means that you will get a permission
denied error if you try and assign the newly-created PID to a job you create yourself.

window(+Bool)
If true, create a window for the process (Windows only)

6

If the user specifies the process(-PID) option, he must call process wait/2 to reclaim the
process. Without this option, the system will wait for completion of the process after the last
pipe stream is closed.

If the process is not waited for, it must succeed with status 0. If not, an process error is raised.

Windows notes

On Windows this call is an interface to the CreateProcess() API. The commandline consists of
the basename of Exe and the arguments formed from Args. Arguments are separated by a single
space. If all characters satisfy iswalnum() it is unquoted. If the argument contains a double-
quote it is quoted using single quotes. If both single and double quotes appear a domain error
is raised, otherwise double-quote are used.

The CreateProcess() API has many options. Currently only the CREATE_NO_WINDOW options
is supported through the window(+Bool) option. If omitted, the default is to use this option
if the application has no console. Future versions are likely to support more window specific
options and replace win exec/2.

Examples

First, a very simple example that behaves the same as shell(’ls -l’), except for error
handling:

?- process_create(path(ls), [’-l’], []).

The following example uses grep to find all matching lines in a file.

grep(File, Pattern, Lines) :-
process_create(path(grep), [Pattern, file(File)],

[stdout(pipe(Out))
]),

read_lines(Out, Lines).

read_lines(Out, Lines) :-
read_line_to_codes(Out, Line1),
read_lines(Line1, Out, Lines).

read_lines(end_of_file, _, []) :- !.
read_lines(Codes, Out, [Line|Lines]) :-

atom_codes(Line, Codes),
read_line_to_codes(Out, Line2),
read_lines(Line2, Out, Lines).

Errors process error(Exe, Status) where Status is one of exit(Code) or killed(Signal). Raised if the
process does not exit with status 0.

process id(-PID) [det]

True if PID is the process id of the running Prolog process.

deprecated Use current prolog flag(pid, PID)

7

process id(+Process, -PID) [det]

PID is the process id of Process. Given that they are united in SWI-Prolog, this is a simple
unify.

is process(+PID) [semidet]

True if PID might be a process. Succeeds for any positive integer.

process release(+PID)
Release process handle. In this implementation this is the same as process wait(PID,).

process wait(+PID, -Status) [det]

process wait(+PID, -Status, +Options) [det]

True if PID completed with Status. This call normally blocks until the process is finished.
Options:

timeout(+Timeout)
Default: infinite. If this option is a number, the waits for a maximum of Timeout
seconds and unifies Status with timeout if the process does not terminate within
Timeout. In this case PID is not invalidated. On Unix systems only timeout 0 and
infinite are supported. A 0-value can be used to poll the status of the process.

release(+Bool)
Do/do not release the process. We do not support this flag and a domain error is raised if
release(false) is provided.

Parameters
Status is one of exit(Code) or killed(Signal), where Code and Signal are

integers.

process kill(+PID) [det]

process kill(+PID, +Signal) [det]

Send signal to process PID. Default is term. Signal is an integer, Unix signal name
(e.g. SIGSTOP) or the more Prolog friendly variation one gets after removing SIG and
downcase the result: stop. On Windows systems, Signal is ignored and the process is
terminated using the TerminateProcess() API. On Windows systems PID must be obtained
from process create/3, while any PID is allowed on Unix systems.

Compatibility SICStus does not accept the prolog friendly version. We choose to do so for compati-
bility with on signal/3.

4 library(filesex): Extended operations on files

This module provides additional operations on files. This covers both more obscure and possible
non-portable low-level operations and high-level utilities.

Using these Prolog primitives is typically to be preferred over using operating system primitives
through shell/1 or process create/3 because (1) there are no potential file name quoting
issues, (2) there is no dependency on operating system commands and (3) using the implementations
from this library is usually faster.

8

set time file(+File, -OldTimes, +NewTimes) [det]

Query and set POSIX time attributes of a file. Both OldTimes and NewTimes are lists of option-
terms. Times are represented in SWI-Prolog’s standard floating point numbers. New times may
be specified as now to indicate the current time. Defined options are:

access(Time)
Describes the time of last access of the file. This value can be read and written.

modified(Time)
Describes the time the contents of the file was last modified. This value can be read and
written.

changed(Time)
Describes the time the file-structure itself was changed by adding (link()) or removing
(unlink()) names.

Below are some example queries. The first retrieves the access-time, while the second sets the
last-modified time to the current time.

?- set_time_file(foo, [acess(Access)], []).
?- set_time_file(foo, [], [modified(now)]).

link file(+OldPath, +NewPath, +Type) [det]

Create a link in the filesystem from NewPath to OldPath. Type defines the type of link and is
one of hard or symbolic.

With some limitations, these functions also work on Windows. First of all, the unerlying filesys-
tem must support links. This requires NTFS. Second, symbolic links are only supported in Vista
and later.

Errors domain error(link type, Type) if the requested link-type is unknown or not supported on the
target OS.

relative file name(+Path:atom, +RelTo:atom, -RelPath:atom) [det]

True when RelPath is Path, relative to RelTo. Path and RelTo are first handed to
absolute file name/2, which makes the absolute and canonical. Below is an ex-
ample:

?- relative_file_name(’/home/janw/nice’,
’/home/janw/deep/dir/file’, Path).

Path = ’../../nice’.

Parameters
All paths must be in canonical POSIX notation, i.e., using / to separate

segments in the path. See prolog to os filename/2.

bug This predicate is defined as a syntactical operation.

9

directory file path(+Directory, +File, -Path) [det]

directory file path(?Directory, ?File, +Path) [det]

True when Path is the full path-name for File in Dir. This is comparable to
atom concat(Directory, File, Path), but it ensures there is exactly one / between the two
parts. Notes:

• In mode (+,+,-), if File is given and absolute, Path is unified to File.

• Mode (-,-,+) uses file directory name/2 and file base name/2

copy file(From, To) [det]

Copy a file into a new file or directory. The data is copied as binary data.

make directory path(+Dir) [det]

Create Dir and all required components (like mkdir -p). Can raise various file-specific excep-
tions.

copy directory(+From, +To) [det]

Copy the contents of the directory From to To (recursively). If To is the name of an existing
directory, the contents of From are copied into To. I.e., no subdirectory using the basename of
From is created.

delete directory and contents(+Dir)
Recursively remove the directory Dir and its contents. Use with care!

delete directory contents(+Dir) [det]

Remove all content from directory Dir, without removing Dir itself.

5 library(uid): User and group management on Unix systems
See also Please check the documentation of your OS for details on the semantics of this predicates.

This module provides and interface to user and group information on Posix systems. In addition,
it allows for changing user and group ids.

getuid(-UID) [det]

UID is the real user ID of the calling process.

getgid(-GID) [det]

GID is the real group ID of the calling process.

geteuid(-UID) [det]

UID is the effective user ID of the calling process.

getegid(-GID) [det]

GID is the effective group ID of the calling process.

user info(+User, -UserData) [det]

UserData represent the passwd information for User. User is either a numeric UID or a user
name. The predicate user data/3 can be used to extract information from UserData.

10

user data(?Field, ?UserData, ?Value)
Value is the value for Field in UserData. Defined fields are:

name
Name of the user

password
Password hash of the user (or x if this is not accessible)

uid
Numeric user id of the user

gid
Numeric primary group id of the user

comment
The gecos field

home
Home directory of the user

shell
Default (login) shell of the user.

group info(+Group, -GroupData) [det]

GroupData represent the group information for Group. Group is either a numeric GID or
a group name. The predicate group data/3 can be used to extract information from
GroupData.

group data(?Field, ?GroupData, ?Value)
Value is the value for Field GroupData. Defined fields are:

name
Name of the user

password
Password hash of the user (or x if this is not accessible)

gid
Numeric group id of the group

members
List of user-names that are member of this group.

setuid(+UID)
Set the user id of the calling process.

seteuid(+UID)
Set the effective user id of the calling process.

setgid(+GID)
Set the group id of the calling process.

setegid(+GID)
Set the effective group id of the calling process.

11

set user and group(+User) [det]

set user and group(+User, +Group) [det]

Set the UID and GID to the User. User is either a UID or a user name. If Group is not specified,
the primary group of User is used.

6 Socket library

The socket library provides TCP and UDP inet-domain sockets from SWI-Prolog, both client and
server-side communication. The interface of this library is very close to the Unix socket interface,
also supported by the MS-Windows winsock API. SWI-Prolog applications that wish to communicate
with multiple sources have three options:

1. Use I/O multiplexing based on wait for input/3. On Windows systems this can only be
used for sockets, not for general (device-) file handles.

2. Use multiple threads, handling either a single blocking socket or a pool using I/O multiplexing
as above.

3. Using XPCE’s class socket which synchronises socket events in the GUI event-loop.

tcp socket(-SocketId)
Creates an INET-domain stream-socket and unifies an identifier to it with SocketId. On MS-
Windows, if the socket library is not yet initialised, this will also initialise the library.

tcp close socket(+SocketId)
Closes the indicated socket, making SocketId invalid. Normally, sockets are closed by clos-
ing both stream handles returned by open socket/3. There are two cases where
tcp close socket/1 is used because there are no stream-handles:

• After tcp accept/3, the server does a fork/1 to handle the client in a sub-process.
In this case the accepted socket is not longer needed from the main server and must be
discarded using tcp close socket/1.

• If, after discovering the connecting client with tcp accept/3, the server does not
want to accept the connection, it should discard the accepted socket immediately using
tcp close socket/1.

tcp open socket(+SocketId, -InStream, -OutStream)
Open two SWI-Prolog I/O-streams, one to deal with input from the socket and one with output
to the socket. If tcp bind/2 has been called on the socket. OutSream is useless and will not
be created. After closing both InStream and OutSream, the socket itself is discarded.

tcp bind(+Socket, ?Port)
Bind the socket to Port on the current machine. This operation, together with tcp listen/2
and tcp accept/3 implement the server-side of the socket interface. If Port is unbound, the
system picks an arbitrary free port and unifies Port with the selected port number. Port is either
an integer or the name of a registered service. See also tcp connect/4.

12

tcp listen(+Socket, +Backlog)
Tells, after tcp bind/2, the socket to listen for incoming requests for connections. Backlog
indicates how many pending connection requests are allowed. Pending requests are requests
that are not yet acknowledged using tcp accept/3. If the indicated number is exceeded,
the requesting client will be signalled that the service is currently not available. A suggested
default value is 5.

tcp accept(+Socket, -Slave, -Peer)
This predicate waits on a server socket for a connection request by a client. On success, it
creates a new socket for the client and binds the identifier to Slave. Peer is bound to the
IP-address of the client.

tcp connect(+Socket, +Host:+Port) [deprecated]

Connect Socket. After successful completion, tcp open socket/3 can be used to create
I/O-Streams to the remote socket. New code should use tcp connect/4, which can be
hooked to allow for proxy negotiation.

tcp connect(+Socket, +Host:+Port, -Read, -Write)
Client-interface to connect a socket to a given Port on a given Host. Port is either
an integer or the name of a registered service. The fragment below connects to the
http://www.swi-prolog.org using the service name instead of the hardcoded number
‘80’.

Adress = ’www.swi-prolog.org’:http,
tcp_socket(Socket),
tcp_connect(Socket, Adress, Read, Write),

This predicate can be hooked by defining the multifile-predicate socket:tcp connect hook/4.
This hook is specifically intented for proxy negotiation. The code below shows the structure
of such a hook. The predicates proxy/1 and proxy connect/3 must be provided by the
user.

:- multifile socket:tcp_connect_hook/4.

socket:tcp_connect_hook(Socket, Address, Read, Write) :-
proxy(ProxyAdress),
tcp_connect(Socket, ProxyAdress),
tcp_open_socket(Socket, Read, Write),
proxy_connect(Address, Read, Write).

tcp setopt(+Socket, +Option)
Set options on the socket. Defined options are:

reuseaddr
Allow servers to reuse a port without the system being completely sure the port is no
longer in use.

13

nodelay
Same as nodelay(true)

nodelay(Bool)
If true, disable the Nagle optimization on this socket, which is enabled by default on
almost all modern TCP/IP stacks. The Nagle optimization joins small packages, which is
generally desirable, but sometimes not. Please note that the underlying TCP NODELAY
setting to setsockopt() is not available on all platforms and systems may require additional
privileges to change this option. If the option is not supported, tcp setopt/2 raises a
domain error exception. See Wikipedia for details.

broadcast
UDP sockets only: broadcast the package to all addresses matching the address. The ad-
dress is normally the address of the local subnet (i.e. 192.168.1.255). See udp send/4.

dispatch(Bool)
In GUI environments (using XPCE or the Windows plwin.exe executable) this flags
defines whether or not any events are dispatched on behalf of the user interface. Default
is true. Only very specific situations require setting this to false.

tcp fcntl(+Stream, +Action, ?Argument)
Interface to the Unix fcntl() call. Currently only suitable to deal switch stream to non-
blocking mode using:

...
tcp_fcntl(Stream, setfl, nonblock),
...

As of SWI-Prolog 3.2.4, handling of non-blocking stream is supported. An attempt
to read from a non-blocking stream returns -1 (or end of file for read/1), but
at end of stream/1 fails. On actual end-of-input, at end of stream/1 succeeds.

tcp host to address(?HostName, ?Address)
Translate between a machines host-name and it’s (IP-)address. If HostName is an atom, it is
resolved using getaddrinfo() and the IP-number is unified to Address using a term of the
format ip(Byte1, Byte2, Byte3, Byte4). Otherwise, if Address is bound to a ip/4 term, it is
resolved by gethostbyaddr() and the canonical hostname is unified with HostName.3

gethostname(-Hostname)
Return the canonical fully qualified name of this host. This is achieved by calling
gethostname() and return the canonical name returned by getaddrinfo().

6.1 Server applications

The typical sequence for generating a server application is defined below:

create_server(Port) :-
tcp_socket(Socket),

3This function should support more functionality provided by gethostbyaddr(), probably by adding an option-list.

14

tcp_bind(Socket, Port),
tcp_listen(Socket, 5),
tcp_open_socket(Socket, AcceptFd, _),
<dispatch>

There are various options for 〈dispatch〉. The most commonly used option is to start a Prolog thread to
handle the connection. Alternatively, input from multiple clients can be handled in a single thread by
listening to these clients using wait for input/3. Finally, on Unix systems, we can use fork/1
to handle the connection in a new process. Note that fork/1 and threads do not cooperate well.
Combinations can be realised but require good understanding of POSIX thread and fork-semantics.

Below is the typical example using a thread. Note the use of setup call cleanup/3 to
guarantee that all resources are reclaimed, also in case of failure or exceptions.

dispatch(AcceptFd) :-
tcp_accept(AcceptFd, Socket, _Peer),
thread_create(process_client(Socket, Peer), _,

[detached(true)
]),

dispatch(AcceptFd).

process_client(Socket, Peer) :-
setup_call_cleanup(tcp_open_socket(Socket, In, Out),

handle_service(In, Out),
close_connection(In, Out)).

close_connection(In, Out) :-
close(In, [force(true)]),
close(Out, [force(true)]).

handle_service(In, Out) :-
...

6.2 Client applications

The skeleton for client-communication is given below.

create_client(Host, Port) :-
setup_call_catcher_cleanup(tcp_socket(Socket),

tcp_connect(Socket, Host:Port),
exception(_),
tcp_close_socket(Socket)),

setup_call_cleanup(tcp_open_socket(Socket, In, Out),
chat_to_server(In, Out),
close_connection(In, Out)).

15

close_connection(In, Out) :-
close(In, [force(true)]),
close(Out, [force(true)]).

chat_to_server(In, Out) :-
...

To deal with timeouts and multiple connections, wait for input/3 and/or non-blocking streams
(see tcp fcntl/3) can be used.

6.3 The stream pool library

The streampool library dispatches input from multiple streams based on wait for input/3.
It is part of the clib package as it is used most of the time together with the socket library. On
non-Unix systems it often can only be used with socket streams.

With SWI-Prolog 5.1.x, multi-threading often provides a good alternative to using this library.
In this schema one thread watches the listening socket waiting for connections and either creates a
thread per connection or processes the accepted connections with a pool of worker threads. The
library http/thread httpd provides an example realising a mult-threaded HTTP server.

add stream to pool(+Stream, :Goal)
Add Stream, which must be an input stream and —on non-unix systems— connected to a
socket to the pool. If input is available on Stream, Goal is called.

delete stream from pool(+Stream)
Delete the given stream from the pool. Succeeds, even if Stream is no member of the pool. If
Stream is unbound the entire pool is emtied but unlike close stream pool/0 the streams
are not closed.

close stream pool
Empty the pool, closing all streams that are part of it.

dispatch stream pool(+TimeOut)
Wait for maximum of TimeOut for input on any of the streams in the pool. If there is input, call
the Goal associated with add stream to pool/2. If Goal fails or raises an exception a
message is printed. TimeOut is described with wait for input/3.

If Goal is called, there is some input on the associated stream. Goal must be careful not to block
as this will block the entire pool.4

stream pool main loop
Calls dispatch stream pool/1 in a loop until the pool is empty.

Below is a very simple example that reads the first line of input and echos it back.

:- use_module(library(streampool)).

4This is hard to achieve at the moment as none of the Prolog read-commands provide for a timeout.

16

server(Port) :-
tcp_socket(Socket),
tcp_bind(Socket, Port),
tcp_listen(Socket, 5),
tcp_open_socket(Socket, In, _Out),
add_stream_to_pool(In, accept(Socket)),
stream_pool_main_loop.

accept(Socket) :-
tcp_accept(Socket, Slave, Peer),
tcp_open_socket(Slave, In, Out),
add_stream_to_pool(In, client(In, Out, Peer)).

client(In, Out, _Peer) :-
read_line_to_codes(In, Command),
close(In),
format(Out, ’Please to meet you: ˜s˜n’, [Command]),
close(Out),
delete_stream_from_pool(In).

6.4 UDP protocol support

The current library provides limited support for UDP packets. The UDP protocol is a connection-less
and unreliable datagram based protocol. That means that messages sent may or may not arrive at
the client side and may arrive in a different order as they are sent. UDP messages are often used for
streaming media or for service discovery using the broadcasting mechanism.

udp socket(-Socket)
Similar to tcp socket/1, but create a socket using the SOCK DGRAM protocol, ready for
UDP connections.

udp receive(+Socket, -Data, -From, +Options)
Wait for and return the next datagram. The data is returned as a Prolog string object (see
string to list/2). From is a term of the format ip(A,B,C,D):Port indicating the sender of
the message. Socket can be waited for using wait for input/3. Defined Options:

as(+Type)
Defines the returned term-type. Type is one of atom, codes or string (default).

max message size(+Size)
Specify the maximum number of bytes to read from a UDP datagram. Size must be
within the range 0-65535. If unspecified, a maximum of 4096 bytes will be read.

The typical sequence to receive UDP data is:

receive(Port) :-
udp_socket(S),

17

tcp_bind(S, Port),
repeat,

udp_receive(Socket, Data, From, [as(atom)]),
format(’Got ˜q from ˜q˜n’, [Data, From]),
fail.

udp send(+Socket, +Data, +To, +Options)
Send a UDP message. Data is a string, atom or code-list providing the data. To is an address
of the form Host:Port where Host is either the hostname or a term ip/4. Options is currently
unused.

A simple example to send UDP data is:

send(Host, Port, Message) :-
udp_socket(S),
udp_send(S, Message, Host:Port, []),
tcp_close_socket(S).

A broadcast is achieved by using tcp setopt(Socket, broadcast) prior to sending the data-
gram and using the local network broadcast address as a ip/4 term.

The normal mechanism to discover a service on the local network is for the client to send a
broadcast message to an agreed port. The server receives this message and replies to the client with a
message indicating further details to establish the communication.

7 library(uri): Process URIs

This library provides high-performance C-based primitives for manipulating URIs. We decided for
a C-based implementation for the much better performance on raw character manipulation. Notably,
URI handling primitives are used in time-critical parts of RDF processing. This implementation is
based on RFC-3986:

http://labs.apache.org/webarch/uri/rfc/rfc3986.html
The URI processing in this library is rather liberal. That is, we break URIs according to the rules,

but we do not validate that the components are valid. Also, percent-decoding for IRIs is liberal. It first
tries UTF-8; then ISO-Latin-1 and finally accepts %-characters verbatim.

Earlier experience has shown that strict enforcement of the URI syntax results in many errors that
are accepted by many other web-document processing tools.

uri components(+URI, -Components) [det]

uri components(-URI, +Components) [det]

Break a URI into its 5 basic components according to the RFC-3986 regular expression:

ˆ(([ˆ:/?#]+):)?(//([ˆ/?#]*))?([ˆ?#]*)(\?([ˆ#]*))?(#(.*))?
12 3 4 5 6 7 8 9

18

Parameters
Components is a term uri components(Scheme, Authority, Path, Search, Frag-

ment). See uri data/3 for accessing this structure.

uri data(?Field, +Components, ?Data) [semidet]

Provide access the uri component structure. Defined field-names are: scheme, authority,
path, search and fragment

uri data(+Field, +Components, +Data, -NewComponents) [semidet]

NewComponents is the same as Components with Field set to Data.

uri normalized(+URI, -NormalizedURI) [det]

NormalizedURI is the normalized form of URI. Normalization is syntactic and involves the
following steps:

• 6.2.2.1. Case Normalization
• 6.2.2.2. Percent-Encoding Normalization
• 6.2.2.3. Path Segment Normalization

uri normalized iri(+URI, -NormalizedIRI) [det]

As uri normalized/2, but percent-encoding is translated into IRI Unicode characters. The
translation is liberal: valid UTF-8 sequences of %-encoded bytes are mapped to the Unicode
character. Other %XX-sequences are mapped to the corresponding ISO-Latin-1 character and
sole % characters are left untouched.

See also uri iri/2.

uri is global(+URI) [semidet]

True if URI has a scheme. The semantics is the same as the code below, but the implementation
is more efficient as it does not need to parse the other components, nor needs to bind the
scheme.

uri_is_global(URI) :-
uri_components(URI, Components),
uri_data(Components, scheme, Scheme),
nonvar(Scheme).

uri resolve(+URI, +Base, -GlobalURI) [det]

Resolve a possibly local URI relative to Base. This implements
http://labs.apache.org/webarch/uri/rfc/rfc3986.html#relative-transform

uri normalized(+URI, +Base, -NormalizedGlobalURI) [det]

NormalizedGlobalURI is the normalized global version of URI. Behaves as if defined by:

uri_normalized(URI, Base, NormalizedGlobalURI) :-
uri_resolve(URI, Base, GlobalURI),
uri_normalized(GlobalURI, NormalizedGlobalURI).

19

uri normalized iri(+URI, +Base, -NormalizedGlobalIRI) [det]

NormalizedGlobalIRI is the normalized global IRI of URI. Behaves as if defined by:

uri_normalized(URI, Base, NormalizedGlobalIRI) :-
uri_resolve(URI, Base, GlobalURI),
uri_normalized_iri(GlobalURI, NormalizedGlobalIRI).

uri query components(+String, -Query) [det]

uri query components(-String, +Query) [det]

Perform encoding and decoding of an URI query string. Query is a list of fully decoded
(Unicode) Name=Value pairs. In mode (-,+), query elements of the forms Name(Value) and
Name-Value are also accepted to enhance interoperability with the option and pairs libraries.
E.g.

?- uri_query_components(QS, [a=b, c(’d+w’), n-’VU Amsterdam’]).
QS = ’a=b&c=d%2Bw&n=VU%20Amsterdam’.

?- uri_query_components(’a=b&c=d%2Bw&n=VU%20Amsterdam’, Q).
Q = [a=b, c=’d+w’, n=’VU Amsterdam’].

uri authority components(+Authority, -Components) [det]

uri authority components(-Authority, +Components) [det]

Break-down the authority component of a URI. The fields of the structure Components can be
accessed using uri authority data/3.

uri authority data(+Field, ?Components, ?Data) [semidet]

Provide access the uri authority structure. Defined field-names are: user, password, host
and port

uri encoded(+Component, +Value, -Encoded) [det]

uri encoded(+Component, -Value, +Encoded) [det]

Encoded is the URI encoding for Value. When encoding (Value->Encoded), Component
specifies the URI component where the value is used. It is one of query_value, fragment
or path. Besides alphanumerical characters, the following characters are passed verbatim (the
set is split in logical groups according to RFC3986).

query value, fragment ”-. ” | ”!$’()*,;” | ”:@” | ”/?”

path ”-. ” | ”!$&’()*,;=” | ”:@” | ”/”

uri iri(+URI, -IRI) [det]

uri iri(-URI, +IRI) [det]

Convert between a URI, encoded in US-ASCII and an IRI. An IRI is a fully expanded Unicode
string. Unicode strings are first encoded into UTF-8, after which %-encoding takes place.

Errors syntax error(Culprit) in mode (+,-) if URI is not a legally percent-encoded UTF-8 string.

20

uri file name(+URI, -FileName) [semidet]

uri file name(-URI, +FileName) [det]

Convert between a URI and a local file name. This protocol is covered by RFC 1738. Please
note that file-URIs use absolute paths. The mode (-, +) translates a possible relative path into
an absolute one.

8 CGI Support library

This is currently a very simple library, providing support for obtaining the form-data for a CGI script:

cgi get form(-Form)
Decodes standard input and the environment variables to obtain a list of arguments passed to
the CGI script. This predicate both deals with the CGI GET method as well as the POST
method. If the data cannot be obtained, an existence error exception is raised.

Below is a very simple CGI script that prints the passed parameters. To
test it, compile this program using the command below, copy it to your cgi-
bin directory (or make it otherwise known as a CGI-script) and make the query
http://myhost.mydomain/cgi-bin/cgidemo?hello=world

% pl -o cgidemo --goal=main --toplevel=halt -c cgidemo.pl

:- use_module(library(cgi)).

main :-
set_stream(current_output, encoding(utf8)),
cgi_get_form(Arguments),
format(’Content-type: text/html; charset=UTF-8˜n˜n’, []),
format(’<html>˜n’, []),
format(’<head>˜n’, []),
format(’<title>Simple SWI-Prolog CGI script</title>˜n’, []),
format(’</head>˜n˜n’, []),
format(’<body>˜n’, []),
format(’<p>’, []),
print_args(Arguments),
format(’</body>˜n</html>˜n’, []).

print_args([]).
print_args([A0|T]) :-

A0 =.. [Name, Value],
format(’˜w=˜w
˜n’, [Name, Value]),
print_args(T).

21

8.1 Some considerations

Printing an HTML document using format/2 is not a neat way of producing HTML because it is
vulnerable to required escape sequences. A high-level alternative is provided by http/html write
from the HTTP library.

The startup-time of Prolog is relatively long, in particular if the program is large. In many cases
it is much better to use the SWI-Prolog HTTP server library and make the main web-server relay
requests to the SWI-Prolog webserver. See the SWI-Prolog HTTP package for details.

The CGI standard is unclear about handling Unicode data. The above two declarations ensure the
CGI script will send all data in UTF-8 and thus provide full support of Unicode. It is assumed that
browsers generally send form-data using the same encoding as the page in which the form appears,
UTF-8 or ISO Latin-1. The current version of cgi get form/1 assumes the CGI data is in UTF-8.

9 library(mime): Parse MIME documents
license GPL

This module defines an interface to the rfc2045 (MIME) parsing library by Double Precision, Inc,
part of the maildrop system. This library is distributed under the GPL and therefore all code using this
library should comply to the GPL.

mime parse(+Data, -Parsed) [det]

True when Parsed is a parsed representation of the MIME message in Data. Data is one of

• stream(In)
• stream(In, Length)
• an Atom, String or list of characters.

Parsed is a structure of this form:

mime(Attributes, Data, SubMimeList)

Where Data is the (decoded) field data returned as an atom. If a part is of type text/...,
the charset is interpreted as follows: if charset contains UTF-8 or an alias thereof, the text
is interpreted as UTF-8. If it the charset can be interpreted as ISO-8859-1 or US-ASCII,
no conversion is applied. Otherwise, default locale specific conversion is applied. See also
mime default charset/2.

Attributes is a property-list and SubMimeList is a list of mime/3 terms reflecting the sub-parts.
Attributes contains the following members:

id(Atom)
Identifier of the message-part.

description(Atom)
Descriptive text for the \arg{Data}.

22

language(Atom)
Language in which the text-data is written.

md5(Atom)

type(Atom)
Denotes the Content-Type, how the \arg{Data} should be interpreted.

character set(Atom)
The character set used for text data. See above.

transfer encoding(Atom)
How the \arg{Data} was encoded. This is not very interesting as the library decodes the
content of the message.

disposition(Atom)
Where the data comes from. The current library only deals with ‘inline’ data.

filename(Atom)
Name of the file the data should be stored in.

name(Atom)
Name of the part.

mime default charset(-Old, +New) [det]

True when Old reflects the old and new the new default character set of the library. The system
default is us-ascii. This value is returned into the attribute character_set (see
mime parse/2) if the message does not explicitly specifythe character set. It is used for
translating the message content.

bug This setting is global and shared between threads.

10 Password encryption library

The crypt library defines crypt/2 for encrypting and testing passwords. The clib package also
provides crytographic hashes as described in section 11

crypt(+Plain, ?Encrypted)
This predicate can be used in three modes. To test whether a password matches an encrypted
version thereof, simply run with both arguments fully instantiated. To generate a default
encrypted version of Plain, run with unbound Encrypted and this argument is unified to a list
of character codes holding an encrypted version.

The library supports two encryption formats: traditional Unix DES-hashes5 and FreeBSD com-
patible MD5 hashes (all platforms). MD5 hashes start with the magic sequence 1, followed
by an up to 8 character salt. DES hashes start with a 2 character salt. Note that a DES hash
considers only the first 8 characters. The MD5 considers the whole string.

Salt and algorithm can be forced by instantiating the start of Encrypted with it. This is typically
used to force MD5 hashes:

5On non-Unix systems, crypt() is provided by the NetBSD library. The license header is added at the end of this
document.

23

?- append("1", _, E),
crypt("My password", E),
format(’˜s˜n’, [E]).

1qdaDeDZn$ZUxSQEESEHIDCHPNc3fxZ1

Encrypted is always an ASCII string. Plain only supports ISO-Latin-1 passwords in the current
implementation.

Plain is either an atom, SWI-Prolog string, list of characters or list of character-codes. It is not
advised to use atoms, as this implies the password will be available from the Prolog heap as a
defined atom.

11 SHA1 and SHA2 Secure Hash Algorithms

The library sha provides Secure Hash Algorihms approved by FIPS (Federal Information Processing
Standard). Quoting Wikipedia: “The SHA (Secure Hash Algorithm) hash functions refer to five FIPS-
approved algorithms for computing a condensed digital representation (known as a message digest)
that is, to a high degree of probability, unique for a given input data sequence (the message). These
algorithms are called ‘secure’ because (in the words of the standard), “for a given algorithm, it is
computationally infeasible 1) to find a message that corresponds to a given message digest, or 2) to
find two different messages that produce the same message digest. Any change to a message will, with
a very high probability, result in a different message digest.”

The current library supports all 5 approved algorithms, both computing the hash-key from data
and the hash Message Authentication Code (HMAC).

Input is text, represented as an atom, packed string object or code-list. Note that these functions
operate on byte-sequences and therefore are not meaningful on Unicode text. The result is returned
as a list of byte-values. This is the most general format that is comfortable supported by standard
Prolog and can easily be transformed in other formats. Commonly used text formats are ASCII cre-
ated by encoding each byte as two hexadecimal digits and ASCII created using base64 encoding.
Representation as a large integer can be desirable for computational processing.

sha hash(+Data, -Hash, +Options)
Hash is the SHA hash of Data. Data is either an atom, packed string or list of character codes.
Hash is unified with a list of bytes (integers in the range 0..255) representing the hash. See
hash atom/2 to convert this into the more commonly seen hexadecimal representation. The
conversion is controlled by Options:

algorithm(+Algorithm)
One of sha1 (default), sha224, sha256, sha384 or sha512

encoding(+Encoding)
This option defines the mapping from Prolog (Unicode) text to bytes on which the SHA
algorithm is performed. It has two values. The defualt is utf8, which implies that
Unicode text is encoded as UTF-8 bytes. This option can deal with any atom. The
alternative is octet, which implies that the text is considered as a sequence of bytes.

24

This is suitable for e.g., atoms that represent binary data. An error is raised if the text
contains code-points outside the range 0..255.

hmac sha(+Key, +Data, -HMAC, +Options)
Quoting Wikipedia: “A keyed-hash message authentication code, or HMAC, is a type of mes-
sage authentication code (MAC) calculated using a cryptographic hash function in combination
with a secret key. As with any MAC, it may be used to simultaneously verify both the data
integrity and the authenticity of a message. Any iterative cryptographic hash function, such as
MD5 or SHA-1, may be used in the calculation of an HMAC; the resulting MAC algorithm is
termed HMAC-MD5 or HMAC-SHA-1 accordingly. The cryptographic strength of the HMAC
depends upon the cryptographic strength of the underlying hash function, on the size and
quality of the key and the size of the hash output length in bits.”

Key and Data are either an atom, packed string or list of character codes. HMAC is unified with
a list of integers representing the authentication code. Options is the same as for sha hash/3,
but currently only sha1 and sha256 are supported.

hash atom(+Hash, -HexAtom)
True when HexAtom is the commonly used hexadecimal encoding of the hash code. E.g.,

?- sha_hash(’SWI-Prolog’, Hash, []),
hash_atom(Hash, Hex).

Hash = [61, 128, 252, 38, 121, 69, 229, 85, 199|...],
Hex = ’3d80fc267945e555c730403bd0ab0716e2a68c68’.

11.1 License terms

The underlying SHA-2 library is an unmodified copy created by Dr Brian Gladman, Worcester, UK.
It is distributed under the license conditions below.

The free distribution and use of this software in both source and binary form is allowed (with or
without changes) provided that:

1. distributions of this source code include the above copyright notice, this list of conditions and
the following disclaimer;

2. distributions in binary form include the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other associated materials;

3. the copyright holder’s name is not used to endorse products built using this software without
specific written permission.

ALTERNATIVELY, provided that this notice is retained in full, this product may be distributed
under the terms of the GNU General Public License (GPL), in which case the provisions of the GPL
apply INSTEAD OF those given above.

25

12 Memory files

The memfile provides an alternative to temporary files, intended for temporary buffering of data.
Memory files in general are faster than temporary files and do not suffer from security riscs or naming
conflicts associated with temporary-file management. They do assume proper memory management
by the hosting OS and cannot be used to pass data to external processes using a file-name.

There is no limit to the number of memory streams, nor the size of them. However, memory-
streams cannot have multiple streams at the same time (i.e. cannot be opened for reading and writing
at the same time).

These predicates are first of all intended for building higher-level primitives. See also
sformat/3, atom to term/3, term to atom/2 and the XPCE primitive pce open/3.

new memory file(-Handle)
Create a new memory file and return a unique opaque handle to it.

free memory file(+Handle)
Discard the memory file and its contents. If the file is open it is first closed.

open memory file(+Handle, +Mode, -Stream)
Open the memory-file. Mode is currently one of read or write. The resulting Stream must
be closed using close/1.

open memory file(+Handle, +Mode, -Stream, +Options)
Open a memory-file as open memory file/3. Options:

encoding(+Encoding)
Set the encoding for a memory file and the created stream. Encoding names are the
same as used with open/4. By default, memoryfiles represent UTF-8 streams, making
them capable of storing arbitrary Unicode text. In practice the only alternative is
octet, turning the memoryfile into binary mode. Please study SWI-Prolog Unicode and
encoding issues before using this option.

free on close(+Bool)
If true (default false and the memory file is opened for reading, discard the
file (see free memory file/1) if the input is closed. This is used to realise
open chars stream/2 in library(charsio).

size memory file(+Handle, -Size)
Return the content-length of the memory-file it characters in the current encoding of the mem-
ory file. The file should be closed and contain data.

size memory file(+Handle, -Size, +Encoding)
Return the content-length of the memory-file it characters in the given Encoding. The file
should be closed and contain data.

atom to memory file(+Atom, -Handle)
Turn an atom into a read-only memory-file containing the (shared) characters of the atom.
Opening this memory-file in mode write yields a permission error.

memory file to atom(+Handle, -Atom)
Return the content of the memory-file in Atom.

26

memory file to atom(+Handle, -Atom, +Encoding)
Return the content of the memory-file in Atom, pretending the data is in the given Encoding.
This can be used to convert from one encoding into another, typically from/to bytes. For
example, if we must convert a set of bytes that contain text in UTF-8, open the memory file as
octet stream, fill it, and get the result using Encoding is utf8.

memory file to codes(+Handle, -Codes)
Return the content of the memory-file as a list of character-codes in Codes.

memory file to codes(+Handle, -Codes, +Encoding)
Return the content of the memory-file as a list of character-codes in Codes, pretending the data
is in the given Encoding.

13 Time and alarm library

The time provides timing and alarm functions.

alarm(+Time, :Callable, -Id, +Options)
Schedule Callable to be called Time seconds from now. Time is a number (integer or float).
Callable is called on the next pass through a call- or redo-port of the Prolog engine, or a call to
the PL handle signals() routine from SWI-Prolog. Id is unified with a reference to the
timer.

The resolution of the alarm depends on the underlying implementation, which is based on
pthread cond timedwait() (on Windows on the pthread emulation thereof). Long-running for-
eign predicates that do not call PL handle signals() may further delay the alarm. The
relation to blocking system calls (sleep, reading from slow devices, etc.) is undefined and varies
between implementations.

Options is a list of Name(Value) terms. Defined options are:

remove(Bool)
If true (default false), the timer is removed automatically after fireing. Otherwise it
must be destroyed explicitly using remove alarm/1.

install(Bool)
If false (default true), the timer is allocated but not scheduled for execution. It must
be started later using install alarm/1.

alarm(+Time, :Callable, -Id)
Same as alarm(Time, Callable, Id, []).

alarm at(+Time, :Callable, -Id, +Options)
as alarm/3, but Time is the specification of an absolute point in time. Absolute times are
specified in seconds after the Jan 1, 1970 epoch. See also date time stamp/2.

install alarm(+Id)
Activate an alarm allocated using alarm/4 with the option install(false) or stopped using
uninstall alarm/1.

27

install alarm(+Id, +Time)
As install alarm/1, but specifies a new timeout value.

uninstall alarm(+Id)
Deactivate a running alarm, but do not invalidate the alarm identifier. Later, the alarm can
be reactivated using either install alarm/1 or install alarm/2. Reinstalled
using install alarm/1, it will fire at the originally scheduled time. Reinstalled using
install alarm/2 causes the alarm to fire at the specified time from now.

remove alarm(+Id)
Remove an alarm. If it is not yet fired, it will not be fired any more.

current alarm(?At, ?:Callable, ?Id, ?Status)
Enumerate the not-yet-removed alarms. Status is one of done if the alarm has been called,
next if it is the next to be fired and scheduled otherwise.

call with time limit(+Time, :Goal)
True if Goal completes within Time seconds. Goal is executed as in once/1. If Goal doesn’t
complete within Time seconds (wall time), exit using the exception time limit exceeded.
See catch/3.

Please note that this predicate uses alarm/4 and therefore its effect on long-running foreign
code and system calls is undefined. Blocking I/O can be handled using the timeout option of
read term/3.

14 Limiting process resources

The rlimit library provides an interface to the POSIX getrlimit()/setrlimit() API that control the
maximum resource-usage of a process or group of processes. This call is especially useful for servers
such as CGI scripts and inetd-controlled servers to avoid an uncontrolled script claiming too much
resources.

rlimit(+Resource, -Old, +New)
Query and/or set the limit for Resource. Time-values are in seconds and size-values are counted
in bytes. The following values are supported by this library. Please note that not all resources
may be available and accessible on all platforms. This predicate can throw a variety of
exceptions. In portable code this should be guarded with catch/3. The defined resources are:

cpu CPU time in seconds
fsize Maximum filesize
data max data size
stack max stack size
core max core file size
rss max resident set size
nproc max number of processes
nofile max number of open files
memlock max locked-in-memory address

28

When the process hits a limit POSIX systems normally send the process a signal that termi-
nates it. These signals may be catched using SWI-Prolog’s on signal/3 primitive. The code
below illustrates this behaviour. Please note that asynchronous signal handling is dangerous, es-
pecially when using threads. 100% fail-safe operation cannot be guaranteed, but this procedure
will inform the user properly ‘most of the time’.

rlimit_demo :-
rlimit(cpu, _, 2),
on_signal(xcpu, _, cpu_exceeded),
(repeat, fail).

cpu_exceeded(_Sig) :-
format(user_error, ’CPU time exceeded˜n’, []),
halt(1).

15 library(udp broadcast): A UDP Broadcast Bridge
author Jeffrey Rosenwald (JeffRose@acm.org)
See also tipc.pl

license LGPL

SWI-Prolog’s broadcast library provides a means that may be used to facilitate publish and sub-
scribe communication regimes between anonymous members of a community of interest. The mem-
bers of the community are however, necessarily limited to a single instance of Prolog. The UDP
broadcast library removes that restriction. With this library loaded, any member on your local IP
subnetwork that also has this library loaded may hear and respond to your broadcasts.

This module has only two public predicates. When the module is initialized, it starts a two listener
threads that listen for broadcasts from others, received as UDP datagrams.

Unlike TIPC broadcast, UDP broadcast has only one scope, udp_subnet. A broadcast/1 or
broadcast request/1 that is not directed to the listener above, behaves as usual and is confined
to the instance of Prolog that originated it. But when so directed, the broadcast will be sent to all par-
ticipating systems, including itself, by way of UDP’s multicast addressing facility. A UDP broadcast
or broadcast request takes the typical form: broadcast(udp_subnet(+Term, +Timeout)).
To prevent the potential for feedback loops, the scope qualifier is stripped from the message before
transmission. The timeout is optional. It specifies the amount to time to wait for replies to arrive
in response to a broadcast request. The default period is 0.250 seconds. The timeout is ignored for
broadcasts.

An example of three separate processes cooperating on the same Node:

Process A:

?- listen(number(X), between(1, 5, X)).
true.

?-

29

Process B:

?- listen(number(X), between(7, 9, X)).
true.

?-

Process C:

?- findall(X, broadcast_request(udp_subnet(number(X))), Xs).
Xs = [1, 2, 3, 4, 5, 7, 8, 9].

?-

It is also possible to carry on a private dialog with a single responder. To do this, you supply a com-
pound of the form, Term:PortId, to a UDP scoped broadcast/1 or broadcast request/1,
where PortId is the ip-address and port-id of the intended listener. If you supply an unbound variable,
PortId, to broadcast request, it will be unified with the address of the listener that responds to Term.
You may send a directed broadcast to a specific member by simply providing this address in a simi-
larly structured compound to a UDP scoped broadcast/1. The message is sent via unicast to that
member only by way of the member’s broadcast listener. It is received by the listener just as any other
broadcast would be. The listener does not know the difference.

For example, in order to discover who responded with a particular value:

Host B Process 1:

?- listen(number(X), between(1, 5, X)).
true.

?-

Host A Process 1:

?- listen(number(X), between(7, 9, X)).
true.

?-

Host A Process 2:

?- listen(number(X), between(1, 5, X)).
true.

?- bagof(X, broadcast_request(udp_subnet(number(X):From,1)), Xs).
From = ip(192, 168, 1, 103):34855,
Xs = [7, 8, 9] ;

30

From = ip(192, 168, 1, 103):56331,
Xs = [1, 2, 3, 4, 5] ;
From = ip(192, 168, 1, 104):3217,
Xs = [1, 2, 3, 4, 5].

15.1 Caveats:

While the implementation is mostly transparent, there are some important and subtle differences that
must be taken into consideration:

• UDP broadcast requires an initialization step in order to launch the broadcast listener daemon.
See udp broadcast initialize/2.

• Prolog’s broadcast request/1 is nondet. It sends the request, then evaluates the replies
synchronously, backtracking as needed until a satisfactory reply is received. The remaining
potential replies are not evaluated. This is not so when UDP is involved.

• A UDP broadcast/1 is completely asynchronous.

• A UDP broadcast request/1 is partially synchronous. A broadcast request/1 is
sent, then the sender balks for a period of time (default: 250 ms) while the replies are collected.
Any reply that is received after this period is silently discarded. A optional second argument is
provided so that a sender may specify more (or less) time for replies.

• Replies are presented to the user as a choice point on arrival, until the broadcast request timer
finally expires. This allows traffic to propagate through the system faster and provides the re-
questor with the opportunity to terminate a broadcast request early if desired, by simply cutting
choice points.

• Please beware that broadcast request transactions remain active and resources consumed until
broadcast request finally fails on backtracking, an uncaught exception occurs, or until choice
points are cut. Failure to properly manage this will likely result in chronic exhaustion of UDP
sockets.

• If a listener is connected to a generator that always succeeds (e.g. a random number generator),
then the broadcast request will never terminate and trouble is bound to ensue.

• broadcast request/1 with udp_subnet scope is not reentrant. If a listener performs
a broadcast request/1 with UDP scope recursively, then disaster looms certain. This
caveat does not apply to a UDP scoped broadcast/1, which can safely be performed from
a listener context.

• UDP broadcast’s capacity is not infinite. While it can tolerate substantial bursts of activity, it is
designed for short bursts of small messages. Unlike TIPC, UDP is unreliable and has no QOS
protections. Congestion is likely to cause trouble in the form of non-Byzantine failure. That is,
late, lost (e.g. infinitely late), or duplicate datagrams. Caveat emptor.

• A UDP broadcast request/1 term that is grounded is considered to be a broadcast only.
No replies are collected unless the there is at least one unbound variable to unify.

31

• A UDP broadcast/1 always succeeds, even if there are no listeners.

• A UDP broadcast request/1 that receives no replies will fail.

• Replies may be coming from many different places in the network (or none at all). No ordering
of replies is implied.

• Prolog terms are sent to others after first converting them to atoms using term to atom/2.
Passing real numbers this way may result in a substantial truncation of precision.

• The broadcast model is based on anonymity and a presumption of trust–a perfect recipe for
compromise. UDP is an Internet protocol. A UDP broadcast listener exposes a public port
(20005), which is static and shared by all listeners, and a private port, which is semi-static and
unique to the listener instance. Both can be seen from off-cluster nodes and networks. Usage of
this module exposes the node and consequently, the cluster to significant security risks. So have
a care when designing your application. You must talk only to those who share and contribute
to your concerns using a carefully prescribed protocol.

• UDP broadcast categorically and silently ignores all message traffic originating from or termi-
nating on nodes that are not members of the local subnet. This security measure only keeps
honest people honest!

udp broadcast service(?Domain, ?Address) [nondet]

provides the UDP broadcast address for a given Domain. At present, only one domain is
supported, udp_subnet.

udp host to address(?Service, ?Address) [nondet]

locates a UDP service by name. Service is an atom or grounded term representing the common
name of the service. Address is a UDP address structure. A server may advertise its services by
name by including the fact, udp:host to address(+Service, +Address), somewhere in its source.
This predicate can also be used to perform reverse searches. That is it will also resolve an
Address to a Service name.

udp broadcast initialize(+IPAddress, +SubnetMask) [semidet]

causes any required runtime initialization to occur. At present, proper operation of UDP broad-
cast depends on local information that is not easily obtained mechanically. In order to determine
the appropriate UDP broadcast address, you must supply the IPAddress and SubnetMask for
the node that is running this module. These data are supplied in the form of ip/4 terms. This
is now required to be included in an applications intialization directive.

NetBSD Crypt license

* Copyright (c) 1989, 1993

* The Regents of the University of California. All rights reserved.

*
* This code is derived from software contributed to Berkeley by

32

* Tom Truscott.

*
* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

* 1. Redistributions of source code must retain the above copyright

* notice, this list of conditions and the following disclaimer.

* 2. Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in the

* documentation and/or other materials provided with the distribution.

* 3. Neither the name of the University nor the names of its contributors

* may be used to endorse or promote products derived from this software

* without specific prior written permission.

*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ‘‘AS IS’’ AND

* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE

* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

* SUCH DAMAGE.

33

Index
add stream to pool/2, 16
add stream to pool/2, 16
alarm/3, 27
alarm/4, 27, 28
alarm at/4, 27
at end of stream/1, 14
atom to memory file/2, 26
atom to term/3, 26

call with time limit/2, 28
catch/3, 28
cgi library, 3
cgi get form/1, 21
cgi get form/1, 22
close/1, 26
close stream pool/0, 16
close stream pool/0, 16
copy directory/2, 10
copy file/2, 10
crypt library, 3, 23
crypt/2, 23
current alarm/4, 28

date time stamp/2, 27
delete directory and contents/1, 10
delete directory contents/1, 10
delete stream from pool/1, 16
detach IO/0, 5
detach IO/0, 3
directory file path/3, 10
dispatch stream pool/1, 16
dispatch stream pool/1, 16
dup/2, 4

exec/1, 3

fork/1, 3, 4, 12, 15
fork/2, 3
format/2, 22
free memory file/1, 26
free memory file/1, 26

getegid/1, 10
geteuid/1, 10
getgid/1, 10

gethostname/1, 14
getuid/1, 10
group data/3, 11
group info/2, 11

halt/[0
1], 4

hash atom/2, 25
hash atom/2, 24
hmac sha/4, 25
http/html write library, 22
http/thread httpd library, 16

install alarm/1, 27, 28
install alarm/1, 27, 28
install alarm/2, 28
ip/4, 18
is process/1, 8

kill/2, 4

link file/3, 9

make directory path/1, 10
memfile library, 3, 26
memory file to atom/2, 26
memory file to atom/3, 27
memory file to codes/2, 27
memory file to codes/3, 27
mime default charset/2, 23
mime parse/2, 22

new memory file/1, 26

on signal/2, 4
on signal/3, 29
once/1, 28
open/4, 26
open memory file/3, 26
open memory file/4, 26
open chars stream/2, 26
open memory file/3, 26
open socket/3, 12

pce open/3, 26
pipe/2, 4

34

process create/3, 5
process id/1, 7
process id/2, 8
process kill/1, 8
process kill/2, 8
process release/1, 8
process wait/2, 8
process wait/3, 8

read/1, 14
read term/3, 28
relative file name/3, 9
remove alarm/1, 28
remove alarm/1, 27
rlimit library, 28
rlimit/3, 28

set time file/3, 9
set user and group/1, 12
set user and group/2, 12
setegid/1, 11
seteuid/1, 11
setgid/1, 11
setuid/1, 11
setup call cleanup/3, 15
sformat/3, 26
sha library, 3, 24
sha hash/3, 24
sha hash/3, 25
size memory file/2, 26
socket class, 12
socket library, 3, 12, 16
stream pool main loop/0, 16
streampool library, 16
string to list/2, 17

tcp accept/3, 13
tcp bind/2, 12
tcp close socket/1, 12
tcp connect/2, 13
tcp connect/4, 13
tcp fcntl/3, 14
tcp host to address/2, 14
tcp listen/2, 13
tcp open socket/3, 12
tcp setopt/2, 13
tcp socket/1, 12
tcp accept/3, 12, 13

tcp bind/2, 12, 13
tcp close socket/1, 12
tcp connect/4, 12, 13
tcp fcntl/3, 16
tcp listen/2, 12
tcp open socket/3, 13
tcp setopt/2, 14
tcp socket/1, 17
term to atom/2, 26
time library, 27

udp broadcast initialize/2, 32
udp broadcast service/2, 32
udp host to address/2, 32
udp receive/4, 17
udp send/4, 18
udp socket/1, 17
udp send/4, 14
uninstall alarm/1, 28
uninstall alarm/1, 27
unix library, 1, 3
uri authority components/2, 20
uri authority data/3, 20
uri components/2, 18
uri data/3, 19
uri data/4, 19
uri encoded/3, 20
uri file name/2, 21
uri iri/2, 20
uri is global/1, 19
uri normalized/2, 19
uri normalized/3, 19
uri normalized iri/2, 19
uri normalized iri/3, 20
uri query components/2, 20
uri resolve/3, 19
user data/3, 11
user info/2, 10

wait/2, 3, 4
wait for input/3, 12, 15–17

35

	Introduction
	Unix Process manipulation library
	library(process): Create processes and redirect I/O
	library(filesex): Extended operations on files
	library(uid): User and group management on Unix systems
	Socket library
	Server applications
	Client applications
	The stream_pool library
	UDP protocol support

	library(uri): Process URIs
	CGI Support library
	Some considerations

	library(mime): Parse MIME documents
	Password encryption library
	SHA1 and SHA2 Secure Hash Algorithms
	License terms

	Memory files
	Time and alarm library
	Limiting process resources
	library(udp_broadcast): A UDP Broadcast Bridge
	Caveats:

