
SWI-Prolog External Database

Jan Wielemaker
SWI,

University of Amsterdam
The Netherlands

E-mail: jan@swi.psy.uva.nl

August 30, 2004

Abstract

This package realised external storage of Prolog terms based on the Berkeley DB
library from Sleepycat Software. The DB library implements modular support for the
bottom layers of a database. The database itself maps unconstrained keys onto values.
Both key and value are binary blobs.

The SWI-Prolog interface for DB allows for fast storage of general Prolog terms in the
database.

Contents

1 Introduction 2
1.1 About this manual . 2

2 The DB interface 2
2.1 The overall picture . 2
2.2 Opening a database . 2
2.3 Accessing a database . 3
2.4 Transactions . 4
2.5 Notes on signals and other interrupts . 5
2.6 Initialisation . 5

3 Installation 6
3.1 DB version . 6
3.2 Unix systems . 6

1

1 Introduction

The native Prolog database is not very well suited for either very large data-sets or dynamically
changing large data-sets that need to be communicated between Prolog instances or need to
be safely guarded against system failure. These cases ask for an external database that can
be attached quickly and provides protection against system failure.

The Berkeley DB package by SleepyCat software is a GPL’ed library realising the bottom-
layers of a database. It is a modular system, which in it’s simplest deals with resource
management on a mapped file and in its most complex form deals with network transparency,
transaction management, locking, recovery, life-backup, etc.

The DB library maps keys to values. Optionally multiple values can be associated with a
key. Both key and value are arbitrary-length binary objects.

This package stores arbitrary Prolog terms, using PL record external() introduced in
SWI-Prolog 3.3.7, in the database. It provides an interface similar to the recorded-database
(recorda/3). In the future we plan to link this interface transparently to a predicate.

1.1 About this manual

This manual is by no means complete. The Berkeley DB documentation should be consulted
directly to resolve details on security, resource usage, formats, configuration options etc.
This interface passed default values for most DB API calls. Supported options hint to the
corresponding DB API calls, which should be consulted for details.

2 The DB interface

2.1 The overall picture

Berkeley DB is an embedded database. This implies the library provides access to a file
containing one or more database tables. The Berkeley DB database tables are always binary,
mapping a key to a value.

Accessing a database consists of four steps:

1. Initialise the DB environment using db init/1. This step is optional, providing simple
non-transactional file access when omitted.

2. Open a database using db open/4, returning a handle to the database.

3. Accessing the data using db put/3, db get/3, etc.

4. Closing a database using db close/1. When omitted, all open databases are closed on
program halt (see at halt/1).

2.2 Opening a database

db open(+File, +Mode, -DB, +Options)
Open a file holding a database. Mode is one of read, providing read-only access or
update, providing read/write access. Options is a list of options. Currently supported
options are:

2

duplicates(bool)
Do/do not allow for duplicate values on the same key. Default is not to allow for
duplicates.

database(Name)
If File contains multiple databases, address the named database in the file. A DB
file can only consist of multiple databases if the db open/4 call that created it
specified this argument. Each database in the file has its own characteristics.

key(Type)
Specify the type of the key. Allowed values are:

term
Key is a Prolog term (default). This type allows for representing arbitrary
Prolog data in both keys and value. The representation is space-efficient, but
Prolog specific. See PL record external() in the SWI-Prolog Reference Manual
for details on the representation. The other representations are more neutral.
This implies they are more stable and sharing the DB with other languages is
feasible.

atom
Key is an atom. The text is represented using the character data and its
length.

c string
Key is an atom. The text is represented as a C 0-terminated string.

c long
Key is an integer. The value is represented as a native C long in the machines
byte-order.

value(Type)
Specify the type of the value. See key for details.

2.3 Accessing a database

The predicates in this section are used to read and write the database. These predicate use a
Key and a Value. These should satisfy the key and value-types specified with db open/4. If
a value is declared using the type term (default), arbitrary Prolog terms may be put in the
database.

If a non-ground term is used as Key, it is matched using structural equivalence. See =@=/2
in the SWI-Prolog reference manual for details. For short, if a term a(A,B) is used as key, it
will only be found using a key of the same format: a term with functor a and two unbound
arguments that are not shared.

db put(+DB, +Key, +Value)
Add a new key-value pair to the database. If the database allows for duplicates this
will always succeed, unless a system error occurs.

db del(+DB, ?Key, ?Value)
Delete the first matching key-value pair from the database. If the database allows
for duplicates, this predicate is non-deterministic. The enumeration performed by this
predicate is the same as for db get/3. See also db delall/3.

3

db delall(+DB, +Key, ?Value)
Delete all matching key-value pairs from the database. With unbound Value the key
and all values are removed efficiently.

db get(+DB, ?Key, -Value)
Query the database. If the database allows for duplicates this predicate is non-deterministic.

db enum(+DB, -Key, -Value)
Enumerate the whole database, unifying the key-value pairs to Key and Value. Though
this predicate can be used with an instantiated Key to enumerate only the keys unifying
with Key, no indexing is used by db enum/3.

db getall(+DB, +Key, -Value)
Get all values associated with Key. Fails if the key does not exist (as bagof/3).

2.4 Transactions

Using the DB transaction protocol, security against system failure, atomicy of multiple
changes and accessing a database from multiple writers is provided.

Accessing a DB under transactions from Prolog is very simple. First of all, the option
transactions(true) needs to be provided to db init/1 to initialise the transaction subsys-
tem. Next, the predicate db transaction/1 may be used to execute multiple updates inside
a transaction.

db transaction(:Goal)
Start a transaction, execute Goal and terminate the transaction. Only if Goal succeeds,
the transaction is commited. If Goal fails or raises an exception, the transaction is aborted
and db transaction/1 either fails or rethrows the exception.

Of special interest is the exception

error(package(db, deadlock),)

This exception indicates a deadlock was raised by one of the DB predicates. Deadlocks
may arise if multiple processes or threads access the same keys in a different order. The
DB infra-structure causes one of the processes involved in the deadlock to abort its
transaction. This process may choose to restart the transaction.

For example, a DB application may define {}/1 to realise transactions and restart these
automatically is a deadlock is raised:

{}(Goal) :-
catch(db_transaction(Goal), E, true),
(var(E)
-> true
; E = error(package(db, deadlock), _)
-> { Goal }
; throw(E)
).

4

2.5 Notes on signals and other interrupts

The Berkeley DB routines are not signal-safe. Without precaution, this implies it is not
possible to interrupt Prolog programs using the DB routines in a safe manner. To im-
prove convinience, interrupt signals are blocked during the execution of the DB calls. As
db transaction/1 handles aborts gracefully, PrologDB applications can be interrupted and
aborted safely.

Signals other than SIGINT caught during the execution of one of the DB interaction
predicates may leave the DB in an inconsistent state. Fatal signals thrown by other Prolog
or foreign language facilities are handled gracefully.

2.6 Initialisation

Optionally, the DB environment may be initialised explicitely. Without initialisation, the
DB predicates may be used to access a database file without transaction support and using
default caching. This is generally satisfactory for not-too-large databases that have no strong
security demands and are accessed by at most one application in update mode.

db init(+Options)
Initialise the DB package. This must be done before the first call to db open/4 and at
maximum once. If db open/4 is called without calling db init/1, default initialisation
is used, which is generally suitable for handling small databases without support for
advanced features.

Options is a list of options. The currently supported are listed below. For details, please
refer to the DB manual.

home(Home)
Specify the DB home directory, the directory holding the database files.

config(+ListOfConfig)
Specify a list of configuration options, each option is of the form Name(Value).

mp size(+Integer)
Size of the memory-pool used for caching.

mp mmapsize(+Integer)
Maximum size of a DB file mapped entirely into memory.

create(+Bool)
If true, create any underlying file as required. By default, no new files are created.
This option should be set for prograns that create new databases.

logging(+Bool)
Enable logging the DB modifications. Logging enables recovery of databases in case of
system failure. Normally it is used in combination with transactions.

transactions(+Bool)
Enable transactions, providing atomicy of changes and security. Implies logging and
locking. See section 2.4.

5

server(+Host, [+ServerOptions])
Initialise the DB package for accessing a remote database. Host specifies the name of
the machine running berkeley db svc. Optionally additional options may be specified:

server timeout(+Seconds)
Specify the timeout time the server uses to determine that the client has gone.
This implies the server will terminate the connection to this client if this client
does not issue any requests for the indicated time.

client timeout(+Seconds)
Specify the time the client waits for the server to handle a request.

3 Installation

3.1 DB version

This package was developed for DB version 3.1. The interface of DB 3.x is fundamentally
different from previous releases and db4pl relies on functionality provided by DB 3.x. Unfor-
tunately many distributions of DB are still based on DB 2.x. Please make sure to install DB
3.1 or later before building db4pl.

3.2 Unix systems

Installation on Unix system uses the commonly found configure, make and make install se-
quence. SWI-Prolog should be installed before building this package. If SWI-Prolog is not
installed as pl, the environment variable PL must be set to the name of the SWI-Prolog
executable. Installation is now accomplished using:

% ./configure
% make
% make install

This installs the foreign libraries in $PLBASE/lib/$PLARCH and the Prolog library files in
$PLBASE/library, where $PLBASE refers to the SWI-Prolog ‘home-directory’.

Configure recognises the following options in addition to the default GNU configure op-
tions.

--enable-mt
Enable thread-support for the multi-threaded version of SWI-Prolog. Currently not
supported.

--with-db=DIR
Point to the installation-directory of DB 3.x for finding include files and the DB libraries.
For example:

./configure --with-db=/usr/local/BerkeleyDB.3.1

6

	Introduction
	About this manual

	The DB interface
	The overall picture
	Opening a database
	Accessing a database
	Transactions
	Notes on signals and other interrupts
	Initialisation

	Installation
	DB version
	Unix systems

