
SWI-Prolog C-library

Jan Wielemaker
HCS,

University of Amsterdam
The Netherlands

E-mail: wielemak@science.uva.nl

February 15, 2008

Abstract

This document describes commonly used foreign language extensions to SWI-Prolog dis-
tributed as a package known under the name clib. The package defines a number of Prolog li-
braries with accompagnying foreign libraries.

On Windows systems, the unix library can only be used if the whole SWI-Prolog suite is
compiled using Cywin. The crypt library does not support DES encryption. The other libraries
have been ported to native Windows.

1

Contents

1 Introduction 3

2 Unix Process manipulation library 3

3 File manipulation library 5

4 Socket library 5
4.1 Server applications . 7
4.2 Client applications . 8
4.3 The stream pool library . 8
4.4 UDP protocol support . 9

5 CGI Support library 10
5.1 Some considerations . 11

6 MIME decoding library 11

7 Password encryption library 12

8 SHA1 and SHA2 Secure Hash Algorithms 13
8.1 License terms . 14

9 Memory files 14

10 Time and alarm library 15

11 Limiting process resources 16

12 Installation 17
12.1 Unix systems . 17

2

1 Introduction

Many useful facilities offered by one or more of the operating systems supported by SWI-Prolog are
not supported by the SWI-Prolog kernel distribution. Including these would enlarge the footprint and
complicate portability matters while supporting only a limited part of the user-community.

This document describes unix to deal with the Unix process API, socket to deal with inet-
domain TCP and UDP sockets, cgi to deal with getting CGI form-data if SWI-Prolog is used as
a CGI scripting language, crypt to provide password encryption and verification, sha providing
cryptographic hash functions and memfile providing in-memorty pseudo files.

2 Unix Process manipulation library

The unix library provides the commonly used Unix primitives to deal with process management.
These primitives are useful for many tasks, including server management, parallel computation, ex-
ploiting and controlling other processes, etc.

The predicates are modelled closely after their native Unix counterparts. Higher-level primitives,
especially to make this library portable to non-Unix systems are desirable. Using these primitives and
considering that process manipulation is not a very time-critical operation we anticipate these libraries
to be developed in Prolog.

fork(-Pid)
Clone the current process into two branches. In the child, Pid is unified to child. In the
original process, Pid is unified to the process identifier of the created child. Both parent and
child are fully functional Prolog processes running the same program. The processes share
open I/O streams that refer to Unix native streams, such as files, sockets and pipes. Data is not
shared, though on most Unix systems data is initially shared and duplicated only if one of the
programs attempts to modify the data.

Unix fork() is the only way to create new processes and fork/2 is a simple direct interface
to it.

exec(+Command(...Args...))
Replace the running program by starting Command using the given commandline arguments.
Each command-line argument must be atomic and is converted to a string before passed to the
Unix call execvp().

Unix exec() is the only way to start an executable file executing. It is commonly used together
with fork/1. For example to start netscape on an URL in the background, do:

run_netscape(URL) :-
(fork(child),

exec(netscape(URL))
; true
).

Using this code, netscape remains part of the process-group of the invoking Prolog process and
Prolog does not wait for netscape to terminate. The predicate wait/2 allows waiting for a
child, while detach IO/0 disconnects the child as a deamon process.

3

wait(-Pid, -Status)
Wait for a child to change status. Then report the child that changed status as well as the
reason. Status is unified with exited(ExitCode) if the child with pid Pid was terminated by
calling exit() (Prolog halt/[0,1]). ExitCode is the return=status. Status is unified with
signaled(Signal) if the child died due to a software interrupt (see kill/2). Signal contains
the signal number. Finally, if the process suspended execution due to a signal, Status is unified
with stopped(Signal).

kill(+Pid, +Signal)
Deliver a software interrupt to the process with identifier Pid using software-interrupt number
Signal. See also on signal/2. The meaning of the signal numbers can be found in the Unix
manual.1.

pipe(-InSream, -OutStream)
Create a communication-pipe. This is normally used to make a child communicate to its parent.
After pipe/2, the process is cloned and, depending on the desired direction, both processes
close the end of the pipe they do not use. Then they use the remaining stream to communicate.
Here is a simple example:

:- use_module(library(unix)).

fork_demo(Result) :-
pipe(Read, Write),
fork(Pid),
(Pid == child
-> close(Read),

format(Write, ’˜q.˜n’,
[hello(world)]),

flush_output(Write),
halt

; close(Write),
read(Read, Result),
close(Read)

).

dup(+FromStream, +ToStream)
Interface to Unix dup2(), copying the underlying filedescriptor and thus making both streams
point to the same underlying object. This is normally used together with fork/1 and pipe/2
to talk to an external program that is designed to communicate using standard I/O.

Both FromStream and ToStream either refer to a Prolog stream or an integer descriptor number
to refer directly to OS descriptors. See also demo/pipe.pl in the source-distribution of this
package.

detach IO
This predicate is intended to create Unix deamon-processes. It preforms two actions. First

1kill/2 should support interrupt-names as well

4

of all, the I/O streams user input, user output and user error are closed and
rebound to a Prolog stream that returns end-of-file on any attempt to read and starts writing
to a file named /tmp/pl-out.pid (where 〈pid〉 is the process-id of the calling Prolog) on
any attempt to write. This file is opened only if there is data available. This is intended for
debugging purposes.2 Finally, the process is detached from the current process-group and its
controlling terminal.

3 File manipulation library

The files library provides additional operations on files from SWI-Prolog. It is currently very
incomplete.

set time file(+File, -OldTimes, +NewTimes)
Query and set POSIX time attributes of a file. Both OldTimes and NewTimes are lists of option-
terms. Times are represented in SWI-Prolog’s standard floating point numbers. New times may
be specified as now to indicate the current time. Defined options are:

access(Time)
Describes the time of last access of the file. This value can be read and written.

modified(Time)
Describes the time the contents of the file was last modified. This value can be read and
written.

changed(Time)
Describes the time the file-structure itself was changed by adding (link()) or removing
(unlink()) names.

Here are some example queries. The first retrieves the access-time, while the second sets the
last-modified time to the current time.

?- set_time_file(foo, [acess(Access)], []).
?- set_time_file(foo, [], [modified(now)]).

4 Socket library

The socket library provides TCP and UDP inet-domain sockets from SWI-Prolog, both client and
server-side communication. The interface of this library is very close to the Unix socket interface,
also supported by the MS-Windows winsock API. SWI-Prolog applications that wish to communicate
with multiple sources have three options:

1. Use I/O multiplexing based on wait for input/3. On Windows systems this can only be
used for sockets, not for general (device-) file handles.

2. Use multiple threads, handling either a single blocking socket or a pool using I/O multiplexing
as above.

2More subtle handling of I/O, especially for debugging is required: communicate with the syslog deamon and optionally
start a debugging dialog on a newly created (X-)terminal should be considered.

5

3. Using XPCE’s class socket which synchronises socket events in the GUI event-loop.

tcp socket(-SocketId)
Creates an INET-domain stream-socket and unifies an identifier to it with SocketId. On MS-
Windows, if the socket library is not yet initialised, this will also initialise the library.

tcp close socket(+SocketId)
Closes the indicated socket, making SocketId invalid. Normally, sockets are closed by clos-
ing both stream handles returned by open socket/3. There are two cases where
tcp close socket/1 is used because there are no stream-handles:

• After tcp accept/3, the server does a fork/1 to handle the client in a sub-process.
In this case the accepted socket is not longer needed from the main server and must be
discarded using tcp close socket/1.

• If, after discovering the connecting client with tcp accept/3, the server does not
want to accept the connection, it should discard the accepted socket immediately using
tcp close socket/1.

tcp open socket(+SocketId, -InStream, -OutStream)
Open two SWI-Prolog I/O-streams, one to deal with input from the socket and one with output
to the socket. If tcp bind/2 has been called on the socket. OutSream is useless and will not
be created. After closing both InStream and OutSream, the socket itself is discarded.

tcp bind(+Socket, ?Port)
Bind the socket to Port on the current machine. This operation, together with tcp listen/2
and tcp accept/3 implement the server-side of the socket interface. If Port is unbound, the
system picks an arbitrary free port and unifies Port with the selected port number.

tcp listen(+Socket, +Backlog)
Tells, after tcp bind/2, the socket to listen for incoming requests for connections. Backlog
indicates how many pending connection requests are allowed. Pending requests are requests
that are not yet acknowledged using tcp accept/3. If the indicated number is exceeded,
the requesting client will be signalled that the service is currently not available. A suggested
default value is 5.

tcp accept(+Socket, -Slave, -Peer)
This predicate waits on a server socket for a connection request by a client. On success, it
creates a new socket for the client and binds the identifier to Slave. Peer is bound to the
IP-address of the client.

tcp connect(+Socket, +Host:+Port)
Client-interface to connect a socket to a given Port on a given Host. After successful comple-
tion, tcp open socket/3 can be used to create I/O-Streams to the remote socket.

tcp setopt(+Socket, +Option)
Set options on the socket. Defined options are:

reuseaddr
Allow servers to reuse a port without the system being completely sure the port is no
longer in use.

6

broadcast
UDP sockets only: broadcast the package to all addresses matching the address. The ad-
dress is normally the address of the local subnet (i.e. 192.168.1.255). See udp send/4.

dispatch(Bool)
In GUI environments (using XPCE or the Windows plwin.exe executable) this flags
defines whether or not any events are dispatched on behalf of the user interface. Default
is true. Only very specific situations require setting this to false.

tcp fcntl(+Stream, +Action, ?Argument)
Interface to the Unix fcntl() call. Currently only suitable to deal switch stream to non-
blocking mode using:

...
tcp_fcntl(Stream, setfl. nonblock),
...

As of SWI-Prolog 3.2.4, handling of non-blocking stream is supported. An attempt
to read from a non-blocking stream returns -1 (or end of file for read/1), but
at end of stream/1 fails. On actual end-of-input, at end of stream/1 succeeds.

tcp host to address(?HostName, ?Address)
Translate between a machines host-name and it’s (IP-)address. If HostName is an atom, it is
resolved using gethostbyname() and the IP-number is unified to Address using a term of
the format ip(Byte1, Byte2, Byte3, Byte4). Otherwise, if Address is bound to a ip/4 term, it
is resolved by gethostbyaddr() and the canonical hostname is unified with HostName.

gethostname(-Hostname)
Return the official fully qualified name of this host. This is achieved by calling gethostname()
followed by gethostbyname() and return the official name of the host (h name) of the structure
returned by the latter function.

4.1 Server applications

The typical sequence for generating a server application is defined below:

create_server(Port) :-
tcp_socket(Socket),
tcp_bind(Socket, Port),
tcp_listen(Socket, 5),
tcp_open_socket(Socket, AcceptFd, _),
<dispatch>

There are various options for 〈dispatch〉. One is to keep track of active clients and server-sockets
using wait for input/3. If input arrives at a server socket, use tcp accept/3 and add the
new connection to the active clients. Otherwise deal with the input from the client. Another is to use
(Unix) fork/1 to deal with the client in a separate process.

Using fork/1, 〈dispatch〉 may be implemented as:

7

dispatch(AcceptFd) :-
tcp_accept(AcceptFd, Socket, _Peer),
fork(Pid)
(Pid == child
-> tcp_open_socket(Socket, In, Out),

handle_service(In, Out),
close(In),
close(Out),
halt

; tcp_close_socket(Socket)
),
dispatch(AcceptFd).

4.2 Client applications

The skeleton for client-communication is given below.

create_client(Host, Port) :-
tcp_socket(Socket),
tcp_connect(Socket, Host:Port),
tcp_open_socket(Socket, ReadFd, WriteFd),
<handle I/O using the two streams>
close(ReadFd),
close(WriteFd).

To deal with timeouts and multiple connections, wait for input/3 and/or non-blocking streams
(see tcp fcntl/3) can be used.

4.3 The stream pool library

The streampool library dispatches input from multiple streams based on wait for input/3.
It is part of the clib package as it is used most of the time together with the socket library. On
non-Unix systems it often can only be used with socket streams.

With SWI-Prolog 5.1.x, multi-threading often provides a good alternative to using this library.
In this schema one thread watches the listening socket waiting for connections and either creates a
thread per connection or processes the accepted connections with a pool of worker threads. The
library http/thread httpd provides an example realising a mult-threaded HTTP server.

add stream to pool(+Stream, :Goal)
Add Stream, which must be an input stream and —on non-unix systems— connected to a
socket to the pool. If input is available on Stream, Goal is called.

delete stream from pool(+Stream)
Delete the given stream from the pool. Succeeds, even if Stream is no member of the pool. If
Stream is unbound the entire pool is emtied but unlike close stream pool/0 the streams
are not closed.

8

close stream pool
Empty the pool, closing all streams that are part of it.

dispatch stream pool(+TimeOut)
Wait for maximum of TimeOut for input on any of the streams in the pool. If there is input, call
the Goal associated with add stream to pool/2. If Goal fails or raises an exception a
message is printed. TimeOut is described with wait for input/3.

If Goal is called, there is some input on the associated stream. Goal must be careful not to block
as this will block the entire pool.3

stream pool main loop
Calls dispatch stream pool/1 in a loop until the pool is empty.

Below is a very simple example that reads the first line of input and echos it back.

:- use_module(library(streampool)).

server(Port) :-
tcp_socket(Socket),
tcp_bind(Socket, Port),
tcp_listen(Socket, 5),
tcp_open_socket(Socket, In, _Out),
add_stream_to_pool(In, accept(Socket)),
stream_pool_main_loop.

accept(Socket) :-
tcp_accept(Socket, Slave, Peer),
tcp_open_socket(Slave, In, Out),
add_stream_to_pool(In, client(In, Out, Peer)).

client(In, Out, _Peer) :-
read_line_to_codes(In, Command),
close(In),
format(Out, ’Please to meet you: ˜s˜n’, [Command]),
close(Out),
delete_stream_from_pool(In).

4.4 UDP protocol support

The current library provides limited support for UDP packets. The UDP protocol is a connection-less
and unreliable datagram based protocol. That means that messages sent may or may not arrive at
the client side and may arrive in a different order as they are sent. UDP messages are often used for
streaming media or for service discovery using the broadcasting mechanism.

udp socket(-Socket)
Similar to tcp socket/1, but create a socket using the SOCK DGRAM protocol, ready for
UDP connections.

3This is hard to achieve at the moment as none of the Prolog read-commands provide for a timeout.

9

udp receive(+Socket, -Data, -From, +Options)
Wait for and return the next datagram. The data is returned as a Prolog string object (see
string to list/2). From is a term of the format ip(A,B,C,D):Port indicating the
sender of the message. Options is currently unused. Socket can be waited for using
wait for input/3.

udp send(+Socket, +Data, +To, +Options)
Send a UDP message. Data is a string, atom or code-list providing the data. To is an address
of the form Host:Port where Host is either the hostname or a term ip/4. Options is currently
unused.

A broadcast is achieved by using tcp setopt(Socket, broadcast) prior to sending the data-
gram and using the local network broadcast address as a ip/4 term.

5 CGI Support library

This is currently a very simple library, providing support for obtaining the form-data for a CGI script:

cgi get form(-Form)
Decodes standard input and the environment variables to obtain a list of arguments passed to
the CGI script. This predicate both deals with the CGI GET method as well as the POST
method. If the data cannot be obtained, an existence error exception is raised.

Below is a very simple CGI script that prints the passed parameters. To
test it, compile this program using the command below, copy it to your cgi-
bin directory (or make it otherwise known as a CGI-script) and make the query
http://myhost.mydomain/cgi-bin/cgidemo?hello=world

% pl -o cgidemo --goal=main --toplevel=halt -c cgidemo.pl

:- use_module(library(cgi)).

main :-
set_stream(current_output, encoding(utf8)),
cgi_get_form(Arguments),
format(’Content-type: text/html; charset=UTF-8˜n˜n’, []),
format(’<HTML>˜n’, []),
format(’<HEAD>˜n’, []),
format(’<TITLE>Simple SWI-Prolog CGI script</TITLE>˜n’, []),
format(’</HEAD>˜n˜n’, []),
format(’<BODY>˜n’, []),
format(’<P>’, []),
print_args(Arguments),
format(’</BODY>˜n</HTML>˜n’, []).

print_args([]).
print_args([A0|T]) :-

10

A0 =.. [Name, Value],
format(’˜w=˜w
˜n’, [Name, Value]),
print_args(T).

5.1 Some considerations

Printing an HTML document using format/2 is not really a neat way of producing HTML. A high-
level alternative is provided by http/html write from the HTTP library.

The CGI standard is very unclear about handling Unicode data. The above two declarations ensure
the CGI script will send all data in UTF-8 and thus provide full support of Unicode. It is assumed that
browsers generally send form-data using the same encoding as the page in which the form appears,
UTF-8 or ISO Latin-1. The current version of cgi get form/2 assumes the CGI data is in UTF-8.

6 MIME decoding library

MIME (Multipurpose Internet Mail Extensions) is a format for serializing multiple typed data ob-
jects. It was designed for E-mail, but it is also used for other applications such packaging multiple
values using the HTTP POST request on web-servers. Double Precision, Inc. has produced the C-
libraries rfc822 (mail) and rfc2045 (MIME) for decoding and manipulating MIME messages. The
mime library is a Prolog wrapper around the rfc2045 library for decoding MIME messages.

The general name ‘mime’ is used for this library as it is anticipated to add MIME-creation func-
tionality to this library.

Currently the mime library defines one predicate:

mime parse(Data, Parsed)
Parse Data and unify the result to Parsed. Data is one of:

stream(Stream)
Parse the data from Stream upto the end-of-file.

stream(Stream, Length)
Parse a maximum of Length characters from Stream or upto the end-of-file, whichever
comes first.

Text
Atoms, strings, code- and character lists are treated as valid sources of data.

Parsed is a tree structure of mime(Attributes, Data, PartList) terms. Currently either Data
is the empty atom or PartList is an empty list.4 Data is an atom holding the message
data. The library automatically decodes base64 and quoted-printable messages. See also the
transfer encoding attribute below.

PartList is a list of mime/3 terms. Attributes is a list holding a subset of the following argu-
ments. For details please consult the RFC2045 document.

type(Atom)
Denotes the Content-Type, how the Data should be interpreted.

4It is unclear to me whether a MIME note can contain a mixture of content and parts, but I believe the answer is ‘no’.

11

transfer encoding(Atom)
How the Data was encoded. This is not very interesting as the library decodes the content
of the message.

character set(Atom)
The character set used for text data. Note that SWI-Prolog’s capabilities for character-set
handling are limited.

language(Atom)
Language in which the text-data is written.

id(Atom)
Identifier of the message-part.

description(Atom)
Descrptive text for the Data.

disposition(Atom)
Where the data comes from. The current library only deals with ‘inline’ data.

name(Atom)
Name of the part.

filename(Atom)
Name of the file the data should be stored in.

7 Password encryption library

The crypt library defines crypt/2 for encrypting and testing passwords. The clib package also
provides crytographic hashes as described in section 8

crypt(+Plain, ?Encrypted)
This predicate can be used in three modes. To test whether a password matches an encrypted
version thereof, simply run with both arguments fully instantiated. To generate a default
encrypted version of Plain, run with unbound Encrypted and this argument is unified to a list
of character codes holding an encrypted version.

The library supports two encryption formats: traditional Unix DES hashes (Unix only) and
FreeBSD compatible MD5 hashes (all platforms). MD5 hashes start with the magic sequence
1, followed by an up to 8 character salt. DES hashes start with a 2 character salt. Note that
a DES hash considers only the first 8 characters. The MD5 considers the whole string.

Salt and algorithm can be forced by instantiating the start of Encrypted with it. This is typically
used to force MD5 hashes:

?- append("1", _, E),
crypt("My password", E),
format(’˜s˜n’, [E]).

1qdaDeDZn$ZUxSQEESEHIDCHPNc3fxZ1

Encrypted is always an ASCII string. Plain only supports ISO-Latin-1 passwords in the current
implementation.

12

Plain is either an atom, SWI-Prolog string, list of characters or list of character-codes. It is not
advised to use atoms, as this implies the password will be available from the Prolog heap as a
defined atom.

8 SHA1 and SHA2 Secure Hash Algorithms

The library sha provides Secure Hash Algorihms approved by FIPS (Federal Information Processing
Standard). Quoting Wikipedia: “The SHA (Secure Hash Algorithm) hash functions refer to five FIPS-
approved algorithms for computing a condensed digital representation (known as a message digest)
that is, to a high degree of probability, unique for a given input data sequence (the message). These
algorithms are called secure because (in the words of the standard), for a given algorithm, it is
computationally infeasible 1) to find a message that corresponds to a given message digest, or 2) to
find two different messages that produce the same message digest. Any change to a message will, with
a very high probability, result in a different message digest.”

The current library supports all 5 approved algorithms, both computing the hash-key from data
and the hash Message Authentication Code (HMAC).

Input is text, represented as an atom, packed string object or code-list. Note that these functions
operate on byte-sequences and therefore are not meaningful on Unicode text. The result is returned
as a list of byte-values. This is the most general format that is comfortable supported by standard
Prolog and can easily be transformed in other formats. Commonly used text formats are ASCII cre-
ated by encoding each byte as two hexadecimal digits and ASCII created using base64 encoding.
Representation as a large integer can be desirable for computational processing.

sha hash(+Data, -Hash, +Options)
Hash is the SHA hash of Data. Data is either an atom, packed string or list of character codes.
Hash is unified with a list of integers representing the hash. The conversion is controlled by
Options:

algorithm(+Algorithm)
One of sha1 (default), sha224, sha256, sha384 or sha512

hmac sha(+Key, +Data, -HMAC, +Options)
Quoting Wikipedia: “A keyed-hash message authentication code, or HMAC, is a type of mes-
sage authentication code (MAC) calculated using a cryptographic hash function in combination
with a secret key. As with any MAC, it may be used to simultaneously verify both the data
integrity and the authenticity of a message. Any iterative cryptographic hash function, such as
MD5 or SHA-1, may be used in the calculation of an HMAC; the resulting MAC algorithm is
termed HMAC-MD5 or HMAC-SHA-1 accordingly. The cryptographic strength of the HMAC
depends upon the cryptographic strength of the underlying hash function, on the size and
quality of the key and the size of the hash output length in bits.”

Key and Data are either an atom, packed string or list of character codes. HMAC is unified with
a list of integers representing the authentication code. Options is the same as for sha hash/3,
but currently only sha1 and sha256 are supported.

13

8.1 License terms

The underlying SHA-2 library is an unmodified copy created by Dr Brian Gladman, Worcester, UK.
It is distributed under the license conditions below.

The free distribution and use of this software in both source and binary form is allowed (with or
without changes) provided that:

1. distributions of this source code include the above copyright notice, this list of conditions and
the following disclaimer;

2. distributions in binary form include the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other associated materials;

3. the copyright holder’s name is not used to endorse products built using this software without
specific written permission.

ALTERNATIVELY, provided that this notice is retained in full, this product may be distributed
under the terms of the GNU General Public License (GPL), in which case the provisions of the GPL
apply INSTEAD OF those given above.

9 Memory files

The memfile provides an alternative to temporary files, intended for temporary buffering of data.
Memory files in general are faster than temporary files and do not suffer from security riscs or naming
conflicts associated with temporary-file management. They do assume proper memory management
by the hosting OS and cannot be used to pass data to external processes using a file-name.

There is no limit to the number of memory streams, nor the size of them. However, memory-
streams cannot have multiple streams at the same time (i.e. cannot be opened for reading and writing
at the same time).

These predicates are first of all intended for building higher-level primitives. See also
sformat/3, atom to term/3, term to atom/2 and the XPCE primitive pce open/3.

new memory file(-Handle)
Create a new memory file and return a unique opaque handle to it.

free memory file(+Handle)
Discard the memory file and its contents. If the file is open it is first closed.

open memory file(+Handle, +Mode, -Stream)
Open the memory-file. Mode is currently one of read or write. The resulting Stream must
be closed using close/1.

open memory file(+Handle, +Mode, -Stream, +Options)
Open a memory-file as open memory file/3. Options:

encoding(+Encoding)
Set the encoding for a memory file and the created stream. Encoding names are the
same as used with open/4. By default, memoryfiles represent UTF-8 streams, making
them capable of storing arbitrary Unicode text. In practice the only alternative is
octet, turning the memoryfile into binary mode. Please study SWI-Prolog Unicode and
encoding issues before using this option.

14

size memory file(+Handle, -Bytes)
Return the content-length of the memory-file it Bytes. The file should be closed and contain
data.

atom to memory file(+Atom, -Handle)
Turn an atom into a read-only memory-file containing the (shared) characters of the atom.
Opening this memory-file in mode write yields a permission error.

memory file to atom(+Handle, -Atom)
Return the content of the memory-file in Atom.

memory file to codes(+Handle, -Codes)
Return the content of the memory-file as a list of character-codes in Codes.

10 Time and alarm library

The time provides timing and alarm functions.

alarm(+Time, :Callable, -Id, +Options)
Schedule Callable to be called Time seconds from now. Time is a number (integer or float).
Callable is called on the next pass through a call- or redo-port of the Prolog engine, or a call to
the PL handle signals() routine from SWI-Prolog. Id is unified with a reference to the timer.

The resolution of the alarm depends on the underlying implementation. On Unix systems it is
based on setitimer(), on Windows on timeSetEvent() using a resolution specified at 50 millisec-
onds.5 Long-running foreign predicates that do not call PL handle signals() may further delay
the alarm.

Options is a list of Name(Value) terms. Defined options are:

remove(Bool)
If true (default false), the timer is removed automatically after fireing. Otherwise it
must be destroyed explicitly using remove alarm/1.

install(Bool)
If false (default true), the timer is allocated but not scheduled for execution. It must
be started later using install alarm/1.

alarm(+Time, :Callable, -Id)
Same as alarm(Time, Callable, Id, []).

install alarm(+Id)
Activate an alarm allocated usign alarm/4 with the option install(false). This is in-
tended to reclaim alarms reliably using call cleanup/2. See the implementation of
call with time limit/2.

remove alarm(+Id)
Remove an alarm. If it is not yet fired, it will not be fired any more.

5BUG: The maximum time for timeSetEvent() used by the Windows application is 1000 seconds. Calling with a higher
time value raises a resource error exception.

15

current alarm(?At, ?:Callable, ?Id, ?Status)
Enumerate the not-yet-removed alarms. Status is one of done if the alarm has been called,
next if it is the next to be fired and scheduled otherwise.

call with time limit(+Time, :Goal)
True if Goal completes within Time seconds. Goal is executed as in once/1. If Goal doesn’t
complete within Time seconds (wall time), exit using the exception time limit exceeded.
See catch/3.

Please note that this predicate uses alarm/4 and therefore is not capable to break out of
long running goals such as sleep/1, blocking I/O or other long-running (foreign) predicates.
Blocking I/O can be handled using the timeout option of read term/3.

11 Limiting process resources

The rlimit library provides an interface to the POSIX getrlimit()/setrlimit() API that control the
maximum resource-usage of a process or group of processes. This call is especially useful for server
such as CGI scripts and inetd-controlled servers to avoid an uncontrolled script claiming too much
resources.

rlimit(+Resource, -Old, +New)
Query and/or set the limit for Resource. Time-values are in seconds and size-values are counted
in bytes. The following values are supported by this library. Please note that not all resources
may be available and accessible on all platforms. This predicate can throw a variety of
exceptions. In portable code this should be guarded with catch/3. The defined resources are:

cpu CPU time in seconds
fsize Maximum filesize
data max data size
stack max stack size
core max core file size
rss max resident set size
nproc max number of processes
nofile max number of open files
memlock max locked-in-memory address

When the process hits a limit POSIX systems normally send the process a signal that termi-
nates it. These signals may be catched using SWI-Prolog’s on signal/3 primitive. The code
below illustrates this behaviour. Please note that asynchronous signal handling is dangerous, es-
pecially when using threads. 100% fail-safe operation cannot be guaranteed, but this procedure
will inform the user properly ‘most of the time’.

rlimit_demo :-
rlimit(cpu, _, 2),
on_signal(xcpu, _, cpu_exceeded),
(repeat, fail).

cpu_exceeded(_Sig) :-

16

format(user_error, ’CPU time exceeded˜n’, []),
halt(1).

12 Installation

12.1 Unix systems

Installation on Unix system uses the commonly found configure, make and make install sequence.
SWI-Prolog should be installed before building this package. If SWI-Prolog is not installed as pl, the
environment variable PL must be set to the name of the SWI-Prolog executable. Installation is now
accomplished using:

% ./configure
% make
% make install

This installs the foreign libraries in $PLBASE/lib/$PLARCH and the Prolog library files in
$PLBASE/library, where $PLBASE refers to the SWI-Prolog ‘home-directory’.

17

Index
add stream to pool/2, 8, 9
alarm/3, 15
alarm/4, 15, 16
at end of stream/1, 7
atom to memory file/2, 15
atom to term/3, 14

call cleanup/2, 15
call with time limit/2, 15, 16
catch/3, 16
cgi library, 3
cgi get form/1, 10
cgi get form/2, 11
close/1, 14
close stream pool/0, 8, 9
crypt library, 1, 3, 12
crypt/2, 12
current alarm/4, 16

delete stream from pool/1, 8
detach IO/0, 3, 4
dispatch stream pool/1, 9
dup/2, 4

exec/1, 3

files library, 5
fork/1, 3, 4, 6, 7
fork/2, 3
format/2, 11
free memory file/1, 14

gethostname/1, 7

halt/[0
1], 4

hmac sha/4, 13
http/html write library, 11
http/thread httpd library, 8

install alarm/1, 15
ip/4, 10

kill/2, 4

memfile library, 3, 14

memory file to atom/2, 15
memory file to codes/2, 15
mime library, 11
mime parse/2, 11

new memory file/1, 14

on signal/2, 4
on signal/3, 16
once/1, 16
open/4, 14
open memory file/3, 14
open memory file/4, 14
open socket/3, 6

pce open/3, 14
pipe/2, 4

read/1, 7
read term/3, 16
remove alarm/1, 15
rlimit library, 16
rlimit/3, 16

set time file/3, 5
sformat/3, 14
sha library, 3, 13
sha hash/3, 13
size memory file/2, 15
sleep/1, 16
socket class, 6
socket library, 3, 5, 8
stream pool main loop/0, 9
streampool library, 8
string to list/2, 10

tcp accept/3, 6, 7
tcp bind/2, 6
tcp close socket/1, 6
tcp connect/2, 6
tcp fcntl/3, 7, 8
tcp host to address/2, 7
tcp listen/2, 6
tcp open socket/3, 6
tcp setopt/2, 6
tcp socket/1, 6, 9

18

term to atom/2, 14
time library, 15

udp receive/4, 10
udp send/4, 7, 10
udp socket/1, 9
unix library, 1, 3

wait/2, 3, 4
wait for input/3, 5, 7–10

19

	Introduction
	Unix Process manipulation library
	File manipulation library
	Socket library
	Server applications
	Client applications
	The stream_pool library
	UDP protocol support

	CGI Support library
	Some considerations

	MIME decoding library
	Password encryption library
	SHA1 and SHA2 Secure Hash Algorithms
	License terms

	Memory files
	Time and alarm library
	Limiting process resources
	Installation
	Unix systems

