
SWI-Prolog C-library

Jan Wielemaker
SWI,

University of Amsterdam
The Netherlands

E-mail: jan@swi.psy.uva.nl

September 27, 2001

Abstract

This document describes commonly used foreign language extensions to [SWI-Prolog]http://www.swi.psy.uva.nl/projects/SWI-
Prolog distributed as a package known under the name clib. The package defines a number
of Prolog libraries with accompagnying foreign libraries.

library(unix) This library provides Unix process control using fork(), exec(), pipe(), etc.

library(cgi) This library provides access to CGI form-data if Prolog is used for CGI-
scripting.

library(crypt) This library provides access to Unix password encryption.

library(mime) This library decodes MIME messages.

library(socket) This library provides access to TCP/IP communication.

Currently only library(socket) and library(cgi) are available on the default MS-
Windows distribution. The library(unix) and library(crypt) libraries can be used if
the whole SWI-Prolog suite is compiled using [Cywin]http://www.cygwin.com.

1

[
[

Contents

2

1 Introduction

Many useful facilities offered by one or more of the operating systems supported by SWI-
Prolog are not supported by the SWI-Prolog kernel distribution. Including these would
enlarge the footprint and complicate portability matters while supporting only a limited part
of the user-community.

This document describes library(unix) to deal with the Unix process API, library(socket)
to deal with inet-domain stream-sockets, library(cgi) to deal with getting CGI form-data if
SWI-Prolog is used as a CGI scripting language and library(crypt) to provide access to Unix
password encryption.

2 Unix Process manipulation library

The library(unix) library provides the commonly used Unix primitives to deal with process
management. These primitives are useful for many tasks, including server management,
parallel computation, exploiting and controlling other processes, etc.

The predicates are modelled closely after their native Unix counterparts. Higher-level
primitives, especially to make this library portable to non-Unix systems are desirable. Using
these primitives and considering that process manipulation is not a very time-critical operation
we anticipate these libraries to be developed in Prolog.

fork(-Pid)
Clone the current process into two branches. In the child, Pid is unified to child. In
the original process, Pid is unified to the process identifier of the created child. Both
parent and child are fully functional Prolog processes running the same program. The
processes share open I/O streams that refer to Unix native streams, such as files, sockets
and pipes. Data is not shared, though on most Unix systems data is initially shared
and duplicated only if one of the programs attempts to modify the data.

Unix fork() is the only way to create new processes and fork/2 is a simple direct
interface to it.

exec(+Command(...Args...))
Replace the running program by starting Command using the given commandline ar-
guments. Each command-line argument must be atomic and is converted to a string
before passed to the Unix call execvp().

Unix exec() is the only way to start an executable file executing. It is commonly used
together with fork/1. For example to start netscape on an URL in the background,
do:

run_netscape(URL) :-
(fork(child),

exec(netscape(URL))
; true
).

Using this code, netscape remains part of the process-group of the invoking Prolog
process and Prolog does not wait for netscape to terminate. The predicate wait/2
allows waiting for a child, while detach IO/0 disconnects the child as a deamon process.

3

wait(-Pid, -Status)
Wait for a child to change status. Then report the child that changed status as well
as the reason. Status is unified with exited(ExitCode) if the child with pid Pid was
terminated by calling exit() (Prolog halt/[0,1]). ExitCode is the return=status.
Status is unified with signaled(Signal) if the child died due to a software interrupt (see
kill/2). Signal contains the signal number. Finally, if the process suspended execution
due to a signal, Status is unified with stopped(Signal).

kill(+Pid, +Signal)
Deliver a software interrupt to the process with identifier Pid using software-interrupt
number Signal. See also on signal/2. The meaning of the signal numbers can be found
in the Unix manual.1.

pipe(-InSream, -OutStream)
Create a communication-pipe. This is normally used to make a child communicate to
its parent. After pipe/2, the process is cloned and, depending on the desired direction,
both processes close the end of the pipe they do not use. Then they use the remaining
stream to communicate. Here is a simple example:

:- use_module(library(unix)).

fork_demo(Result) :-
pipe(Read, Write),
fork(Pid),
(Pid == child
-> close(Read),

format(Write, ’~q.~n’,
[hello(world)]),

flush_output(Write),
halt

; close(Write),
read(Read, Result),
close(Read)

).

dup(+FromStream, +ToStream)
Interface to Unix dup2(), copying the underlying filedescriptor and thus making both
streams point to the same underlying object. This is normally used together with
fork/1 and pipe/2 to talk to an external program that is designed to communicate
using standard I/O.

Both FromStream and ToStream either refer to a Prolog stream or an integer descrip-
tor number to refer directly to OS descriptors. See also demo/pipe.pl in the source-
distribution of this package.

detach IO
This predicate is intended to create Unix deamon-processes. It preforms two actions.

1kill/2 should support interrupt-names as well

4

First of all, the I/O streams user input, user output and user error are closed and
rebound to a Prolog stream that returns end-of-file on any attempt to read and starts
writing to a file named /tmp/pl-out.pid (where 〈pid〉 is the process-id of the calling
Prolog) on any attempt to write. This file is opened only if there is data available. This
is intended for debugging purposes.2 Finally, the process is detached from the current
process-group and its controlling terminal.

3 Socket library

The library(socket) library provides TCP inet-domain sockets from SWI-Prolog, both client
and server-side communication. The interface of this library is very close to the Unix socket
interface, also supported by the MS-Windows winsock API. Since SWI-Prolog 4.0, XPCE is
part of SWI-Prolog and offers socket. XPCE provides an event-driven interface to sockets,
handling multiple open sockets in paralel.

In the future we hope to provide a more high-level socket interface defined in Prolog and
based on these primitives.

tcp socket(-SocketId)
Creates an INET-domain stream-socket and unifies an identifier to it with SocketId.
On MS-Windows, if the socket library is not yet initialised, this will also initialise the
library.

tcp close socket(+SocketId)
Closes the indicated socket, making SocketId invalid. Normally, sockets are closed by
closing both stream handles returned by open socket/3. There are two cases where
tcp close socket/1 is used because there are no stream-handles:

• After tcp accept/3, the server does a fork/1 to handle the client in a sub-process.
In this case the accepted socket is not longer needed from the main server and must
be discarded using tcp close socket/1.

• If, after discovering the connecting client with tcp accept/3, the server does not
want to accept the connection, it should discard the accepted socket immediately
using tcp close socket/1.

tcp open socket(+SocketId, -InStream, -OutStream)
Open two SWI-Prolog I/O-streams, one to deal with input from the socket and one
with output to the socket. If tcp bind/2 has been called on the socket. OutSream is
useless and will not be created. After closing both InStream and OutSream, the socket
itself is discarded.

tcp bind(+Socket, +Port)
Bind the socket to Port on the current machine. This operation, together with tcp listen/2
and tcp accept/3 implement the server-side of the socket interface.

2More subtle handling of I/O, especially for debugging is required: communicate with the syslog deamon
and optionally start a debugging dialog on a newly created (X-)terminal should be considered.

5

tcp listen(+Socket, +Backlog)
Tells, after tcp bind/2, the socket to listen for incoming requests for connections. Back-
log indicates how many pending connection requests are allowed. Pending requests are
requests that are not yet acknowledged using tcp accept/3. If the indicated num-
ber is exceeded, the requesting client will be signalled that the service is currently not
available. A suggested default value is 5.

tcp accept(+Socket, -Slave, -Peer)
This predicate waits on a server socket for a connection request by a client. On success,
it creates a new socket for the client and binds the identifier to Slave. Peer is bound to
the IP-address of the client.

tcp connect(C)
lient-interface to connect a socket to a given Port on a given Host. After successful
completion, tcp open socket/3 can be used to create I/O-Streams to the remote socket.

tcp setopt(+Socket, +Option)
Interface to setsockopt(), setting options for the socket. Currently the only defined
option is reuseaddr, which allows servers to reuse a port without the system being
completely sure the port is no longer in use.

tcp fcntl(+Stream, +Action, ?Argument)
Interface to the Unix fcntl() call. Currently only suitable to deal switch stream to
non-blocking mode using:

...
tcp_fcntlStream, setfl. nonblock),
...

As of SWI-Prolog 3.2.4, handling of non-blocking stream is supported. An attempt to
read from a non-blocking stream returns -1 (or end of file for read/1), but at end of stream/1
fails. On actual end-of-input, at end of stream/1 succeeds.

tcp host to address(?HostName, ?Address)
Translate between a machines host-name and it’s (IP-)address. If HostName is an atom,
it is resolved using gethostbyname() and the IP-number is unified to Address using a
term of the format ip(Byte1, Byte2, Byte3, Byte4). Otherwise, if Address is bound to
a ip/4 term, it is resolved by gethostbyaddr() and the canonical hostname is unified
with HostName.

gethostname(-Hostname)
Return the official fully qualified name of this host. This is achieved by calling gethost-
name() followed by gethostbyname() and return the official name of the host (h name)
of the structure returned by the latter function.

3.1 Server applications

The typical sequence for generating a server application is defined below:

6

create_server(Port) :-
tcp_socket(Socket),
tcp_bind(Socket, Port),
tcp_listen(Socket, 5),
tcp_open_socket(Socket, AcceptFd, _),
<dispatch>

There are various options for 〈dispatch〉. One is to keep track of active clients and server-
sockets using wait for input/3. If input arrives at a server socket, use tcp accept/3 and
add the new connection to the active clients. Otherwise deal with the input from the client.
Another is to use (Unix) fork/1 to deal with the client in a separate process.

Using fork/1, 〈dispatch〉 may be implemented as:

dispatch(AcceptFd) :-
tcp_accept(AcceptFd, Socket, _Peer),
fork(Pid)
(Pid == child
-> tcp_open_socket(Socket, In, Out),

handle_service(In, Out),
close(In),
close(Out),
halt

; tcp_close_socket(Socket)
),
dispatch(AcceptFd).

3.2 Client applications

The skeleton for client-communication is given below.

create_client(Host, Port) :-
tcp_socket(Socket),
tcp_connect(Socket, Host:Port),
tcp_open_socket(Socket, ReadFd, WriteFd),
<handle I/O using the two streams>
close(ReadFd),
close(WriteFd).

To deal with timeouts and multiple connections, wait for input/3 and/or non-blocking
streams (see tcp fcntl/3) can be used.

4 CGI Support library

This is currently a very simple library, providing support for obtaining the form-data for a
CGI script:

7

cgi get form(-Form)
Decodes standard input and the environment variables to obtain a list of arguments
passed to the CGI script. This predicate both deals with the CGI GET method as well
as the POST method. If the data cannot be obtained, an existence error exception
is raised.

Below is a very simple CGI script that prints the passed parameters. To test it, compile
this program using the command below, copy it to your cgi-bin directory (or make it otherwise
known as a CGI-script) and make the query http://myhost.mydomain/cgi-bin/cgidemo?hello=world

% pl -o cgidemo --goal=main --toplevel=halt -c cgidemo.pl

:- use_module(library(cgi)).

main :-
cgi_get_form(Arguments),
format(’Content-type: text/html~n~n’, []),
format(’<HTML>~n’, []),
format(’<HEAD>~n’, []),
format(’<TITLE>Simple SWI-Prolog CGI script</TITLE>~n’, []),
format(’</HEAD>~n~n’, []),
format(’<BODY>~n’, []),
format(’<P>’, []),
print_args(Arguments),
format(’<BODY>~n</HTML>~n’, []).

print_args([]).
print_args([A0|T]) :-

A0 =.. [Name, Value],
format(’~w=~w
~n’, [Name, Value]),
print_args(T).

4.1 Some considerations

Printing an HTML document using format/2 is not really a neat way of producing HTML.
A high-level alternative is provided by library(http/html write) from the XPCE package.

5 MIME decoding library

MIME (Multipurpose Internet Mail Extensions) is a format for serializing multiple typed data
objects. It was designed for E-mail, but it is also used for other applications such packaging
multiple values using the HTTP POST request on web-servers. Double Precision, Inc. has
produced the C-libraries rfc822 (mail) and rfc2045 (MIME) for decoding and manipulating
MIME messages. The library(mime) library is a Prolog wrapper around the rfc2045 library
for deconding MIME messages.

8

The general name ‘mime’ is used for this library as it is anticipated to add MIME-creation
functionality to this message.

Currently the mime library defines one predicate:

mime parse(Data, Parsed)
Parse Data and unify the result to Parsed. Data is one of:

stream(Stream)
Parse the data from Stream upto the end-of-file.

stream(Stream, Length)
Parse a maximum of Length characters from Stream or upto the end-of-file, whichever
comes first.

Text
Atoms, strings, code- and character lists are treated as valid sources of data.

Parsed is a tree structure of mime(Attributes, Data, PartList) terms. Currently either
Data is the empty atom or PartList is an empty list.3 Data is an atom holding the
message data. The library automatically decodes base64 and quoted-printable messages.
See also the transfer encoding attribute below.

PartList is a list of mime(3) terms. Attributes is a list holding a subset of the following
arguments. For details please consult the RFC2045 document.

type(Atom)
Denotes the Content-Type, how the Data should be interpreted.

transfer encoding(Atom)
How the Data was encoded. This is not very interesting as the library decodes the
content of the message.

character set(Atom)
The character set used for text data. Note that SWI-Prolog’s capabilities for
character-set handling are limited.

language(Atom)
Language in which the text-data is written.

id(Atom)
Identifier of the message-part.

description(Atom)
Descrptive text for the Data.

disposition(Atom)
Where the data comes from. The current library only deals with ‘inline’ data.

name(Atom)
Name of the part.

filename(Atom)
Name of the file the data should be stored in.

3It is unclear to me whether a MIME note can contain a mixture of content and parts, but I believe the
answer is ‘no’.

9

NOTE This library is only built and installed if the maildrop libraries are installed on
your system.

6 Unix password encryption library

The library(crypt) library defines crypt/2 for encrypting and testing Unix passwords:

crypt(+Plain, ?Encrypted)
This predicate can be used in three modes. If Encrypted is unbound, it will be unified
to a string (list of character-codes) holding a random encryption of Plain. If Encrypted
is bound to a list holding 2 characters and an unbound tail, these two character are
used for the salt of the encryption. Finally, if Encrypted is instantiated to an encrypted
password the predicate succeeds iff Encrypted is a valid encryption of Plain.

Plain is either an atom, SWI-Prolog string, list of characters or list of character-codes.
It is not advised to use atoms, as this implies the password will be available from the
Prolog heap as a defined atom.

7 Memory files

The library(memfile) provides an alternative to temporary files, intended for temporary
buffering of data. Memory files in general are faster than temporary files and do not suf-
fer from security riscs or naming conflicts associated with temporary-file management. They
do assume proper memory management by the hosting OS and cannot be used to pass data
to external processes using a file-name.

There is no limit to the number of memory streams, nor the size of them. However,
memory-streams cannot have multiple streams at the same time (i.e. cannot be opened for
reading and writing at the same time).

These predicates are first of all intended for building higher-level primitives. See also
sformat/3, atom to term/3, term to atom/2 and the XPCE primitive pce open/3.

new memory file(C)
reate a new memory file and return a unique opaque handle to it.

free memory file(D)
iscard the memory file and its contents. If the file is open it is first closed.

open memory file(O)
pen the memory-file. Mode is currently one of read or write. The resulting handling
is closed using close/1.

size memory file(R)
eturn the content-length of the memory-file it Bytes. The file should be closed and
contain data.

atom to memory file(T)
urn an atom into a read-only memory-file containing the (shared) characters of the
atom. Opening this memory-file in mode write yields a permission error.

10

memory file to atom(R)
eturn the content of the memory-file in Atom.

memory file to codes(R)
eturn the content of the memory-file as a list of character-codes in Codes.

8 Installation

8.1 Unix systems

Installation on Unix system uses the commonly found configure, make and make install se-
quence. SWI-Prolog should be installed before building this package. If SWI-Prolog is not
installed as pl, the environment variable PL must be set to the name of the SWI-Prolog
executable. Installation is now accomplished using:

% ./configure
% make
% make install

This installs the foreign libraries in $PLBASE/lib/$PLARCH and the Prolog library files in
$PLBASE/library, where $PLBASE refers to the SWI-Prolog ‘home-directory’.

11

