
SWI-Prolog SSL Interface

Jan van der Steen
Diff Automatisering v.o.f

Jan Wielemaker
SWI, University of Amsterdam

The Netherlands
E-mail: jan@swi-prolog.org

April 18, 2010

Abstract

This document describes the SWI-Prolog SSL library, a set of predicates which provides se-
cure sockets to Prolog applications, for example to run a secure HTTPS server, or access websites
using the https protocol. It can also be used to provide authentication and secure data exchange
between Prolog processes over the network.

1

Contents

1 Introduction 3

2 About SSL 3

3 Overview of the Prolog API 3

4 Backward compatibility 5

5 Using SSL to provide HTTPS 5

6 Example code 5

7 Installation 6

8 Acknowledgments 6

2

1 Introduction

Raw TCP/IP networking is dangerous for two reasons. It is hard to tell whether the body you think
you are talking to is indeed the right one and anyone with access to a subnet through which your data
flows can ‘tap’ the wire and listen for sensitive information such as passwords, creditcard numbers,
etc. Secure Socket Layer (SSL) deals with both problems. It uses certificates to establish the identity
of the peer and encryption to make it useless to tap into the wire. SSL allows agents to talk in private
and create secure web services.

The SWI-Prolog ssl library provides an API very similar to socket for raw TCP/IP connections
that provides SSL server and client sockets.

2 About SSL

The SWI-Prolog SSL interface is built on top of the OpenSSL library. This li-
brary is commonly provided as a standard package in many Linux distribu-
tions. The MS-Windows version is built using a binary distribution available from
http://www.slproweb.com/products/Win32OpenSSL.html.

A good introduction on key- and certificate handling for OpenSSL can be found at
http://www.tldp.org/HOWTO/SSL-Certificates-HOWTO/

3 Overview of the Prolog API

An SSL server and client can be built with the following (abstracted) predicate calls:

SSL server SSL client
ssl context/3 ssl context/3
tcp socket/1 tcp socket/1
tcp accept/3 tcp connect/2
tcp open socket/3 tcp open socket/3
ssl negotiatate/5 ssl negotiate/5
.
ssl exit/1 ssl exit/1

The library is abstracted to communication over streams, and is not reliant on those streams being
directly attached to sockets. The tcp . . . calls here are simply the most common way to use the library.
In UNIX, pipes could just as easily be used, for example.

What follows is a description of each of these functions and the arguments they accept.

ssl context(+Role, +Options, -SSL)
Role with legal values server or client denotes whether the SSL instance will have a
server or client role in the established connection. With Options various properties of the SSL
session can be defined, some of which required, some optional. An overview is given below.
The handle of the connection is returned in SSL.

Below is an overview of the Options argument. Some options are only required by the client
(C), some are required by the server (marked S), some by both server as client (marked CS).

3

host(+HostName)
[C] The host to connect to by the client or identified by the server. Both IP addresses and
hostnames can be supplied here. This option is required for the client and optionally for
the server.

port(+Integer)
[CS] The port to connect or listen to. This option is required since no default port can
sensibly be defined for an abstract layer. The webserver https protocol uses port 443.

certificate file(+FileName)
[S] Specify where the certificate file can be found. This can be the same as the key file
(see next option).

key file(+FileName)
[S] Specify where the private key can be found. This can be the same as the certificate
file.

password(+Text)
Specify the password the private key is protected with (if any). If you do not want to store
the password you can also specify an application defined handler to return the password
(see next option).

pem password hook(:PredicateName)
In case a password is required to access the private key the supplied function will be called
to fetch it. The function has the following prototype: function(+SSL, -Password)

cacert file(+FileName)
Specify a file containing certificate keys which will thus automatically be verified as
trusted. You can also install an application defined handler to verify certificates (see next
option).

cert verify hook(:PredicateName)
In case a certificate cannot be verified or has some properties which makes it invalid
(invalid validity date for example) the supplied function will be called to ask its opinion
about the certificate. The predicate is called as follows: function(+SSL, +Certificate,
+Error). Access will be granted iff the predicate succeeds.

cert(+Boolean)
Trigger the sending of our certificate as specified using the option certificate file
described earlier. For a server this option is automatically turned on.

peer cert(+Boolean)
Trigger the request of our peer’s certificate while establishing the SSL layer. This option
is automatically turned on in a client SSL socket.

ssl negotiate(+SSL, +PlainRead, +PlainWrite, -SSLRead, -SSLWrite)
Once a connection is established and a read/write stream pair is available, (PlainRead and
PlainWrite), this predicate can be called to negotiate an SSL session over the streams. If the
negotiation is successful, SSLRead and SSLWrite are returned.

ssl exit(+SSL)
Clean up all resources related to the SSLinstance.

4

4 Backward compatibility

There are some predicates included to provide an API similar to the one exposed by a previous version
of the library.

ssl init(-SSL, +Role, +Options)
Analogous to ssl context/3.

ssl accept(+SSL, -Socket, -Peer)
Blocks until a connection is made to the host on the port specified by the SSL object. Socket
and Peer are then returned.

ssl open/3(+SSL, -Read, -Write)
(Client) Connect to the host and port specified by the SSL object, negotiate an SSL connection
and return Read and Write streams if successful

ssl open/4(+SSL, +Socket -Read, -Write)
(Server) Given the Socket returned from

ssl accept/3(n)
egotiate the connection on the accepted socket and return Read and Write streams if successful.

5 Using SSL to provide HTTPS

This packages installs the library http/http ssl plugin.pl alongside the http package. This
library is a plugin for http/thread httpd.pl that makes the threaded HTTP server support
HTTPS, which is simply HTTP over an SSL socket. The HTTP server is started in HTTPS mode by
adding an option ssl to http server/2. The argument of the ssl option is an option list passed
to ssl init/3. Here is an example that uses the demo certificates distributed with the SSL package.

https_server(Port, Options) :-
http_server(reply,

[port(Port),
timeout(60),
ssl([host(’localhost’),

cacert_file(’etc/demoCA/cacert.pem’),
certificate_file(’etc/server/server-cert.pem’),
key_file(’etc/server/server-key.pem’),
password(’apenoot1’)

])
| Options
]).

6 Example code

Examples of a simple server and client (server.pl and client.pl as well as a simple HTTPS
server (https.pl) can be found in the example directory which is located in doc/packages/

5

examples/ssl relative to the SWI-Prolog installation directory. The etc directory contains ex-
ample certificate files as well as a README on the creation of certificates using OpenSSL tools.

7 Installation

The OpenSSL libraries are not part of the SWI-Prolog distribution and on systems using pack-
agers with dependency checking, dependency on OpenSSL is deliberatly avoided. This implies that
OpenSSL must be installed seperatly before using SSL with a binary distribution of SWI-Prolog. Most
modern Linux distributions have an SSL package. An installer for MS-Windows is available from
http://www.slproweb.com/products/Win32OpenSSL.html The SWI-Prolog SSL in-
terface is currently built using OpenSSL 0.97b.

When installing from the source, the package configuration automatically builds the ssl library
if a suitable OpenSSL implementation is found. On Windows systems, OpenSSL must be installed
prior to building SWI-Prolog and rules.mk must be edited to reflect the position of the header and
libraries if they are not in the standard search path.

8 Acknowledgments

The development of the SWI-Prolog SSL interface has been sponsored by Scientific Software and
Systems Limited.

References

6

Index
http/http ssl plugin.pl library, 5
http/thread httpd.pl library, 5
http server/2, 5

socket library, 3
ssl library, 3
ssl accept/3, 5
ssl accept/3/, 5
ssl context/3, 3, 5
ssl exit/1, 3, 4
ssl init/3, 5
ssl negotiatate/5, 3
ssl negotiate/5, 3, 4
ssl open/3/3, 5
ssl open/4/3, 5

tcp accept/3, 3
tcp connect/2, 3
tcp open socket/3, 3
tcp socket/1, 3

7

	Introduction
	About SSL
	Overview of the Prolog API
	Backward compatibility
	Using SSL to provide HTTPS
	Example code
	Installation
	Acknowledgments

