
Managing external tables for SWI-Prolog

Jan Wielemaker
Human Computer Studies (HCS),

University of Amsterdam
The Netherlands

E-mail: J.Wielemaker@uva.nl

February 2, 2009

Abstract

This document describes a foreign language extension to SWI-Prolog for the manip-
ulation of ‘external tables’. External tables are files using a textual representation of
records separated into fields. The package allows for a flexible definition of the format of
the file in terms of records and fields, how the information in the file should be mapped
onto Prolog data types and what properties the file has to improve the performance of
lookup.

The table package has been used successfully to deal with large static databases such
as dictionaries. Compared to loading the tables into the Prolog database, this approach
required much less memory and loads much faster while providing reasonable lookup-
performance on sorted tables.

This package uses read-only ‘mapping’ of the database file into memory and is ported
to Win32 (Windows 95 and NT) as well as Unix systems providing the mmap() system
call (Solaris, SunOs, Linux and many more modern Unices).

Contents

1

1 Introduction

Prolog programs sometimes need access to large sets of background data. For example in
the grasp project we need access to ontologies of art objects, a large lexicon and translation
dictionaries. Storage of such information as Prolog clauses is not sufficiently efficient in terms
of the memory requirements.

The table package outlined in this document allows for easy access of large structured
files. The package uses binary search if possible and linear search for queries that cannot use
more efficient algorithms without building additional index tables. Caching is achieved using
the file-to-memory maps supported by many modern operating systems.

The following sections define the interface predicates for the package. Section ?? provides
an example to access the Unix password file.

2 Managing external tables

2.1 Creating and destroying tables

This section describes the predicates required for creating and destroying the access to external
database tables.

new table(+File, +Columns, +Options, -Handle)
Create a description of a new table, stored in File. Columns is a list of descriptions for
each column. A column description is of the form

ColumnName(Type [, ColumnOptions])

Type denotes the Prolog type to which the field should be converted and is one of:

integer Convert to a Prolog integer. The input is
treated as a decimal number.

hexadecimal Convert to a Prolog integer. The input is
treated as a hex number.

float Convert to a Prolog floating point number.
The input is handled by the C-library function
strtod().

atom Convert to a Prolog atom.
string Convert to a SWI-Prolog string object.
code list Convert to a list of ascii codes.

ColumnOptions is a list of additional properties of the column. Supported values are:

2

sorted The field is strictly sorted, but may have (ad-
jacent) duplicate entries. If the field is tex-
tual, it should be sorted alphabetically, oth-
erwise it should be sorted numerically.

sorted(+Table) The (textual) field is sorted using the ordering
declared by the named ordering table. This
option may be used to define reverse order,
‘dictionary’ order or other irregular alphabet-
ical ordering. See new order table/2.

unique This column has distinct values for each row
in the table.

downcase Map all uppercase in the field to lowercase
before converting to a Prolog atom, string or
code list.

map space to underscore Map spaces to underscores before converting
to a Prolog atom, string or code list.

syntax For numerical fields. If the field does not
contain a valid number, matching the value
fails. Reading the value returns the value as
an atom.

width(+Chars) Field has fixed width of the specified number
of characters. The column-separator is not
considered for this column.

arg(+Index) For read table record/4, unify the field
with the given argument of the record term.
Further fields will be assigned index+1,

skip Don’t convert this field to Prolog. The field
is simply skipped without checking for consis-
tency.

The Options argument is a list of global options for the table. Defined options are:

3

record separator(+Code) Character (ascii) value of the character sep-
arating two records. Default is the newline
(ascii 10).

field separator(+Code) Character (ascii) value of the character sepa-
rating two fields in a record. Default is the
space (ascii 32), which also has a special
meaning. Two fields separated by a space may
be separated by any non-empty sequence of
spaces and tab (ascii 9) characters. For all
other separators, a single character separates
the fields.

escape(+Code, +ListOfMap) Sometimes, a table defines escape sequences
to make it possible to use the separator-
characters in text-fields. This options pro-
vides a simple way to handle some standard
cases. Code is the ascii code of the character
that leads the escape sequence. The default
is -1, and thus never matched. ListOfMap is
a list of From = To character mappings. The
default map table is the identity map, unless
Code refers to the \ character, in which case
\b, \e, \n, \r and \t have their usual mean-
ing.

functor(+Head) Functor used by read table record/4. De-
fault is record using the maximal argument
index of the fields as arity.

If the options are parsed successfully, Handle is unified with a term that may be used
as a handle to the table for future operations on it. Note that new table/4 does not
access the file system, so its success only indicates the description could be parsed, not
the presence, access or format of the file.

open table(+Handle)
Open the table. This predicate normally does not need to be called explicitely, as all
operations on the table handle will automatically open the table if this is required. It
fails if the file cannot be accessed or some other error with the required operating-system
resources occurs. The contents of the file is not examined by this predicate.

close table(+Handle)
Close the file and other system resources, but do not remove the description of the table,
so it can be re-opened later.

free table(+Handle)
Close and remove the handle. After this operation, Handle becomes invalid and further
references to it causes undefined behaviour.

2.2 Accessing a table

This section describes the predicates to read data from a table.

4

2.2.1 Finding record locations in a table

Records are addressed by their offset in the table (file). As records have generally non-fixed
length, searching is often required. The predicates below allow for finding records in the file.

get table attribute(+Handle, +Attribute, -Value)
Fetch attributes of the table. Defined attributes:
file Unify value with the name of the file with

which the table is associated.
field(N) Unify value with declaration of n-th (1-based)

field.
field separator Unify value with the field separator character.
record separator Unify value with the record separator charac-

ter.
key field Unify value with the 1-based index of the field

that is sorted or fails if the table contains no
sorted fields.

field count Unify value with the total number of columns
in the table.

size Unify value with the number of characters in
the table-file, not the number of records.

window Unify value with a term Start - Size, indicat-
ing the properties of the current window.

table window(+Handle, +Start, +Size)
If only part of the file represents the table, this call may be used to define a window on
the file. Start defines the start of the window relative to the start of the file. Size is the
size in characters. Skipping a header is one of the possible purposes for this call.

table start of record(+Handle, +From, +To, -Start)
Enumerates (on backtracking) the start of records in the table in the region [From, To).
Together with read table record/4, this may be used to read the table’s data.

table previous record(+Handle, +Here, -Previous)
If Here is the start of a record, find the start of the record before it. If Here points at
an arbitrary location in a record, the start of this record will be returned.

2.2.2 Reading records

There are two predicates for reading records. The read table record/4 reads an entire
record, while read table fields/4 reads one or more fields from a record.

read table record(+Handle, +Start, -Next, -Record)
Read a record from the table. Handle is a handle as returned by new table/4. Start is
the location of a record. If Start does not point to the start of a record, this predicate
searches backwards for the starting position. Record is unified with a term constructed
from the functor associated with the table (default name record and arity the number
of not-skipped columns), each of the arguments containing the converted data. An error
is raised if the data could not be converted. Next is unified with the start position for
the next record.

5

read table fields(+Handle, +Start, -Next, -Fields)
As read table record/4, but Fields is a list of terms +Name(-Value), and the Values
will be unified with the values of the specified field.

read table record data(+Handle, +Start, -Next, -Record)
Similar to read table record/4, but unifies record with a Prolog string containing the
data of the record unparsed. The returned record does not contain the terminating
record-separator.

2.2.3 Searching the table

in table(+Handle, ?Fields, -RecordPos)
Searches the table for records matching Fields. If a match is found, the variable (see
below) fields in Fields are unified with the corresponding field value, and RecordPos is
unified with the position of the record. The latter handle may be used in a subsequent
call to read table record/4 or read table fields/4.

Fields is a list of field specifiers. Each specifier is of the format:

FieldName(Value [, Options])

Options is a list of options to specify the search. By default, the package will search for
an exact match, possibly using the ordering table associated with the field (see order
option in new table/4). Options are:

prefix Uses prefix search with the default table.
prefix(Table) Uses prefix search with the specified ordering

table.
substring Searches for a substring in the field. This re-

quires linear search of the table.
substring(Table) Searches for a substring, using the table in-

formation for determining the equivalence of
characters.

= Default equivalence.
=(Table) Equivalence using the given table.

If Value is unbound (i.e. a variable), the record is considered not specified. The possible
option list is ignored. If a match is found on the remaining fields, the variable is unified
with the value found in the field.

First, the system checks whether there is an ordered field that is specified. In this case,
binary search is employed to find the matching record(s). Otherwise, linear search is
used.

If the match contains a specified field that has the property unique set (see new table/4),
in table/3 succeeds deterministically. Otherwise it will create a backtrack-point and
backtracking will yield further solutions to the query.

in table/3 may be comfortable used to bind the table transparently to a predicate.
For example, we have a file with lines of the format.1

1This is the disproot.dat table from the aat database used in grasp

6

C1C2,Full Name

C1C2 is a two-character identifier used in the other tables, and FullName is the descrip-
tion of the identifier. We want to have a predicate identifier name(?Id, ?FullName) to
reflect this table. The code below does the trick:

:- dynamic stored_idtable_handle/1.

idtable(Handle) :-
stored_idtable_handle(Handle).

idtable(Handle) :-
new_table(’disproot.dat’,

[id(atom, [downcase, sorted, unique]),
name(atom)

],
[field_separator(0’,)
], Handle),

assert(stored_idtable_handle(Handle)).

identifier_name(Id, Name) :-
idtable(Handle),
in_table(Handle, [id(Id), name(Name)], _).

2.2.4 Miscellaneous

table version(-Version, -CompileDate)
Unify Version with an atom identifying the version of this package, and CompileDate
with the date this package was compiled.

3 Flexible ordering and equivalence based on character table

This package was developed as part of the grasp project, where it is used for browsing lexical
and ontology information, which is normally stored using ‘dictionary’ order, rather than the
more conventional alphabetical ordering based on character codes. To achieve programmable
ordering, the table package defines ‘order tables’. An order table is a table with the cardinality
of the size of the character set (256 for extended ascii), and maps each character onto its
‘order number’, and some characters onto special codes.

The default (exact) table matches all character codes onto themselves. The default
case insensitive table matches all uppercase characters onto their corresponding lowercase
character. The tables iso latin 1 and iso latin 1 case insensitive map the ISO-latin-1
letters with diacritics into their plain counterpart.

To support dictionary ordering, the following special categories are defined:

7

ignore Characters of the ignore set are simple dis-
carded from the input.

break Characters from the break set are treated as
word-breaks, and each non-empty sequence of
them is considered equal. A word break pre-
cedes a normal character.

tag Characters of type tag indicate the start of a
‘tag’ that should not be considered in order-
ing, unless both strings are the same upto the
tag.

The following predicates are defined to manage and use these tables:

new order table(+Name, +Options)
Create a new, or replace the order-table with the given name (an atom). Options is a
list of options:

case insensitive Map all upper- to lowercase characters.
iso latin 1 Start with an ISO-Latin-1 table
iso latin 1 case insensitive Start with a case-insensitive ISO-Latin-1 table
copy(+Table) Copy all entries from Table.
tag(+ListOfCodes) Add these characters to the set of ‘tag’ char-

acters.
ignore(+ListOfCodes) Add these characters to the set of ‘ignore’

characters.
break(+ListOfCodes) Add these characters to the set of ‘break’ char-

acters.
+Code1 = +Code2 Map Code1 onto Code2.

order table mapping(+Table, ?From, ?To)
Read the current mapping. To is a character code or one of the atoms break, ignore
or tag.

compare strings(+Table, +S1, +S2, -Result)
Compare two strings using the named Table. S1 and S2 may be atoms, strings or code-
lists. Result is one of the atoms <, = or >.

prefix string(+Table, +Prefix, +String)
Succeeds if Prefix is a prefix of String using the named Table.

prefix string(+Table, +Prefix, -Rest, +String)
Succeeds if Prefix is a prefix of String using the named Table, and Rest is unified with
the remainder of String that is not matched. Please note that the existence of an order-
table implies simple contatenation using atom concat/3 cannot be used to determine
the non-matched part of the string.

sub string(+Table, +Sub, +String)
Succeeds if Sub is a substring of String using the named Table.

8

4 Example: accessing the Unix passwd file

The Unix passwd file is a file with records spanning a single line each. The fields are separated
by a single ‘:’ character. Here is an example of a line:

joe:hgdu3r3bce:53:100:Joe Johnson:/users/joe:/bin/bash

The following call defines a table for it:

?- new_table(’/etc/passwd’,
[user(atom),
passwd(code_list),
uid(integer),
gid(integer),
gecos(code_list),
homedir(atom),
shell(atom)

],
[field_separator(0’:)
],
H).

To find all people of group 100, use:

?- findall(User, in_table(H, [user(User), gid(100)], _), Users).

9

