Did you know ...
Search Documentation:

Prolog realizes *high-order* programming with meta-calling. The core
predicate of this is call/1, which simply calls its argument. This can
be used to define higher-order predicates such as ignore/1 or forall/2.
The call/N construct calls a *closure* with N-1 *additional arguments*.
This is used to define higher-order predicates such as the maplist/N
family or foldl/N.

The problem with higher order predicates based on call/N is that the
additional arguments are always added to the end of the closure's
argument list. This often requires defining trivial helper predicates to
get the argument order right. For example, if you want to add a common
postfix to a list of atoms you need to apply
`atom_concat(In,Postfix,Out)`

, but `maplist(x(PostFix),ListIn,ListOut)`

calls `x(PostFix,In,Out)`

. This is where this library comes in, which
allows us to write

?- maplist([In,Out]>>atom_concat(In,'_p',Out), [a,b], ListOut). ListOut = [a_p, b_p].

The `{...}`

specifies which variables are *shared* between the lambda
and the context. This allows us to write the code below. Without the
`{PostFix}`

a free variable would be passed to atom_concat/3.

add_postfix(PostFix, ListIn, ListOut) :- maplist({PostFix}/[In,Out]>>atom_concat(In,PostFix,Out), ListIn, ListOut).

This introduces the second application area of lambda expressions: the
ability to stop binding variables in the context. This features shines
when combined with bagof/3 or setof/3 where you normally have to specify
the the variables in whose binding you are *not* interested using the
`Var^Goal`

construct (marking `Var` as existential quantified). Lambdas
allow doing the reverse: specify the variables in which you are
interested.

Lambda expressions use the syntax below

{...}/[...]>>Goal.

The `{...}`

optional part is used for lambda-free variables. The order
of variables doesn't matter hence the `{...}`

set notation.

The `[...]`

optional part lists lambda parameters. Here order of
variables matters hence the list notation.

As `/`

and `>>`

are standard infix operators, no new operators are added
by this library. An advantage of this syntax is that we can simply
unify a lambda expression with Free/Parameters>>Lambda to access each of
its components. Spaces in the lambda expression are not a problem
although the goal may need to be written between ()'s. Goals that are
qualified by a module prefix also need to be wrapped inside parentheses.

Combined with library(apply_macros), library(yall) allows writing one-liners for many list operations that have the same performance as hand written code.

The module name, *yall*, stands for Yet Another Lambda Library.

This module implements Logtalk's lambda expressions syntax. The development of this module was sponsored by Kyndi, Inc.

`+Parameters`**>>**`+Lambda`**>>**`(+Parameters, +Lambda, ?A1)`**>>**`(+Parameters, +Lambda, ?A1, ?A2)`**>>**`(+Parameters, +Lambda, ?A1, ?A2, ?A3)`**>>**`(+Parameters, +Lambda, ?A1, ?A2, ?A3, ?A4)`**>>**`(+Parameters, +Lambda, ?A1, ?A2, ?A3, ?A4, ?A5)`**>>**`(+Parameters, +Lambda, ?A1, ?A2, ?A3, ?A4, ?A5, ?A6)`**>>**`(+Parameters, +Lambda, ?A1, ?A2, ?A3, ?A4, ?A5, ?A6, ?A7)`- Calls a copy of
`Lambda`. This is similar to`call(Lambda,A1,...)`

, but arguments are reordered according to the list`Parameters`:- The first
`length(Parameters)`

arguments from`A1`, ... are unified with (a copy of)`Parameters`, which*may*share them with variables in`Lambda`. - Possible excess arguments are passed by position.

- The first
`+Free`**/**`:Lambda`**/**`(+Free, :Lambda, ?A1)`**/**`(+Free, :Lambda, ?A1, ?A2)`**/**`(+Free, :Lambda, ?A1, ?A2, ?A3)`**/**`(+Free, :Lambda, ?A1, ?A2, ?A3, ?A4)`**/**`(+Free, :Lambda, ?A1, ?A2, ?A3, ?A4, ?A5)`**/**`(+Free, :Lambda, ?A1, ?A2, ?A3, ?A4, ?A5, ?A6)`**/**`(+Free, :Lambda, ?A1, ?A2, ?A3, ?A4, ?A5, ?A6, ?A7)`- Shorthand for
`Free/[]>>Lambda`

. This is the same as applying call/N on`Lambda`, except that only variables appearing in`Free`are bound by the call. For examplep(1,a). p(2,b). ?- {X}/p(X,Y). X = 1; X = 2.

This can in particularly be combined with bagof/3 and setof/3 to

*select*particular variables to be concerned rather than using existential quantification (^/2) to*exclude*variables. For example, the two calls below are equivalent.setof(X, Y^p(X,Y), Xs) setof(X, {X}/p(X,_), Xs)

**is_lambda**`(@Term)`is**semidet**- True if
`Term`is a valid Lambda expression. **lambda_calls**`(+LambdaExpression, -Goal)`is**det****lambda_calls**`(+LambdaExpression, +ExtraArgs, -Goal)`is**det**`Goal`is the goal called if call/N is applied to`LambdaExpression`, where`ExtraArgs`are the additional arguments to call/N.`ExtraArgs`can be an integer or a list of concrete arguments. This predicate is used for cross-referencing and code highlighting.`+Parameters`**>>**`+Lambda`**>>**`(+Parameters, +Lambda, ?A1)`**>>**`(+Parameters, +Lambda, ?A1, ?A2)`**>>**`(+Parameters, +Lambda, ?A1, ?A2, ?A3)`**>>**`(+Parameters, +Lambda, ?A1, ?A2, ?A3, ?A4)`**>>**`(+Parameters, +Lambda, ?A1, ?A2, ?A3, ?A4, ?A5)`**>>**`(+Parameters, +Lambda, ?A1, ?A2, ?A3, ?A4, ?A5, ?A6)`**>>**`(+Parameters, +Lambda, ?A1, ?A2, ?A3, ?A4, ?A5, ?A6, ?A7)`- Calls a copy of
`Lambda`. This is similar to`call(Lambda,A1,...)`

, but arguments are reordered according to the list`Parameters`:- The first
`length(Parameters)`

arguments from`A1`, ... are unified with (a copy of)`Parameters`, which*may*share them with variables in`Lambda`. - Possible excess arguments are passed by position.

- The first
`+Parameters`**>>**`+Lambda`**>>**`(+Parameters, +Lambda, ?A1)`**>>**`(+Parameters, +Lambda, ?A1, ?A2)`**>>**`(+Parameters, +Lambda, ?A1, ?A2, ?A3)`**>>**`(+Parameters, +Lambda, ?A1, ?A2, ?A3, ?A4)`**>>**`(+Parameters, +Lambda, ?A1, ?A2, ?A3, ?A4, ?A5)`**>>**`(+Parameters, +Lambda, ?A1, ?A2, ?A3, ?A4, ?A5, ?A6)`**>>**`(+Parameters, +Lambda, ?A1, ?A2, ?A3, ?A4, ?A5, ?A6, ?A7)`- Calls a copy of
`Lambda`. This is similar to`call(Lambda,A1,...)`

, but arguments are reordered according to the list`Parameters`:- The first
`length(Parameters)`

arguments from`A1`, ... are unified with (a copy of)`Parameters`, which*may*share them with variables in`Lambda`. - Possible excess arguments are passed by position.

- The first
`+Parameters`**>>**`+Lambda`**>>**`(+Parameters, +Lambda, ?A1)`**>>**`(+Parameters, +Lambda, ?A1, ?A2)`**>>**`(+Parameters, +Lambda, ?A1, ?A2, ?A3)`**>>**`(+Parameters, +Lambda, ?A1, ?A2, ?A3, ?A4)`**>>**`(+Parameters, +Lambda, ?A1, ?A2, ?A3, ?A4, ?A5)`**>>**`(+Parameters, +Lambda, ?A1, ?A2, ?A3, ?A4, ?A5, ?A6)`**>>**`(+Parameters, +Lambda, ?A1, ?A2, ?A3, ?A4, ?A5, ?A6, ?A7)`- Calls a copy of
`Lambda`. This is similar to`call(Lambda,A1,...)`

, but arguments are reordered according to the list`Parameters`:- The first
`length(Parameters)`

arguments from`A1`, ... are unified with (a copy of)`Parameters`, which*may*share them with variables in`Lambda`. - Possible excess arguments are passed by position.

- The first
`+Parameters`**>>**`+Lambda`**>>**`(+Parameters, +Lambda, ?A1)`**>>**`(+Parameters, +Lambda, ?A1, ?A2)`**>>**`(+Parameters, +Lambda, ?A1, ?A2, ?A3)`**>>**`(+Parameters, +Lambda, ?A1, ?A2, ?A3, ?A4)`**>>**`(+Parameters, +Lambda, ?A1, ?A2, ?A3, ?A4, ?A5)`**>>**`(+Parameters, +Lambda, ?A1, ?A2, ?A3, ?A4, ?A5, ?A6)`**>>**`(+Parameters, +Lambda, ?A1, ?A2, ?A3, ?A4, ?A5, ?A6, ?A7)`- Calls a copy of
`Lambda`. This is similar to`call(Lambda,A1,...)`

, but arguments are reordered according to the list`Parameters`:- The first
`length(Parameters)`

arguments from`A1`, ... are unified with (a copy of)`Parameters`, which*may*share them with variables in`Lambda`. - Possible excess arguments are passed by position.

- The first
`+Parameters`**>>**`+Lambda`**>>**`(+Parameters, +Lambda, ?A1)`**>>**`(+Parameters, +Lambda, ?A1, ?A2)`**>>**`(+Parameters, +Lambda, ?A1, ?A2, ?A3)`**>>**`(+Parameters, +Lambda, ?A1, ?A2, ?A3, ?A4)`**>>**`(+Parameters, +Lambda, ?A1, ?A2, ?A3, ?A4, ?A5)`**>>**`(+Parameters, +Lambda, ?A1, ?A2, ?A3, ?A4, ?A5, ?A6)`**>>**`(+Parameters, +Lambda, ?A1, ?A2, ?A3, ?A4, ?A5, ?A6, ?A7)`- Calls a copy of
`Lambda`. This is similar to`call(Lambda,A1,...)`

, but arguments are reordered according to the list`Parameters`:- The first
`length(Parameters)`

arguments from`A1`, ... are unified with (a copy of)`Parameters`, which*may*share them with variables in`Lambda`. - Possible excess arguments are passed by position.

- The first
`+Parameters`**>>**`+Lambda`**>>**`(+Parameters, +Lambda, ?A1)`**>>**`(+Parameters, +Lambda, ?A1, ?A2)`**>>**`(+Parameters, +Lambda, ?A1, ?A2, ?A3)`**>>**`(+Parameters, +Lambda, ?A1, ?A2, ?A3, ?A4)`**>>**`(+Parameters, +Lambda, ?A1, ?A2, ?A3, ?A4, ?A5)`**>>**`(+Parameters, +Lambda, ?A1, ?A2, ?A3, ?A4, ?A5, ?A6)`**>>**`(+Parameters, +Lambda, ?A1, ?A2, ?A3, ?A4, ?A5, ?A6, ?A7)`- Calls a copy of
`Lambda`. This is similar to`call(Lambda,A1,...)`

, but arguments are reordered according to the list`Parameters`:- The first
`length(Parameters)`

arguments from`A1`, ... are unified with (a copy of)`Parameters`, which*may*share them with variables in`Lambda`. - Possible excess arguments are passed by position.

- The first
`+Parameters`**>>**`+Lambda`**>>**`(+Parameters, +Lambda, ?A1)`**>>**`(+Parameters, +Lambda, ?A1, ?A2)`**>>**`(+Parameters, +Lambda, ?A1, ?A2, ?A3)`**>>**`(+Parameters, +Lambda, ?A1, ?A2, ?A3, ?A4)`**>>**`(+Parameters, +Lambda, ?A1, ?A2, ?A3, ?A4, ?A5)`**>>**`(+Parameters, +Lambda, ?A1, ?A2, ?A3, ?A4, ?A5, ?A6)`**>>**`(+Parameters, +Lambda, ?A1, ?A2, ?A3, ?A4, ?A5, ?A6, ?A7)`- Calls a copy of
`Lambda`. This is similar to`call(Lambda,A1,...)`

, but arguments are reordered according to the list`Parameters`:- The first
`length(Parameters)`

arguments from`A1`, ... are unified with (a copy of)`Parameters`, which*may*share them with variables in`Lambda`. - Possible excess arguments are passed by position.

- The first
`+Free`**/**`:Lambda`**/**`(+Free, :Lambda, ?A1)`**/**`(+Free, :Lambda, ?A1, ?A2)`**/**`(+Free, :Lambda, ?A1, ?A2, ?A3)`**/**`(+Free, :Lambda, ?A1, ?A2, ?A3, ?A4)`**/**`(+Free, :Lambda, ?A1, ?A2, ?A3, ?A4, ?A5)`**/**`(+Free, :Lambda, ?A1, ?A2, ?A3, ?A4, ?A5, ?A6)`**/**`(+Free, :Lambda, ?A1, ?A2, ?A3, ?A4, ?A5, ?A6, ?A7)`- Shorthand for
`Free/[]>>Lambda`

. This is the same as applying call/N on`Lambda`, except that only variables appearing in`Free`are bound by the call. For examplep(1,a). p(2,b). ?- {X}/p(X,Y). X = 1; X = 2.

This can in particularly be combined with bagof/3 and setof/3 to

*select*particular variables to be concerned rather than using existential quantification (^/2) to*exclude*variables. For example, the two calls below are equivalent.setof(X, Y^p(X,Y), Xs) setof(X, {X}/p(X,_), Xs)

`+Free`**/**`:Lambda`**/**`(+Free, :Lambda, ?A1)`**/**`(+Free, :Lambda, ?A1, ?A2)`**/**`(+Free, :Lambda, ?A1, ?A2, ?A3)`**/**`(+Free, :Lambda, ?A1, ?A2, ?A3, ?A4)`**/**`(+Free, :Lambda, ?A1, ?A2, ?A3, ?A4, ?A5)`**/**`(+Free, :Lambda, ?A1, ?A2, ?A3, ?A4, ?A5, ?A6)`**/**`(+Free, :Lambda, ?A1, ?A2, ?A3, ?A4, ?A5, ?A6, ?A7)`- Shorthand for
`Free/[]>>Lambda`

. This is the same as applying call/N on`Lambda`, except that only variables appearing in`Free`are bound by the call. For examplep(1,a). p(2,b). ?- {X}/p(X,Y). X = 1; X = 2.

This can in particularly be combined with bagof/3 and setof/3 to

*select*particular variables to be concerned rather than using existential quantification (^/2) to*exclude*variables. For example, the two calls below are equivalent.setof(X, Y^p(X,Y), Xs) setof(X, {X}/p(X,_), Xs)

`+Free`**/**`:Lambda`**/**`(+Free, :Lambda, ?A1)`**/**`(+Free, :Lambda, ?A1, ?A2)`**/**`(+Free, :Lambda, ?A1, ?A2, ?A3)`**/**`(+Free, :Lambda, ?A1, ?A2, ?A3, ?A4)`**/**`(+Free, :Lambda, ?A1, ?A2, ?A3, ?A4, ?A5)`**/**`(+Free, :Lambda, ?A1, ?A2, ?A3, ?A4, ?A5, ?A6)`**/**`(+Free, :Lambda, ?A1, ?A2, ?A3, ?A4, ?A5, ?A6, ?A7)`- Shorthand for
`Free/[]>>Lambda`

. This is the same as applying call/N on`Lambda`, except that only variables appearing in`Free`are bound by the call. For examplep(1,a). p(2,b). ?- {X}/p(X,Y). X = 1; X = 2.

*select*particular variables to be concerned rather than using existential quantification (^/2) to*exclude*variables. For example, the two calls below are equivalent.setof(X, Y^p(X,Y), Xs) setof(X, {X}/p(X,_), Xs)

`+Free`**/**`:Lambda`**/**`(+Free, :Lambda, ?A1)`**/**`(+Free, :Lambda, ?A1, ?A2)`**/**`(+Free, :Lambda, ?A1, ?A2, ?A3)`**/**`(+Free, :Lambda, ?A1, ?A2, ?A3, ?A4)`**/**`(+Free, :Lambda, ?A1, ?A2, ?A3, ?A4, ?A5)`**/**`(+Free, :Lambda, ?A1, ?A2, ?A3, ?A4, ?A5, ?A6)`**/**`(+Free, :Lambda, ?A1, ?A2, ?A3, ?A4, ?A5, ?A6, ?A7)`- Shorthand for
`Free/[]>>Lambda`

. This is the same as applying call/N on`Lambda`, except that only variables appearing in`Free`are bound by the call. For examplep(1,a). p(2,b). ?- {X}/p(X,Y). X = 1; X = 2.

*select*particular variables to be concerned rather than using existential quantification (^/2) to*exclude*variables. For example, the two calls below are equivalent.setof(X, Y^p(X,Y), Xs) setof(X, {X}/p(X,_), Xs)

`+Free`**/**`:Lambda`**/**`(+Free, :Lambda, ?A1)`**/**`(+Free, :Lambda, ?A1, ?A2)`**/**`(+Free, :Lambda, ?A1, ?A2, ?A3)`**/**`(+Free, :Lambda, ?A1, ?A2, ?A3, ?A4)`**/**`(+Free, :Lambda, ?A1, ?A2, ?A3, ?A4, ?A5)`**/**`(+Free, :Lambda, ?A1, ?A2, ?A3, ?A4, ?A5, ?A6)`**/**`(+Free, :Lambda, ?A1, ?A2, ?A3, ?A4, ?A5, ?A6, ?A7)`- Shorthand for
`Free/[]>>Lambda`

. This is the same as applying call/N on`Lambda`, except that only variables appearing in`Free`are bound by the call. For examplep(1,a). p(2,b). ?- {X}/p(X,Y). X = 1; X = 2.

*select*particular variables to be concerned rather than using existential quantification (^/2) to*exclude*variables. For example, the two calls below are equivalent.setof(X, Y^p(X,Y), Xs) setof(X, {X}/p(X,_), Xs)

`+Free`**/**`:Lambda`**/**`(+Free, :Lambda, ?A1)`**/**`(+Free, :Lambda, ?A1, ?A2)`**/**`(+Free, :Lambda, ?A1, ?A2, ?A3)`**/**`(+Free, :Lambda, ?A1, ?A2, ?A3, ?A4)`**/**`(+Free, :Lambda, ?A1, ?A2, ?A3, ?A4, ?A5)`**/**`(+Free, :Lambda, ?A1, ?A2, ?A3, ?A4, ?A5, ?A6)`**/**`(+Free, :Lambda, ?A1, ?A2, ?A3, ?A4, ?A5, ?A6, ?A7)`- Shorthand for
`Free/[]>>Lambda`

. This is the same as applying call/N on`Lambda`, except that only variables appearing in`Free`are bound by the call. For examplep(1,a). p(2,b). ?- {X}/p(X,Y). X = 1; X = 2.

*select*particular variables to be concerned rather than using existential quantification (^/2) to*exclude*variables. For example, the two calls below are equivalent.setof(X, Y^p(X,Y), Xs) setof(X, {X}/p(X,_), Xs)

`+Free`**/**`:Lambda`**/**`(+Free, :Lambda, ?A1)`**/**`(+Free, :Lambda, ?A1, ?A2)`**/**`(+Free, :Lambda, ?A1, ?A2, ?A3)`**/**`(+Free, :Lambda, ?A1, ?A2, ?A3, ?A4)`**/**`(+Free, :Lambda, ?A1, ?A2, ?A3, ?A4, ?A5)`**/**`(+Free, :Lambda, ?A1, ?A2, ?A3, ?A4, ?A5, ?A6)`**/**`(+Free, :Lambda, ?A1, ?A2, ?A3, ?A4, ?A5, ?A6, ?A7)`- Shorthand for
`Free/[]>>Lambda`

. This is the same as applying call/N on`Lambda`, except that only variables appearing in`Free`are bound by the call. For examplep(1,a). p(2,b). ?- {X}/p(X,Y). X = 1; X = 2.

*select*particular variables to be concerned rather than using existential quantification (^/2) to*exclude*variables. For example, the two calls below are equivalent.setof(X, Y^p(X,Y), Xs) setof(X, {X}/p(X,_), Xs)

**lambda_calls**`(+LambdaExpression, -Goal)`is**det****lambda_calls**`(+LambdaExpression, +ExtraArgs, -Goal)`is**det**`Goal`is the goal called if call/N is applied to`LambdaExpression`, where`ExtraArgs`are the additional arguments to call/N.`ExtraArgs`can be an integer or a list of concrete arguments. This predicate is used for cross-referencing and code highlighting.