Did you know ... Search Documentation:
oset.pl -- Ordered set manipulation
PublicShow source

This library defines set operations on sets represented as ordered lists.

- Jon Jagger
- Use the de-facto library ordsets.pl
Source oset_is(+OSet)
check that OSet in correct format (standard order)
Source oset_union(+OSet1, +OSet2, -Union)
Source oset_int(+OSet1, +OSet2, -Int)
ordered set intersection
Source oset_diff(+InOSet, +NotInOSet, -Diff)
ordered set difference
Source oset_dunion(+SetofSets, -DUnion)
distributed union
Source oset_dint(+SetofSets, -DInt)
distributed intersection
Source oset_power(+Set, -PSet)
True when PSet is the powerset of Set. That is, Pset is a set of all subsets of Set, where each subset is a proper ordered set.
Source oset_addel(+Set, +El, -Add)
ordered set element addition
Source oset_delel(+Set, +El, -Del)
ordered set element deletion