

Dept. of Social Science Informatics (SWI)
Roetersstraat 15, 1018 WB Amsterdam
The Netherlands
http://www.swi.psy.uva.nl

Programming in XPCE/Prolog

Jan Wielemaker wielemak@science.uva.nl
Anjo Anjewierden anjo@science.uva.nl

XPCE/Prolog is a hybrid environment integrating logic programming and object-oriented
programming for Graphical User Interfaces. Applications in XPCE/Prolog are fully compatible
across the supported X11 and Win32 (NT/2000/XP) platforms.

This document also applies to XPCE/Prolog 6.6.37 distributed as integrated
packages to SWI-Prolog. Sources and binaries may be downloaded from
http://www.swi-prolog.org

XPCE is distributed as Free Software with sufficient escapes to allow for producing non-free
applications. The kernel is distributed under the Lesser GNU Public License (LGPL) and the
Prolog sources under the GNU Public License (GPL) with explicit permission to generate
non-free executables.

Product information, documentation and additional resources specific to XPCE are available
from http://www.swi.psy.uva.nl/products/xpce/.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the (Lesser) GNU General Public License for more details.

Titlepage created using XPCE 4.8.10 on Windows-NT 4.0

Last updated February 2002 for XPCE version 6.6.37

Copyright c© 1992-2005 University of Amsterdam

Contents

1 Introduction 1
1.1 Organisation of the XPCE documentation . 1
1.2 Other sources of information . 2
1.3 Language interfaces . 2
1.4 Portability . 3

1.4.1 Unix/X-windows . 3
1.4.2 Win32 (Windows 95 and NT) . 3

1.5 Look-and-feel . 3
1.6 A brief history of (X)PCE . 4
1.7 About this manual . 4
1.8 Acknowledgements . 5

2 Getting started 7
2.1 Starting XPCE/Prolog . 7
2.2 Prolog ... and what? . 7

2.2.1 Creating objects: new . 8
2.2.2 Modifying object state: send . 8
2.2.3 Querying objects: get . 9
2.2.4 Removing objects: free . 10

2.3 Optional arguments . 10
2.4 Named arguments . 11
2.5 Argument conversion . 11
2.6 Send and get with more arguments . 12
2.7 Notation . 12
2.8 Example: show files in directory . 12
2.9 Summary . 15

3 Using the online manual 17
3.1 Overview . 17
3.2 Notational conventions . 18

3.2.1 Argument types . 19
3.3 Guided tour . 20

3.3.1 Class browser . 20
3.3.2 Reading cards . 23
3.3.3 Search tool . 24
3.3.4 Class hierarchy . 24

3.4 Summary . 26

4 Dialog (controller) windows 27
4.1 An example . 27

XPCE 6.6.37

ii Programming in XPCE/Prolog

4.2 Built-in dialog items . 28
4.3 Layout in dialog windows . 28

4.3.1 Practical usage and problems . 31
4.4 Modal dialogs: prompting for answers . 32

4.4.1 Example: a simple editor for multiple fonts 33
4.5 Editing attributes . 35

4.5.1 Example: editing attributes of a graphical 36

5 Simple graphics 39
5.1 Graphical building blocks . 39

5.1.1 Available primitive graphical objects 41
5.2 Compound graphicals . 41
5.3 Connecting graphical objects . 41
5.4 Constraints . 43
5.5 Activating graphicals using the mouse . 43
5.6 Summary . 44

6 XPCE and Prolog 45
6.1 XPCE is not Prolog! . 45
6.2 Dealing with Prolog data . 46

6.2.1 Life-time of Prolog terms in XPCE . 47

7 Defining classes 49
7.1 The class definition skeleton . 49

7.1.1 Definition of the template elements . 49
7.2 Accessing instance variables (slots) . 52
7.3 Refining and redefining methods . 54

7.3.1 General redefinitions . 55
7.3.2 Redefinition in graphical classes . 56

7.4 Handling default arguments . 59
7.5 Advanced topics . 59

7.5.1 More on type declarations . 59
7.5.2 Methods with variable number of arguments 60
7.5.3 Implementation notes . 62

8 Class Variables 65
8.1 Accessing Class Variables . 65
8.2 Class variable and instance variables . 65
8.3 The ‘Defaults’ file . 66
8.4 Class variables in User Defined Classes . 67

9 Program resources 69

10 Programming techniques 71
10.1 Control-structure of XPCE/Prolog applications 73

10.1.1 Event-driven applications . 73
10.1.2 XPCE and existing applications . 75

10.2 Executable objects . 77

XPCE 6.6.37

Contents iii

10.2.1 Procedures . 77
10.2.2 Functions . 78
10.2.3 Example 1: Finding objects . 80
10.2.4 Example 2: Internal behaviour of dialog window 80

10.3 Defining global named objects . 83
10.3.1 Using directives . 83
10.3.2 Inline testing . 83
10.3.3 The ‘pce global’ directive . 84
10.3.4 Global objects for recognisers . 84

10.4 Using object references: “Who’s Who?” . 87
10.4.1 Global named references . 87
10.4.2 Using the prolog database . 88
10.4.3 Using object-level attributes . 89
10.4.4 Using window and graphical behaviour 90
10.4.5 Using user defined classes . 90
10.4.6 Summary . 91

10.5 Relating frames . 93
10.5.1 Class application . 93
10.5.2 Transient frames . 93
10.5.3 Modal operation . 94

10.6 Window layout in a frame . 95
10.6.1 Windows sizes and automatic adjustment 96
10.6.2 Manipulating an open frame . 96

10.7 Informing the user . 99
10.7.1 Aim of the report mechanism . 99
10.7.2 The report interface . 99
10.7.3 Redefining report handling . 100
10.7.4 Example . 100

10.8 Errors . 103
10.8.1 Handling errors in the application . 103
10.8.2 Raising errors . 104
10.8.3 Repairable errors . 105

10.9 Specifying fonts . 107
10.9.1 Physical fonts . 107
10.9.2 Logical fonts . 108

10.10Using images and cursors . 111
10.10.1Colour handling . 111
10.10.2Supported Image Formats . 112

10.11Using hyper links to relate objects . 115
10.11.1Programming existence dependencies 115
10.11.2Methods for handling hyper objects . 117

10.12User defined graphicals . 119
10.12.1(Re)defining the repaint method . 119
10.12.2Example-I: a window with a grid . 120
10.12.3Example-II: a shape with text . 122

10.13Printing from XPCE applications . 125
10.13.1Options for document generation . 125

XPCE 6.6.37

iv Programming in XPCE/Prolog

11 Commonly used libraries 127
11.1 Library “find file” . 129
11.2 Showing help-balloons . 131
11.3 Dialog support libraries . 133

11.3.1 Reporting errors and warnings . 133
11.3.2 Toolbar support . 133
11.3.3 Example . 134

11.4 Library “pce toc”: displaying hierarchies . 137
11.5 Tabular layout . 141

11.5.1 Using format . 141
11.5.2 Using table using the “tabular” library 142

11.6 Plotting graphs and barcharts . 147
11.6.1 Painting axis . 147
11.6.2 Plotting graphs . 149
11.6.3 Drawing barcharts using “plot/barchart” 151

11.7 Multi-lingual applications . 157
11.8 Drag and drop interface . 161

11.8.1 Related methods . 162
11.9 Playing WEB (HTTP) server . 165

11.9.1 Class httpd . 168
11.10Document rendering primitives . 171

11.10.1The rendering library . 172
11.10.2Predefined objects . 173
11.10.3Class and method reference . 173
11.10.4Using the “doc/emit” library . 178

12 Development and debugging tools 181
12.1 Object-base consistency . 181
12.2 Tracing methods . 181
12.3 Breaking (spy) on methods . 182
12.4 Visual hierarchy tool . 182
12.5 Inspector tool . 182

A The dialog editor 187
A.1 Guided tour . 187

A.1.1 Creating the target dialog window . 187
A.1.2 Adding controls to the new window . 188
A.1.3 Defining the layout . 189
A.1.4 Specifying the behaviour . 189
A.1.5 Generating source code . 190
A.1.6 Linking the source code . 190
A.1.7 Summary . 193

A.2 Miscellaneous topics . 193
A.2.1 Specifying callback to prolog . 193
A.2.2 Advanced example of behaviour . 193
A.2.3 Specifying conditional actions . 196
A.2.4 Load and save formats . 196

XPCE 6.6.37

Contents v

A.3 Status and problems . 198
A.4 Summary and Conclusions . 198

B Notes on XPCE for MS-Windows 199
B.1 Currently unsupported features in the Win32 version 199
B.2 Interprocess communication, extensions and interaction 199
B.3 Accessing Windows Graphics Resources . 200
B.4 Accessing Windows Colours . 200
B.5 Accessing Windows Fonts . 200
B.6 Accessing Windows Cursors . 203

C XPCE/Prolog architecture 205
C.1 What is “Object-Oriented”? . 205
C.2 XPCE’s objects . 205

C.2.1 Classes . 206
C.3 Objects and integers . 206
C.4 Delegation . 206
C.5 Prolog . 208
C.6 Executable objects . 209
C.7 Summary . 209

D Interface predicate definition 211
D.1 Basic predicates . 211

D.1.1 Portable declaration of required library predicates 216
D.2 Additional interface libraries . 216

D.2.1 Library “pce util” . 216
D.2.2 Library “pce debug” . 218
D.2.3 Accessing the XPCE manual . 219

E Memory management 221
E.1 Lifetime of an object . 221
E.2 Practical considerations . 222
E.3 Memory usage of objects . 222

F Commonly encountered problems 225

G Glossary 227

H Class summary descriptions 231

XPCE 6.6.37

vi Programming in XPCE/Prolog

XPCE 6.6.37

Introduction 1
XPCE is an object-oriented library for building Graphical User Interfaces (GUI’s) for symbolic
or strongly typed languages. It provides high level GUI specification primitives and dynamic
modification of the program to allow for rapid development of interfaces. It integrates a graph-
ical tool for the specification of interfaces, in addition to powerful and uniform mechanisms to
facilitate automatic generation of GUI’s.

XPCE is not a programming language in the traditional sense. Language constructs and
objects of the system do not have a direct textual representation. The interface to the ‘host-
ing’ language defines what XPCE looks like from the programmers point of view. As a conse-
quence, the programmer will first of all experience XPCE as a library.

XPCE however, does provide all semantic elements that can be found in many object-
oriented programming languages: classes, objects, methods, instance-variables, inheri-
tance, statements, conditions, iteration, etc.

All the above primitives are represented by first-class objects that may be created, mod-
ified, inspected and destroyed. This allows the programmer to extend the XPCE object-
oriented system with new methods and classes from the host-language. In addition, proce-
dures can be expressed as objects and then given to XPCE for execution.

The interface between XPCE and its hosting language is small, which makes XPCE espe-
cially a good GUI candidate for special-purpose languages.

The main target language for XPCE is Prolog and this document concentrates on
XPCE/Prolog rather then XPCE/Lisp or XPCE/C++. XPCE/Prolog comes with a graphical
programming environment that allows for quick browsing of the source-code, provides de-
bugging tools and allows for the graphical construction of dialog boxes (graphical windows
with controllers). XPCE’s built-in editor is modelled after the standard (GNU-)Emacs editor
and can be programmed in XPCE/Prolog.

1.1 Organisation of the XPCE documentation

This document describes the basics of XPCE and its relation to Prolog. Besides the written
version, this document is also available as an HTML document from the URL below. The
second URL may be used to download the entire WWW tree for installation on a local host.

http://www.swi.psy.uva.nl/projects/xpce/UserGuide/
ftp://ftp.swi.psy.uva.nl/xpce/HTML/UserGuide.tgz

This document provides the background material needed to understand the other documen-
tation:

• The XPCE Reference Manual
[Wielemaker & Anjewierden, 1993] The reference manual is available by means of the

XPCE 6.6.37

2 CHAPTER 1. INTRODUCTION

Prolog predicate manpce/0. The reference manual provides detailed descriptions of
all classes, methods, etc. which may be accessed from various viewpoints. See also
chapter 3.

• PceDraw: An example of using XPCE

[Wielemaker, 1992] This document contains the annotated sources of the drawing tool
PceDraw. It illustrates the (graphical) functionality of XPCE and is useful as a source of
examples.

• XPCE/Prolog Course Notes
[Wielemaker, 1994] Course-notes, examples and exercises for programming
XPCE/Prolog. The course-notes have a large overlap in contents with this user guide,
but the material is more concise. If you are familiar with object-oriented systems, Pro-
log and graphical user interfaces the course-notes might be a quick alternative to this
user guide.

1.2 Other sources of information

Various other information can be found on or through the XPCE WEB-home:

http://www.swi.psy.uva.nl/projects/xpce/

Utility programs, recent examples, documentation, etc. can be found in the primary XPCE

anonymous ftp archive:

ftp://ftp.swi.psy.uva.nl/xpce/

There is a mailing list for exchanging information and problems between programmers
as well as for us to announce new releases and developments. The address is
xpce@swi.psy.uva.nl. Please send mail to xpce-request@swi.psy.uva.nl to sub-
scribe or unsubscribe to this list. This E-mail address can also be used to communicate
with the authors. The address xpce-bugs@swi.psy.uva.nl should be used for reporting
bugs.

1.3 Language interfaces

The interface between XPCE and the application (host) language is very small. This feature
makes it easy to connect XPCE to a new language. XPCE fits best with dynamically typed or
strongly statically typed languages with type-conversion facilities that can be programmed.
XPCE itself is dynamically typed. Cooperating with languages with the named properties
avoid the need for explicitly programmed type-conversion. For a dynamically typed host-
language such as Prolog or Lisp, the interface determines the type of the host-language
construct passed and translates it into the corresponding XPCE object. For C++, the rules
for translating C data structures to XPCE objects can be handled by the programmable type-
casting mechanism of C++.

XPCE 6.6.37

1.4. PORTABILITY 3

1.4 Portability

The XPCE virtual machine and built-in class library is written in standard ANSI-C and is
portable to any machine offering a flat, sufficiently large, memory model (32 or 64 bits).
XPCE’s graphical classes (including windows, etc.) interface to XPCE Virtual Windows Sys-
tem (VWS). Currently there are VWS implementations for X11 and the Microsoft Win32 API.
Please contact the authors if you are interested in other implementations.

1.4.1 Unix/X-windows

XPCE runs on most Unix/X11 platforms. Tested platforms include SunOs, Solaris, AIX,
HPUX, IRIX, OSF/1 and Linux. Platform configuration is realised using GNU autoconf with
an extensive test-suite.

1.4.2 Win32 (Windows 95 and NT)

The same binary version of XPCE runs on both Windows 95 and NT. Its functionality is very
close to the Unix/X11 version, making applications source-code compatible between the two
platforms. .

A detailed description of the differences between the Unix/X11 version and the Windows
version as well as additions to the Windows version to access Windows-specific resources
is in appendix B.

1.5 Look-and-feel

XPCE is not implemented on top of a standard UI library such as Motif, OpenWindows, or
Win32. Instead, it is built on top of its own VWS defining primitives to create and manipulate
windows, draw primitives such as lines, circles, text and handle user-events.

As a consequence, XPCE programs are fully compatible over the available platforms,
except that some (almost exclusively obscure) features may have a different or have no
effect on some implementations.

The implementation of all of XPCE on top of its primitive graphicals guarantees there are
no platform-specific limitations in the manipulation and semantics of certain controllers. XPCE

defines the look-and-feel for each of the controllers. As a consequence, XPCE controllers
may not behave exactly the same as controllers of other applications in the same windowing
environment.

All good things come at a price-tag and portability based on a virtual environment is no
exception to this rule. XPCE builds high-level controllers (called dialog-items in its jargon)
on top of the virtual machine and therefore bypasses the graphical libraries of the hosting
system. The same technique is used by many other portable GUI toolkits, among which
Java.

The visual feedback (look) and to some extend the reactions to user actions (feel) of the
XPCE controllers is determined by XPCE’s defaults file, located in 〈pcehome〉/Defaults.
See section 8.

XPCE 6.6.37

4 CHAPTER 1. INTRODUCTION

1.6 A brief history of (X)PCE

The “PCE Project” was started in 1985 by Anjo Anjewierden. His aim was to develop a high-
level UI environment for (C-)Prolog. The requirements for this environment came from the
“Thermodynamics Coach” project in which Paul Kamsteeg used PCE/Prolog to implement
the UI for a courseware system for thermodynamics. This system included a ‘scratch-pad’
that allowed the student to create structured drawings of component configurations. The
application had to be able to analyse the drawing made by the student.

PCE has been redesigned and largely re-implemented on a SUN workstation using Quin-
tus Prolog and later SWI-Prolog [Wielemaker, 1996] in the Esprit project P1098 (KADS).
This project used PCE to implement a knowledge engineering workbench called Shelley
[Anjewierden et al., 1990]. During this period PCE/Prolog has been used by various re-
search groups to implement graphical interfaces for applications implemented in Prolog.
Most of these interfaces stressed the use of direct-manipulation graphical interfaces. Feed-
back from these projects has made PCE generally useful and mature.

During the versions 4.0 to 4.5, XPCE was moved from SunView to X-windows and since
4.7 compatibility to the Win32 platform is maintained. In addition, the virtual machine has
been made available to the application programmer, allowing for the definition of new XPCE

classes. These versions have been used mainly for small internal case-studies to validate
the new approach. Larger-scale external usage started from version 4.6 and introduced the
vital requirement to reduce incompatible changes to the absolute minimum.

In version 5, the XPCE/Prolog interface was revisited, improving performance and making
it possible to pass native Prolog data to XPCE classes defined in Prolog as well as associate
native Prolog data with XPCE objects. Various new graphical primitives, among which HTML-
4 like tables and graphical primitives for rendering markup containing a mixture of graphics
and text.

As of XPCE 5.1, the license terms have been changed from a proprietary license schema
to the open source GPL-2 licence.

As of XPCE 6.0, the licence terms have been changed from GPL to the more permissive
LGPL for the XPCE kernel (compiled C-part) and GPL with an exception allowing for gener-
ating non-free applications with XPCE for the Prolog libraries. Please visit the SWI-Prolog
home page at http://www.swi-prolog.org for details.

1.7 About this manual

qThis userguide introduces the basics of XPCE/Prolog and its development environment.
Chapter 2, “Getting Started” explains the interface. Chapter 3, “Using the online manual”
introduces the online documentation tools. These are introduced early, as many of the ex-
amples in this manual introduce classes and methods without explaining them. The online
manual tool can be used to find the definitions of these constructs quickly. The chapter 5
and chapter 4, “Dialog (controller) windows” and “Simple Graphics” introduce the various
controller and graphical primitives.

With the material of the above described chapters, the user is sufficiently informed to
create simple GUI’s from predefined XPCE objects. The remaining chapters provide the
background information and techniques that allow for the design of larger graphical systems.

XPCE 6.6.37

1.8. ACKNOWLEDGEMENTS 5

Chapter 6, “The relation between XPCE and Prolog” is a brief intermezzo, explaining the
relation between XPCE and Prolog data in more detail. Chapter 7, “Defining classes” explain
the definition of new XPCE classes from Prolog and thus brings object-oriented programming
to the user. Chapter 10, “Programming techniques” is an assorted collection of hints on how
XPCE can be used to solve real-world problems elegantly. Chapter 11, “Commonly used
libraries” documents some of the commonly used XPCE/Prolog libraries.

Chapter 12, “Development and debugging tools” introduces the XPCE debugger. The
current debugger is powerful, but not very intuitive and requires a nice-looking front-end.

Of the appendices, appendix H is probably the most useful, providing a short description
of each class and its relation to other classes. Many of the classes are accompanied with a
small example.

1.8 Acknowledgements

The development of XPCE was started by Anjo Anjewierden. The package was then called
PCE. He designed and implemented version 1 and 2. Version 3 is the result of a joint effort
by Anjo Anjewierden and Jan Wielemaker.

XPCE-4, offering support for X-windows and user-defined classes, has been imple-
mented by Jan Wielemaker. The implementation of user-defined classes was initiated when
Jan Wielemaker was guest at SERC (Software Engineering Research Centre). Gert Florijn
has contributed in the initial discussions on user-defined classes. Frans Heeman has been
the first user.

The interface to SICStus Prolog has been implemented in cooperation with Stefan An-
dersson and Mats Carlsson from SICS.

The interface to Quintus Prolog was initiated by Paul-Holmes Higgins. The project was
realised by James Little, Mike Vines and Simon Heywood from AIIL.

Luca Passani has bothered us with many questions, but was so kind to organise this
material and make it available to other XPCE programmers in the form of a FAQ.

Gertjan van Heijst has commented on XPCE as well as earlier drafts of this documents.
(X)PCE is used by many people. They have often been puzzled by bugs, incompatibilities

with older versions, etc. We would like to thank them for their patience and remarks.

XPCE 6.6.37

6 CHAPTER 1. INTRODUCTION

XPCE 6.6.37

Getting started 2
This section introduces programming the XPCE/Prolog environment: the entities (objects),
referencing objects and manipulating objects. Most of the material is introduced with exam-
ples. A complete definition of the interface primitives is given in appendix D.

2.1 Starting XPCE/Prolog

XPCE is distributed as a library on top of the hosting Prolog system. For use with SWI-Prolog,
this library is auto-loaded as soon as one of its predicates (such as new/2) is accessed or it
can be loaded explicitly using

:- use_module(library(pce)).

In Unix XPCE/SWI-Prolog distribution the program xpce is a symbolic link to pl and causes
the system to pull in and announce the XPCE library with the banner:

% xpce
XPCE 6.0.0, February 2002 for i686-gnu-linux-gnu and X11R6
Copyright (C) 1993-2002 University of Amsterdam.
XPCE comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to redistribute it under certain conditions.
The host-language is SWI-Prolog version 5.0.0

For HELP on prolog, please type help. or apropos(topic).
on xpce, please type manpce.

1 ?-

SWI-Prolog’s prompt is “〈n〉 ?-” where 〈n〉 is the history-number of the command. The banner
indicates the XPCE version. The indicated version is 5.1 and the patch-level is 0.

On MS-Windows, Prolog programs are normally loaded and started by double-clicking
a ..pl file. XPCE, being a normal library, does not change this. Note that XPCE can only
be used fully with the GUI-based plwin.exe. Using the the console-based plcon.exe
program only the non-GUI functionality of XPCE is accessible.

2.2 Prolog ... and what?

This section describes the four basic Prolog predicates used to control XPCE from Prolog.
These four predicates map onto the basic functions of XPCE’s virtual machine: creating,
destroying, manipulating and querying objects, the basic entities of XPCE.

XPCE 6.6.37

8 CHAPTER 2. GETTING STARTED

For those not familiar with this jargon, an object is an entity with a state and associated
procedures, called methods. Objects may represent just about anything. In XPCE’s world
there are objects representing a position in a two-dimensional plane as well as an entire
window on your screen. Each object belongs to a class. The class defines the constituents
of the state as well as the procedures associated with the object. For example, a position
in a two-dimensional plane is represented by an object of class point. The state of a
point object consists of its X- and Y-coordinates. A point has methods to set the X- and
Y-coordinate, mirror the point over a reference point, compute its distance to another point,
etc.

2.2.1 Creating objects: new

The predicate new/2 (new(?Reference, +NewTerm)) creates an object in the XPCE world and
either assigns the given reference to it or unifies the first argument with a XPCE generated
reference. An (object-) reference is a unique handle used in further communication with the
object. Below are some examples (?- is the Prolog prompt):

1 ?- new(P, point(10,20)).
P = @772024

2 ?- new(@demo, dialog(’Demo Window’)).

The first example creates an instance of class point from the arguments ‘10’ and ‘20’. The
reference is represented in Prolog using the prefix operator @/1. For XPCE generated ref-
erences the argument of this term is a XPCE generated integer value. These integers are
guaranteed to be unique. The second example creates a dialog object. A dialog is a window
that is specialised for displaying controllers such as buttons, text-entry-fields, etc. In this ex-
ample we have specified the reference. Such a reference must be of the form @Atom. XPCE

will associate the created object with this reference.1

As illustrated by the examples above, the second argument to new/2 is a term. The
principal functor denotes the name of the class of which an instance is created and the
arguments are the initialisation parameters. The complete transformation rules are given in
appendix D.

As stated before, an object has a state. At creation time, the initial state is defined by the
class from which the object is created and the initialisation arguments. In our example, the
point is assigned an x-value of 10 and and y-value of 20. The dialog is assigned the label
‘Demo Window’. A dialog window has many slots2 The example defines the ‘label’. All the
other slots are set to the default value described in the class definition.

2.2.2 Modifying object state: send

The state of an object may be manipulated using the predicate send/2 (send(+Receiver,
+Selector(...Args...))). The first argument of this predicate is an object reference. The second

1Normal applications use almost exclusively XPCE generated references. Many of the examples in this manual
are typed from the terminal and Prolog specified references are easier to type.

2The attributes of an object state are called slots. In other languages they may be called instance variables
or fields.

XPCE 6.6.37

2.2. PROLOG ... AND WHAT? 9

Figure 2.1: Example Dialog Window

is a term. The principal functor of which is the name of the method to invoke (selector) and
the arguments are arguments to the operation.

3 ?- send(@772024, x(15)).
4 ?- send(@demo, append(text_item(name))).

The first example invokes the method ‘x’ of the point object. It sets the instance variable x
of the corresponding point object to the argument value. The second example invokes the
method ‘append’ of class dialog. This method appends a UI component to the dialog window.
The component is specified by the term ‘text item(name)’, which is converted into an object
just as the second argument of new/2. The query below opens the dialog window.

5 ?- send(@demo, open).

If everything is ok, a window as shown in figure 2.1 appears on your screen. The border
(in the figure this is the title-bar displayed above the window) is determined by the window
manager you are using. It should look the same as any other window on your terminal. If an
error of any kind appears, please refer to appendix F.

2.2.3 Querying objects: get

The next fundamental interface predicate is get/3. It is used to obtain information on the
state of objects. The first two arguments are the same as for send/2. The last argument
is unified with the return-value. The return value is normally an object reference, except
for XPCE name objects, that are returned as a Prolog atom, XPCE integers (int) that are
translated to Prolog integers and XPCE real objects, that are translated to Prolog floating
point numbers. Examples:

6 ?- get(@772024, y, Y).
Y = 20
7 ?- get(@demo, display, D).
D = @display/display
8 ?- get(@772024, distance(point(100,100)), Distance).
Distance = 117

The first example just obtains the value of the ‘y’ instance variable. The second example
returns the display object on which @demo is displayed. This is the reference to an object
of class display that represents your screen.3 The last example again shows the creation of

3Prolog would normally print ‘@display’. The pce portray defines a clause for the Prolog predicate
portray/1 that prints object references as ‘@Reference/Class’. This library is used throughout all the ex-
amples of this manual.

XPCE 6.6.37

10 CHAPTER 2. GETTING STARTED

objects from the arguments to send/2 and get/3 and also shows that the returned value
does not need to be a direct instance variable of the object. The return value is an integer
representing the (rounded) distance between @772024 and point(100,100).

The second example illustrates that get/3 returns objects by their reference. This refer-
ence may be used for further queries. The example below computes the width and height of
your screen.

9 ?- get(@display, size, Size),
get(Size, width, W),
get(Size, height, H).

Size = @4653322, W = 1152, H = 900

As a final example, type something in the text entry field and try the following:

10 ?- get(@demo, member(name), TextItem),
get(TextItem, selection, Text).

TextItem = @573481/text_item, Text = hello

The first get operation requests a member of the dialog with the given name (‘name’). This
will return the object reference of the text item object appended to the dialog. The next
request obtains the ‘selection’ of the text item. This is the text typed in by the user.

2.2.4 Removing objects: free

The final principal interface predicate is free/1. Its argument is an object reference as
returned by new/2 or get/3. It will remove the object from the XPCE object base. Examples:

12 ?- free(@772024).
13 ?- free(@demo).
14 ?- free(@display).
No

The second example not only removed the dialog window object from the XPCE object base,
it also removes the associated window from the screen. The last example illustrates that
certain system objects have been protected against freeing.

2.3 Optional arguments

Arguments to XPCE methods are identified by their position. Many methods have both obliga-
tory and optional arguments. If obligatory arguments are omitted XPCE will generate an error.
If optional arguments are omitted XPCE fills the argument with the constant @default. The
interpretation of @default is left to the implementation of the receiving method. See also
chapter 3.

XPCE 6.6.37

2.4. NAMED ARGUMENTS 11

2.4 Named arguments

Some methods take a lot of arguments of which you generally only want to specify a few.
A good example is the creation of a style object. A style is an object used to con-
trol the attributes of displayed text: font, fore- and background colour, underline, etc. Its
→initialise method, serving the same role the constructor in C++, takes 7 arguments.
Both calls below create a style object representing an underlined text-fragment:

1 ?- new(X, style(@default, @default, @default, @default, @on)).
2 ?- new(X, style(underline := @on)).

The names of arguments are specified in the reference manual. For example, the method
‘area → set’, used to set one or more of the X-, Y-, H- and W-attributes of a rectangle,
has the specification given below. For each argument that is specified as @default, the
corresponding slot will not be changed.

area->set: x=[int], y=[int], width=[int], height=[int]

The following example illustrates the usage of this method:

1 ?- new(A, area),
send(A, set(y := 10, height := 50)).

2.5 Argument conversion

Arguments to XPCE methods are typed and variables are dynamically typed. This combina-
tion is used for two purposes: automatic conversion and raising exceptions at the earliest
possible point if conversion is not defined.

For example, the send-method ‘colour’ on class graphical specifies accepts a single
argument of type ‘colour’. A colour in XPCE is represented by a colour object. Colour objects
may be created from their name. The natural way to specify a box should be coloured ‘red’
is:

...,
send(Box, colour(colour(red))),
...

Because the →colour method knows that it expects an instance of class colour, and be-
cause class colour defines the conversion from a name to a colour (see section 7.3.1), the
following message achieves the same goal:

...,
send(Box, colour(red)),
...

Some other examples of classes defining type conversion are font, image, name, string,
real and the non-object data item int. The following messages are thus valid:

XPCE 6.6.37

12 CHAPTER 2. GETTING STARTED

...,
send(Box, x(’10’)), % atom --> int
send(Box, selected(true)), % atom --> boolean
send(Text, font(bold)), % atom --> font
send(Text, string(10)), % int --> string
...

2.6 Send and get with more arguments

Though the principal predicates for invoking behaviour are send/2 and get/3, XPCE pro-
vides an alternative using send/[2-12] and get/[3-13]. The following goals are all
identical.

send(Box, width(100)) send(Box, width, 100)
get(Point, distance(point(10,10), D) get(Point, distance, point(10,1), D)

This alternative is provided for compatibility to pre-5.0 versions as well as to support users
that dislike the new-style send/2 and get/3. It is realised using goal expansion/2 and
thus poses only a small compile-time overhead.

2.7 Notation

This manual, as well as all other XPCE documentation both printed and online uses some
notational conventions. Instead of speaking of ‘the send-method colour of class box’, we
write

‘box → colour’

Similar, instead of ‘the get-method height of class window’, we write

‘window ← height’

In some cases, the arguments and/or the return type of the method are specified:

‘box → colour: colour’
‘window ← height −→int’

2.8 Example: show files in directory

In this section we illustrate the above with some simple examples. We also show how the
GUI can call procedures in the Prolog system.

The demo creates a list of files from a given directory and allows the user to view a file.
Figure 2.2 shows the result.

XPCE 6.6.37

2.8. EXAMPLE: SHOW FILES IN DIRECTORY 13

Figure 2.2: The FileViewer demo

XPCE 6.6.37

14 CHAPTER 2. GETTING STARTED

1 fileviewer(Dir) :-
2 new(DirObj, directory(Dir)),
3 new(F, frame(’File Viewer’)),
4 send(F, append(new(B, browser))),
5 send(new(D, dialog), below(B)),
6 send(D, append(button(view,
7 message(@prolog, view,
8 DirObj, B?selection?key)))),
9 send(D, append(button(quit,
10 message(F, destroy)))),
11 send(B, members(DirObj?files)),
12 send(F, open).
13

14 view(DirObj, F) :-
15 send(new(V, view(F)), open),
16 get(DirObj, file(F), FileObj),
17 send(V, load(FileObj)).

The main window of the application consists of a frame holding two specialised window
instances. A frame is a collection of tiled windows. Any opened window in XPCE is enclosed
in a frame. The windows are positioned using the methods →above, →below, →right
and→left. The frame ensures that its member windows are properly aligned and handles
resizing of the frame. See also section 10.6.

In line 3, a browser is →appended to the frame object. A browser is a window spe-
cialised for displaying a list of objects. Next, a dialog is positioned below the browser. A
dialog is a window specialised in handling the layout of controllers, or dialog item objects
as XPCE calls them.

Line 5 adds a button to the dialog. ‘view’ specifies the name of the button. XPCE

defines a central mapping from ‘dialog item ←→name’ to the label displayed. The default
mapping capitalises the name and replaces underscores with spaces. In section 11.7, we
describe how this can be used to realise multi-lingual applications. The second argument of
the button specifies the action associated with the button. A message is a dormant send-
operation. When pressed, the button executes

send(@prolog, view, DirObj, B?selection?key)

If a message is sent to @prolog, this calls a predicate with the name of the selector of the
message and an arity that equals the number of arguments to the message (2 here).

The second argument is a term with principal functor ? and defines an ‘obtainer’, a
dormant get-operation. It is defined as a Prolog infix operator of type yfx, priority 500. This
implies that B?selection?key should be read as4

?(?(B, selection), key)

The result of the get-operation ←selection on a browser returns the dict item object
currently selected. Dict-items are the elements of a dict, the underlying data object of a

4Initial versions of XPCE lacked the obtainer. In this case the browser B would be passed to the predicate
view/1, which would extract the current filename from the browser. Obtainers improve the readability and avoid
the need to mix UI related code with application code.

XPCE 6.6.37

2.9. SUMMARY 15

browser. A dict item consists of a ←key (its identifier), a ←label (the visual text) and
optionally an associated←object.

Line 8 appends a second button to the dialog window. The dialog window will automat-
ically align this one to the right of the first. The action sends a message directly to another
XPCE object and →destroys the frame object if the quit button is pressed. Note that this
will erase all UI objects associated with the frame. The garbage collector destroys all related
objects.

Line 10 fills the browser with the files from the specified directory. The expression
DirObj?files defines an obtainer operating on an instance of class directory. The
obtainer evaluates to a chain, XPCE’s notion of a list, holding the names of all files in the
directory. This chain is sent to the members-method of the browser B.

Again, the garbage collector takes care of the directory and chain objects. The browser
automatically converts the given names to dict item objects.5

Finally, the frame is →opened. This will cause the frame to ask each of the windows
to compute its desired size, after which the frame aligns the windows, decides on their final
geometry and creates the Window-system counterpart.

The view/2 callback predicate opens an instance of view, a window specialised in text-
editing, gets the file-object for the given filename F. and loads the file into the view. The
method ‘view → load’ expects an instance of class file. Again, the type-conversion will
deal with this.

2.9 Summary

XPCE’s world consists of objects. An object is an entity with persistent state that belongs to
a class. The XPCE/Prolog interface defines four basic predicates, new/2 to create objects
from a description and returns an object reference, send/[2-12] to change the state of
an object and succeeds if the requested change could be made, get/[3-13] to request
an object to compute a value and return it, and free/1 to remove objects from the XPCE

database.
Objects of the message are ‘dormant’ send operations. They may be activated by other

objects (button, text item, ...). In this case a send operation is started. Objects of class ? are
called obtainer and represent ‘dormant’ get operations. The ‘?’ sign is defined as a prolog
infix operator, allowing for constructs as:

send(Frame, height, Frame?display?height)

The object @prolog (class host) allows calling Prolog predicates from the XPCE environ-
ment.

5This conversion is implemented with class dict item. In fact, the browser just specifies the desired type
and the message passing kernel invokes the conversion method of class dict item.

XPCE 6.6.37

16 CHAPTER 2. GETTING STARTED

XPCE 6.6.37

Using the online manual 3
In the previous sections we have introduced XPCE using examples. The language primitives
of XPCE are simple, but XPCE as a whole is a massive library of very diverse classes with
many methods. The current system contains about 160 classes defining over 2700 methods.

To help you finding your way around in the package as well as in libraries and private
code loaded in XPCE, an integrated manual is provided. This manual extracts all information,
except for a natural language description of the class, method or slot from the system and
thus guarantees exact and consistent information on available classes, methods, slots, types,
inheritance in the system.

The manual consists of a number of search tools using different entry points to the ma-
terial. A successful query displays the summary information for the relevant hyper-cards.
Clicking on the summary displays the cards themselves and hyper-links between the cards
aid to quickly browse the environment of related material.

3.1 Overview

The online manual consists of a large set of tools to examine different aspects of the
XPCE/Prolog environment and to navigate through the available material from different view-
points.

The inheritance hierarchy Browsers/Class Hierarchy
The ‘Class Hierarchy’ tool allows the user to examine XPCE’s class hierarchy. This
tool reads the inheritance relations from the class objects and thus also visualises
application or library classes. Figure C.2 is created using this tool.

The structure of a class Browsers/Class Browser
The most important tool is the ‘Class Browser’. It provides the user with a view of
material related to a class. As everything in XPCE is an object and thus an instance of
a class this tool provides access to everything in XPCE, except for the Prolog interface.

Search Tool Browsers/Search
This tool provides full search capabilities on the entire manual contents, including com-
bined search specifications.

Globally available object references Browsers/Global Objects
The XPCE environment provides predefined objects (@pce, @prolog, @arg1, etc.).
The tool allows the user to find these objects.

Prolog interface predicates Browsers/Prolog Predicates
This tool documents all the XPCE/Prolog predicates.

XPCE 6.6.37

18 CHAPTER 3. USING THE ONLINE MANUAL

Instances Tools/Inspector
This tool is part of the runtime support system. It allows you to inspect the persistent
state associated with objects.

Structure of User Interface Tools/Visual Hierarchy
This tool provides a ‘consists-of’ view of all displayed visual objects. It provides a quick
overview of the structure of an interface. It is a useful for finding object-references,
examining the structure of an unknown UI and verifying that your program created the
expected structure.

The manual itself (help) File/Help
The manual tools are documented by itself. Each tool has a ‘Help’ button that docu-
ments the tool.

XPCE Demo programs File/Demo Programs

The ‘Demo Programs’ entry of the ‘File’ menu starts an overview of the available demo
programs. A demo can be started by double-clicking it. The sources of the demos
may be found in 〈home〉/prolog/demo, where 〈home〉 refers to the XPCE installation
directory, which may be obtained using

1 ?- get(@pce, home, Home).
Home = ’/usr/local/lib/pl-4.0.0/xpce’

Note that the DemoBrowser allows to view the sources of the main file of a demo
application immediately. Also consider using the VisualHierarchy and ClassBrowser to
analyse the structure of the demo programs.

3.2 Notational conventions

The text shown by the online manual uses some notational conventions. The various
overview tools indicate candidate documentation cards with a summary line. This line is
of the form:

〈Identifier〉 〈Formal Description〉 [“〈Summary〉”]

The ‘Identifier’ is a single letter indicating the nature of the documentation card. The defined
identifiers are: Browser (Manual Tool), Class, Example, Keyword, Method, Object, Predicate,
Resource, Topic and Variable (instance-variable).

The ‘Formal Description’ is a short description derived from the described object itself:

XPCE 6.6.37

3.2. NOTATIONAL CONVENTIONS 19

V class - selector: type Variable that cannot be accessed directly
V class <- selector: type Variable that may be read, but not written
V class <->selector: type Variable that may be read and written
V class ->selector: type Variable that may only be written
M class ->selector: type ... Send-Method with argument-types
M class <- selector: type ... -->type Get-Method with argument-types returning

value of type
R Class.attribute: type Class-variable with type

The same notational conventions are used in the running text of a card. See section 3.3.2.

3.2.1 Argument types

XPCE is a partially typed language. Types may be defined for both method arguments and
instance variables. A type is represented by an instance of class type. XPCE defines a
conversion to create type objects from a textual representation. A full description of this con-
version may be found in the online manual (method ‘type ← convert’). In this document
we will summarise the most important types:

• int
XPCE integer datum.

• 〈low〉..〈high〉, 〈low〉.., ..〈high〉
Range of integers (including 〈low〉 and 〈high〉). The latter two constructs indicate one-
side-unbound integer. Both 〈low〉 and 〈high〉 can also be floating point numbers, indi-
cation a ‘real-range’.

• any
Both integers and objects. Function objects will be evaluated. See section 10.2.2.

• 〈class-name〉
Any instance of this class or one of its sub-classes. Class object is the root of the in-
heritance hierarchy. The type object is interpreted slightly different, as it does not ac-
cept instances of class function or its subclasses. This implies that the type object
forces functions to be evaluated.

• [〈type〉]
Either this type or @default. Trailing arguments to methods that accept @default
may be omitted.

• 〈type〉*
Either this type or @nil.

• 〈type〉 ...
Methods with this type specification accept any number of arguments that satisfy
〈type〉.

• {〈atom1〉,〈atom2〉,. . . }
Any of these name objects.

XPCE 6.6.37

20 CHAPTER 3. USING THE ONLINE MANUAL

Enter class-name to
switch to a new class

Only show these
categories

->initialise arguments

Inheritance and delegation
- Click on superclass to extend search
- Double-click: apply search

Select on pattern in specified fields

Open Card
Start Class Browser o related card
View/edit implementation
Set/clear Prolog spy-point
Set/clear XPCE trace-point

Figure 3.1: The Class Browser

For example, the→initialise method of a graphical text object has type declaration:

[char_array], [{left,center,right}], [font]

The first argument is an instance of class char array, the super-class of name and
string. The second argument either ‘left’, ‘center’ or ‘right’ and the last argument is a
font object. All arguments are between square brackets and may thus be omitted.

3.3 Guided tour

This section provides a ‘guided tour’ through the manual system. If you have XPCE/Prolog
at hand, please start it and try the examples. For each of the central tools of the manual we
will present a screendump in a typical situation and explain the purpose and some common
ways to use the tool.

3.3.1 Class browser

The “Class Browser” is the central tool of the online manual. It provides an overview of the
functionality of a class and options to limit the displayed information. Figure 3.1 shows this
tool in a typical situation. In this example the user is interested in methods dealing with ‘caret’
in an editor.

The dialog to the left-side of the tool specifies what information is displayed. The top-right
window displays the class together with the initialisation arguments (the arguments needed
to create an instance of this class). Double-left-click on this text will open the description for
→initialise.

Below this text a hierarchy is displayed that indicates the place in the inheritance hierar-
chy as well as the classes to which messages are delegated (see section C.4). The user can

XPCE 6.6.37

3.3. GUIDED TOUR 21

select multiple classes only if there is delegation and the tree actually has branches. Use
class editor or class view to explore these facilities. After the user has selected one or
more classes, the Apply button makes the class-browser search for methods in all classes
below the selected classes. If a method is found in multiple classes the class-browser will
automatically display only the one method that will actually be used by this class.

The large right window displays a list of matching classes, variables, methods and class-
variables. If an item is tagged with a “(+)” there is additional information that may be obtained
by (double-) clicking the card to start the “Card Viewer” (see section 3.3.2).

The ClassBrowser dialog

The Class text item (text-entry-field) may be used to switch to a new class. Note that this
text item implements completion (bound to the space-bar).

The Filter menu filters the candidate objects according to their categorisation. Selecting
all switches off filtering, which is often useful in combination with Search. Clicking all again
switches back to the old selection of categories. The meaning of the categories is:

• Basic
Principal methods that are used very often. This is, together with Application, the
default selection of this menu.

• Advanced
Less often used and sometimes complicated methods.

• Rare
Infrequently used methods. Note that does not mean they are complicated or do things
you’d hardly ever want to use. For example, most of the caret-manipulation of class
editor is in this category. It is essential and commonly used behaviour of the editor, but
rarely used directly from program-control.

• Internal
Behaviour that is not directly intended for public usage. It may be useful to understand
how other methods interact. Try to avoid using these methods or variables in your
code.

• Basic OO
Methods intended to be redefined in user-defined classes. See chapter 7.

• Advanced OO
Methods that may be redefined in user-defined classes, but for which this is far less
common.

• Application
Methods implemented in the host-language.

The Display menu determines the objects searched for. Self refers to the class itself,
Sub Class refers to the direct sub classes of this class. The other fields refer to instance-
variables, methods with send- and get-access and class-variables.

XPCE 6.6.37

22 CHAPTER 3. USING THE ONLINE MANUAL

The Search and ... In controllers limit the displayed cards to those that have the specified
search string in one of the specified fields. While searching, the case of the characters is
ignored (i.e. lower- and uppercase versions of the same letter match). Searching in the
Name field is useful to find a particular method if the name (or part of it) is known.

Example queries to the classbrowser

Below we illustrate how some commonly asked questions may be answered with the class
browser.

• What are variables of a bitmap?
Select variable in the Display menu, clear Search, and set Filter to All. Then type
‘bitmap’ in Class and hit return. Note that by double-clicking on class graphical in
the inheritance display not only the variables of class bitmap itself are shown, but also
those of class graphical.

• How can I position the caret in an editor?
The caret can only be changed using send-methods. Either the name or the summary
is likely to have ‘caret’ as a substring. Thus, Display is set to Send Method, Field to
Name and Summary, search ‘caret’.

Methods with special meaning

This section describes the role of the ‘special’ methods. These are methods that are not
used directly, but they define the behaviour of new/2, type conversion, etc. and knowing
about them is therefore essential for understanding an XPCE class.

object→ initialise: 〈Class-Defined〉
The→initialise method of a class defines what happens when an instance of this
class is created. It may be compared to the constructor in C++. Note that double-
clicking the class description in the class-browser (top-right window) opens the refer-
ence card for the→initialise method. See also new/2, section 2.2.1.

object→ unlink
The →unlink method describes what happens when an instance of this class is re-
moved from the object-base and may be compared to the C++ destructor.

object← lookup: 〈Class-Defined〉 → object
If defined, this method describes the lookup an already defined instance instead of
object creation. For example

1 ?- new(X, font(screen, roman, 13)).
X = @screen_roman_13
2 ?- new(Y, font(screen, roman, 13)).
Y = @screen_roman_13

The same instance of the reusable font instance is returned on a second attempt to
create a font from the same parameters. Examples of classes with this capability are:
name, font, colour, image and modifier.

XPCE 6.6.37

3.3. GUIDED TOUR 23

Functional group Card Title

If multiple titles are above one description,
underline indicates the source of the description.

Hyper-link.
Double-click to follow

 Jump to related fragment
 Go back to previous card
 Start ClassBrowser on associated class
 View/Edit source
 Consult selection
 Show key-bindings

Type card name and jump to it
Does completion on SPACE

Figure 3.2: The Card Viewer

object← convert: 〈Class-Defined〉 → object
Defines what can be converted into an instance of this type. If an instance of this
class is requested by a type but another object is provided XPCE will call this method
to translate the given argument into an instance of this class.

object→ catch all: 〈Class-Defined〉
The→catch all method defines what happens with messages invoked on this object
that are not implemented by any other method.

object← catch all: 〈Class-Defined〉 → any
As→catch all, but for get-operations.

3.3.2 Reading cards

The other tools of the manual allow the user to find cards with documentation on the topic(s)
the user is looking for. The information provided by the summary-lists often suffices for this
purpose. Whenever a card is marked with a “(+)” in the summary list it may be opened by
double-clicking it. This starts the “Card Viewer” tool. Figure 3.2 is a screendump of this tool
showing the ‘selection’ group of class ‘device’.

The “Card Viewer” displays the formal information and all available attributes from the
card related to the displayed object (method, variable, class, ...). It uses patterns to deter-

XPCE 6.6.37

24 CHAPTER 3. USING THE ONLINE MANUAL

mine relations to other manual material from the text. Each hit of these patterns is high-
lighted. When the user double-clicks on highlighted text the “Card Viewer” will jump to the
related material.

If the user double-clicks a group-title in the ClassBrowser, all cards in the group will be
displayed in the CardViewer. Some objects share their documentation with another object.
Opening the card for such an object will show two titles above the card. The card from which
the documentation originates will have an underlined type-indicator.

The Goto field allows for switching to a new card. The syntax for this field is similar to
manpce/1, tracepce/1 and editpce/1 predicates description in section 12. It consists
of a classname, followed by -> to indicate a send-method, <- for a get-method and - to
specify an instance-variable without considering associated methods.

The item performs completion bound to the space-bar. The first word is completed to
a class-name. The second to a send-method, variable or get-method. Method completion
considers inheritance and delegation.1

3.3.3 Search tool

The search tool is shown in figure 3.3. It allows the user to search through all XPCE manual
cards in an efficient manner with queries similar to that what is found in WAIS tools. A search
specification is an expression formed from the following primitives:

• Word
Specifies all cards containing a word for which the search specification is the prefix.
Case is ignored.

• <Word>
Specifies all cards that contain the indicated word. Case is ignored.

• Expr1 and Expr2
Specifies all cards satisfying both conditions.

• Expr1 or Expr2
Specifies all cards satisfying either condition.

As a special shorthand, just specifying multiple words refers to all cards containing all these
words.

If the user stops typing for more than a second, the system will parse the expression and
display the number of matching cards.

The browser window on the left contains all words occurring anywhere in the manual.
The window on the right is used to display the card summaries of all matching cards.

3.3.4 Class hierarchy

The “Class Hierachy” tool shown in figure 3.4 may be used to get an overview of XPCE’s
class hierarchy or to find the (inheritance) relations of a particular class with other classes.

1Given the dynamic nature of delegation, the system cannot possibly determine all methods available through
delegation. Consider a slot specified with type graphical. The system can infer it will surely be able to use
behaviour defined at class graphical. If at runtime, the slot is filled with a box, all methods defined at class
box will be available too.

XPCE 6.6.37

3.3. GUIDED TOUR 25

Figure 3.3: Manual search tool

built-in class

user class

Open manual page
Open class details
Expand the whole tree below this node
edit the sources of this class (user classes)
Prune all subclasses

Figure 3.4: Class Hierachy Tool

XPCE 6.6.37

26 CHAPTER 3. USING THE ONLINE MANUAL

Note that XPCE’s inheritance hierarchy has a technical foundation rather than a conceptual.
Super-classes are motivated by the need for code-sharing.

3.4 Summary

The online manuals integrate visualisation of XPCE’s internal structure with a hyper-text sys-
tem. This approach guarantees consistency between the documentation and the actual
system and integrates overview and documentation of library and user-defined classes in
one system.

The online manual tools provides various entry-points (classes, global objects, predicate
overview, keywords, etc.) to obtain a list of card summaries. Cards may be opened from
these summary lists to examine its contents.

XPCE 6.6.37

Dialog (controller) windows 4
XPCE Dialog windows are normally used to display a number of controllers, named
dialog items in XPCE’s jargon. Class dialog is a subclass of window with specialised
methods for positioning controllers. Dialog items are graphical objects specialised for dis-
playing and/or editing particular data. Figure 4.1 illustrates the inheritance relations relevant
to dialog windows and the locations of the most important methods.

Dialogs can be created both by using the new/2 and send/[2-12] operations as well
as by using the Dialog Editor which is described in appendix A. This section describes the
first mechanism. Reading this chapter will help you understanding the dialog editor.

4.1 An example

Before diving into the complexities we will illustrate normal usage through an example. The
following Prolog predicate creates a dialog for entering information on an employee. The
result, running on Windows-NT, is shown in figure 4.2.

1 ask_employee :-
2 new(Dialog, dialog(’Define employee’)),
3 send_list(Dialog, append,
4 [new(N1, text_item(first_name)),
5 new(N2, text_item(family_name)),
6 new(S, new(S, menu(sex))),
7 new(A, int_item(age, low := 18, high := 65)),
8 new(D, menu(department, cycle)),
9 button(cancel, message(Dialog, destroy)),
10 button(enter, and(message(@prolog,
11 assert_employee,
12 N1?selection,
13 N2?selection,
14 S?selection,
15 A?selection,
16 D?selection),
17 message(Dialog, destroy)))
18]),
19 send_list(S, append, [male, female]),
20 send_list(D, append, [research, development, marketing]),
21 send(Dialog, default_button, enter),
22 send(Dialog, open).
23

24 assert_employee(FirstName, FamilyName, Sex, Age, Depth) :-
25 format(’Adding ˜w ˜w ˜w, age ˜w, working at ˜w˜n’,
26 [Sex, FirstName, FamilyName, Age, Depth]).

XPCE 6.6.37

28 CHAPTER 4. DIALOG (CONTROLLER) WINDOWS

graphical

device

window

dialog

dialog_item

above
below
left
right

append_dialog_item
layout_dialog

append
layout
_compute_desired_size

event

Figure 4.1: Dialog Inheritance Hierarchy

This example shows the layout capabilities of dialog and its dialog item objects. Simply
appending items will place items vertically and group buttons in rows. Labels are properly
aligned. The enter button defines a call-back on the predicate assert employee/5 using
the values from the various controllers. Section 10.2 explains the use of message objects in
detail.

4.2 Built-in dialog items

Table 4.1 provides an overview of the built-in dialog items. The XPCE/Prolog library defines
various additional items as Prolog classes. See the file Overview in the library directory.

4.3 Layout in dialog windows

The layout inside a dialog window may be specified by two means, either using pixel-
coordinates or using symbolic layout descriptions. The latter is strongly encouraged, both
because it is generally much easier and because the layout will work properly if the end-user
uses different preferences (see chapter 8) than the application developer.

The following methods can be used to define the layout of a dialog. All methods actually
have both send- and get-versions. The methods listed only as ‘→send’ methods are unlikely
to be used as get-methods in application code.

dialog item→ above: dialog item
dialog item→ below: dialog item
dialog item→ left: dialog item
dialog item→ rigth: dialog item

These relations built a two-dimensional grid of dialog-items and determine the relative
positioning of the dialog items. It suffices to relate each dialog item to one other item.

device→ append dialog item: graphical, [{below,right,next row}]
dialog→ append: graphical, [{below,right,next row}]

XPCE 6.6.37

4.3. LAYOUT IN DIALOG WINDOWS 29

Figure 4.2: Enter employee

button Simple push-button. Executes←message when pressed.
text item A text-entry field. Editable or non-editable, built-in type conversion

(for example to enter a numerical value), completion using the
space-bar if a value-set is provided.

int item Like a text item, but providing properly sized field, buttons for
one-up/down, type- and range-checking.

slider Select numerical value in a range. Handles both integers and floating
point values.

menu Implements various styles of menus with different visual feedback.
Realises radio-button, tick-box, combo-box and much more.

menu bar Row of pulldown (popup) menus. Normally displayed in a small
dialog above the other windows in the frame.

label Image or textual label. Normally not sensitive to user actions.
list browser Shows a list of items. List-browsers have been designed to handle

lists with many items. Class browser is a window-based version.
editor Powerful text-editor. Handles multiple and proportional fonts,

text-attributes, fragment marking, etc. Class view is a window based
version.

tab Tagged sub-dialog, that may be combined with other tabs into a
tab stack, realising a tabbed controller-window. Often seen in
modern applications to deal with many setting options.

tab stack Stack of tab objects.
dialog group Group of dialog items, possible with border and label.

Table 4.1: Built-in dialog items

XPCE 6.6.37

30 CHAPTER 4. DIALOG (CONTROLLER) WINDOWS

Append a dialog item relative to the last one appended. This method is the principal
methods used to fill dialog windows. For the first item, the last argument is ignored. If
the last argument is below, this item is placed below the previous one. If the argument
is right, it is placed right of the previous one and if the argument is next row, the
item is placed below the first one of the current row of dialog items. If the last argu-
ment is @default, dialog objects are placed next row, except for buttons, which are
placed in rows, left to right.

dialog→ gap: size
Defines the distance between rows and columns of items as well as the distance be-
tween the bounding box of all items and the window border.

dialog item←→ reference: point
Point relative to the top-left corner that defines the reference-point of the dialog item. If
two items are aligned horizontally or vertically, it are actually their reference points that
are aligned.

dialog item→ alignment: {column,left,center,right}
This attribute controls how items are aligned left-to-right in their row. An item with
→alignment: column will be alignment horizontally using the references of its upper
or lower neighbour. Horizontally adjacent items with the same alignment will be flushed
left, centered or flushed right if the alignment is one of left, center or right. The
alignment value is normally specified as a class-variable and used to determine the
layout of rows of button objects.

dialog item→ hor stretch
0..100 After completing the initial layout, possibly remaining horizontal space is dis-
tributed proportionally over items that return a non-zero value for this attribute. By
default, class text item yields 100 for this value, normally extending text items as far
as possible to the right.

The methods above deal with the placement of items relative to each other. The methods
below ensure that columns of items have properly aligned labels and values.

dialog item←→ label width: [0..]
If the item has a visible label, the label width is the width of the box in which the label
is printed. The dialog layout mechanism will align the labels of items that are placed
above each other if ←auto label align is @on. The argument @default assigns
the minimum width of the label, the width required by the text of the label.

dialog item←→ label format: {left,center,right}
Determines how the label is aligned in its box. The values are left, center and
right. This value is normally defined by the look and feel.

dialog item←→ value width: [0..]
If the item displays multiple values left-to-right (only class menu at the moment),
‘dialog item → value width’ is used to negotiate equal width of the value-boxes
similar to→label width if←auto value align is @on.

XPCE 6.6.37

4.3. LAYOUT IN DIALOG WINDOWS 31

The methods listed below activate the layout mechanism. Normally, only
‘device → layout dialog’ needs to be called by the user.

dialog→ layout: [size]
device→ layout dialog: gap=[size], size=[size], border=[size]

Implements the dialog layout mechanism. ‘Dialog → layout’
simply calls ‘device → layout dialog’ using ‘dialog ← gap’.
‘Device → layout dialog’ first uses the ←above, etc. attributes to build a
two-dimensional array of items. Next, it will align the labels and value of items placed
in the same column. Then it will determine the size and reference point for each of the
items and determine the cell-size. It will then align all items vertically and afterwards
horizontally, while considering the ‘dialog item ← alignment’.

dialog→ compute desired size
Sent from ‘frame → fit’ to each of the member windows. For class dialog, this
activates→layout and then computes the desired size of the window.

4.3.1 Practical usage and problems

Most of the above methods are only used rarely for fine-tuning the layout. Almost all dialog
windows used in the development environment, demo applications and Prolog library simply
use ‘dialog → append’, sometimes specifying the last argument.

Two problems are currently not taken care of very well. Aligning multiple objects with a
single third object can only be achieved using a sub-dialog in the form of a device and often
requires some additional messages. The dialog of figure 4.3 is created using the following
code:

1 layoutdemo1 :-
2 new(D, dialog(’Layout Demo 1’)),
3 send(D, append,
4 new(BTS, dialog_group(buttons, group))),
5 send(BTS, gap, size(0, 30)),
6 send(BTS, append, button(add)),
7 send(BTS, append, button(rename), below),
8 send(BTS, append, button(delete), below),
9 send(BTS, layout_dialog),
10 send(D, append, new(LB, list_browser), right),
11 send(D, append, new(TI, text_item(name, ’’))),
12 send(LB, alignment, left),
13 send(D, layout),
14 send(LB, bottom_side, BTS?bottom_side),
15 send(LB, right_side, TI?right_side),
16 send(D, open).

In line 3, a device is added to the dialog to contain the stack of buttons. This device is
sent an explicit →layout dialog to position the buttons. Next, the list browser is placed
to the right of this stack and the text item on the next row.

If you try this layout, the first column will hold the device and the text item and the
list browser will be placed right of this column and thus right of the text item. Using

XPCE 6.6.37

32 CHAPTER 4. DIALOG (CONTROLLER) WINDOWS

Figure 4.3: Aligning multiple items

‘dialog item → alignment: left’ enforces the list browser to flush left towards the de-
vice. Now we enforce the layout and adjust the bottom and right sides of the list browser to
the device and text item.

Dialog windows do not reposition their contents if the window is resized in the current
implementation. If the window is enlarged, the items stay in the top-left corner. If the window
is made smaller, part of the items may become invisible. Resizing can be implemented by
the user by trapping the ‘window → resize message’.

4.4 Modal dialogs: prompting for answers

A modal dialog is a dialog that is displayed and blocks the application until the user has
finished answering the questions posed in the dialog. Modal dialogs are often used to prompt
for values needed to create a new entity in the application or for changing settings.

Modal windows are implemented using the methods ‘frame ← confirm’ and
‘frame → return’. ‘Frame ← confirm’ invokes ‘frame → open’ if the frame is not
visible and then starts reading events and processing them. ‘Frame → return: value’
causes ‘frame ← confirm’ to return with the value passed as argument to →return.
The following code is a very simple example opening a dialog and waiting for the user to
enter a name and press RETURN or the Ok button.

ask_name(Name) :-
new(D, dialog(’Prompting for name’)),
send(D, append,

new(TI, text_item(name, ’’))),
send(D, append,

button(ok, message(D, return,
TI?selection))),

send(D, append,

XPCE 6.6.37

4.4. MODAL DIALOGS: PROMPTING FOR ANSWERS 33

Figure 4.4: Very simple WYSIWYG editor

button(cancel, message(D, return, @nil))),
send(D, default_button, ok), % Ok: default button
get(D, confirm, Answer), % This blocks!
send(D, destroy),
Answer \== @nil, % canceled
Name = Answer.

?- ask_name(X).

X = ’Bob Worker’

See also section 10.5 for a discussion on how frames may be related, as well as alternatives
for keeping control in Prolog.

4.4.1 Example: a simple editor for multiple fonts

The following example allows the user to select text in an editor and change its appearance.
The application is shown in figure 4.4.

A typical XPCE/Prolog module header. Always make sure to load module library(pce) explic-
itly if you want to write modules portable to the various Prolog dialects supported by XPCE.

XPCE 6.6.37

34 CHAPTER 4. DIALOG (CONTROLLER) WINDOWS

1 :- module(wysiwyg,
2 [wysiwyg/1 % +File
3]).
4 :- use_module(library(pce)).
5 :- use_module(library(pce_style_item)).

Create the main window, consisting of a frame holding a dialog window with a button for
defining new styles and a menu for setting the style of the selection. Both dialog items use
call-back to @prolog.

6 wysiwyg(File) :-
7 new(Fr, frame(File)),
8 send(Fr, append, new(D, dialog)),
9 send(new(V, view), below, D),
10 send(V, font, normal),
11 send(D, append,
12 button(define_style,
13 message(@prolog, define_style, Fr))),
14 send(D, append,
15 menu(style, toggle,
16 and(message(@prolog, set_style, Fr, @arg1),
17 message(V, selection, 0, 0),
18 message(@receiver, clear_selection))),
19 right),
20 append_style(Fr, bold, style(font := bold)),
21 append_style(Fr, italic, style(font := italic)),
22 send(V, load, File),
23 send(Fr, open).

Set the style for the current selection. Simply pick the selection start and end and make a
fragment using the selection parameters and the style-name.

24 set_style(Fr, Style) :-
25 get(Fr, member, view, V),
26 get(V, selection, point(Start, End)),
27 (Start == End
28 -> send(Fr, report, warning, ’No selection’)
29 ; get(V, text_buffer, TB),
30 new(_, fragment(TB, Start, End-Start, Style))
31).

Define a new style and add it to the menu and the view.

32 define_style(Fr) :-
33 ask_style(Fr, Name, Style),
34 append_style(Fr, Name, Style).

35 append_style(Fr, Name, Style) :-
36 get(Fr, member, dialog, D),
37 get(D, member, style, Menu),
38 send(Menu, append, Name),
39 send(Menu, active, @on),
40 get(Fr, member, view, View),
41 send(View, style, Name, Style).

XPCE 6.6.37

4.5. EDITING ATTRIBUTES 35

Prompt for the style-name and style-object. Class style item is defined in the li-
brary(pce style item). ‘frame →transient for’ tells the window manager the dialog is
a supporting frame for the main application. ‘frame←confirm centered’ opens the frame
centered around the given location and starts processing events until ‘frame →return’ is
activated.

42 ask_style(Fr, Name, Style) :-
43 new(D, dialog(’Define Style’)),
44 send(D, append,
45 new(N, text_item(name, ’’))),
46 send(D, append,
47 new(S, style_item(style))),
48 send(D, append,
49 button(ok, message(D, return, ok))),
50 send(D, append,
51 button(cancel, message(D, return, cancel))),
52 send(D, default_button, ok),
53 send(D, transient_for, Fr),
54 repeat,
55 get(D, confirm_centered, Fr?area?center, Answer),
56 (Answer == ok
57 -> get(N, selection, Name),
58 (Name == ’’
59 -> send(D, report, error,
60 ’Please enter a name’),
61 fail
62 ; !,
63 get(S, selection, Style),
64 send(Style, lock_object, @on),
65 send(D, destroy)
66)
67 ; !,
68 send(D, destroy),
69 fail
70).

4.5 Editing attributes

In the previous section, we discussed dialogs for entering values. Another typical use of
dialog windows is to modify setting of the application, or more in general, edit attributes of
existing entities in the application. These entities may both be represented as XPCE ob-
jects or as constructs in the host language (dynamic predicates or the recorded database in
Prolog).

Such dialog windows first show the current settings. It allows for modifying the controls
showing the various aspects of the current state and three buttons providing the following
functions:

• Apply

XPCE 6.6.37

36 CHAPTER 4. DIALOG (CONTROLLER) WINDOWS

Apply the current controls, which implies invoking some behaviour on the application
to realise the setting of the—modified— controls.

• Restore
Reset the controls to the current status of the application.

• Cancel
Destroy the dialog and do not modify the current settings of the application.

The following methods are defined on all primitive controls as well as on the dialog win-
dow faciliate the implementations of dialog windows as described above.

dialog item→ default: any|function
dialog item→ restore

For most dialog items, the ←→default value is the second initialisation argument. In-
stead of a plain value, this can be a function object. The initial←selection is set
by evaluating this function. In addition,→restore will evaluate the function again and
reset the selection.

dialog item→ apply: always:bool
Execute the→message of each dialog item for which ‘dialog item←modified’ yields
@on. If the argument is @on, the modified flag is not checked.

dialog→ apply
dialog→ restore

Broadcasts→apply or→restore to each item in the dialog.

4.5.1 Example: editing attributes of a graphical

We will illustrate these methods described above in this example, which implements a dialog
for editing the colour of the interior and thickness of the line around a graphical. Double-
clicking on a graphical pops up a dialog window for changing these values. The result is
show in figure 4.5.

1 colour(white).
2 colour(red).
3 colour(green).
4 colour(blue).
5 colour(black).
6

7 append_colour(M, C) :-
8 new(Img, pixmap(@nil, white, black, 32, 16)),
9 send(Img, fill, colour(C)),
10 send(M, append, menu_item(colour(C), label := Img)).
11

12 edit_graphical(Gr) :-
13 new(D, dialog(string(’Edit graphical %s’, Gr?name))),
14 send(D, append,
15 new(M, menu(colour, choice,
16 message(Gr, fill_pattern, @arg1)))),
17 send(M, layout, horizontal),

XPCE 6.6.37

4.5. EDITING ATTRIBUTES 37

Figure 4.5: Attribute editor for graphical objects

18 forall(colour(C), append_colour(M, C)),
19 send(M, default, Gr?fill_pattern),
20 send(D, append, slider(pen, 0, 10, Gr?pen,
21 message(Gr, pen, @arg1))),
22 send(D, append, button(apply)),
23 send(D, append, button(restore)),
24 send(D, append, button(quit, message(D, destroy))),
25 send(D, default_button, apply),
26 send(D, open).
27

28 attributedemo :-
29 send(new(P, picture(’Attribute Demo’)), open),
30 send(P, display,
31 new(B, box(100, 100)), point(20, 20)),
32 send(P, display,
33 new(E, ellipse(100, 50)), point(150, 20)),
34 send_list([B, E], fill_pattern, colour(white)),
35 new(C, click_gesture(left, ’’, double,
36 message(@prolog, edit_graphical,
37 @receiver))),
38 send(B, recogniser, C),
39 send(E, recogniser, C).

XPCE 6.6.37

38 CHAPTER 4. DIALOG (CONTROLLER) WINDOWS

XPCE 6.6.37

Simple graphics 5
In chapter 2 we introduced the principal predicates of XPCE. For the examples we used
controllers, because these are relatively easy to use. In this section we present the basic
graphical components. These are more general and therefore can be applied in many more
situations, but they are also more difficult to use.

This section only introduces the basics of graphics in XPCE. See also [Wielemaker, 1992].
The online manual and the demo programs provide more information on using XPCE’s graph-
ics.

5.1 Graphical building blocks

A window is the most generic window class of XPCE. Drawings are often displayed on
a picture, which is a window with scrollbars. The drawing area of a window is two-
dimensional and infinitely large (both positive and negative). The query below creates a
picture and opens it on the screen.

1 ?- new(@p, picture(’Demo Picture’)),
send(@p, open).

The following queries draw various primitive graphicals on this picture.

2 ?- send(@p, display,
new(@bo, box(100,100))).

3 ?- send(@p, display,
new(@ci, circle(50)), point(25,25)).

4 ?- send(@p, display,
new(@bm, bitmap(’32x32/books.xpm’)), point(100,100)).

5 ?- send(@p, display,
new(@tx, text(’Hello’)), point(120, 50)).

6 ?- send(@p, display,
new(@bz, bezier_curve(point(50,100),

point(120,132),
point(50, 160),
point(120, 200)))).

XPCE’s graphics infrastructure automatically takes care of the necessary repaint operations
when graphical objects are manipulated. Try the queries below to appreciate this. The result
is shown in figure 5.1.

XPCE 6.6.37

40 CHAPTER 5. SIMPLE GRAPHICS

Figure 5.1: Example graphics

7 ?- send(@bo, radius, 10).
8 ?- send(@ci, fill_pattern, colour(orange)).
9 ?- send(@tx, font, font(times, bold, 18)).
10 ?- send(@bz, arrows, both).

XPCE avoids unnecessary repaint operations and expensive computations involved in
updating the screen. The screen is only updated after all available input has been pro-
cessed or on an explicit request to update it. The following code illustrates this. Running
?- square to circle(@bo). will show the box immediately as a circle without showing
any of the intermediate results.

:- require([between/3, forall/2]).

square_to_circle(Box) :-
get(Box, height, H),
MaxRadius is H // 2,
forall(between(0, MaxRadius, Radius),

send(Box, radius, Radius)).

To get the intended animating behaviour, use ‘graphical → flush’ to explicitly force
redraw right now:

:- require([between/3, forall/2]).

square_to_circle(Box) :-
get(Box, height, H),
MaxRadius is H // 2,
forall(between(0, MaxRadius, Radius),

(send(Box, radius, Radius),
send(Box, flush)

)).

XPCE 6.6.37

5.2. COMPOUND GRAPHICALS 41

arrow Arrow-head. Normally used implicitly by class line.
bezier Bezier curve. Both quadratic and cubic Biezer curves are supported.
bitmap Visualisation of an image. Both monochrome and full-colour images are

supported. Images can have shape. See section 10.10.
pixmap Subclass of bitmap only for coloured images.
box Rectangle. Can be rounded and filled.
circle Special case of ellipse.
ellipse Elliptical shape. May be filled.
arc Part of an ellipse. Can have arrows. Can show as pie-slice.
line Straight line segment. Can have arrows.
path Poly-line through multiple points. Can have arrows. Can be smooth.
text Visualisation of a string in some font. Can have various attributes, can be

clipped, formatted, etc.

Table 5.1: Primitive graphical objects

5.1.1 Available primitive graphical objects

An overview of the available primitive graphical classes is most easily obtained using the
Class Hierarchy tool described in section 3.3.4. Table table 5.1 provides an overview of the
primitive graphicals.

5.2 Compound graphicals

Often one would like to combine two or more primitive graphical objects into a single unit.
This is achieved using class device. Below we create an icon, consisting of a bitmap and a
textual label displayed below it.

9 ?- new(@ic, device),
send(@ic, display, bitmap(’happy.bm’)),
send(@ic, display, text(’Happy’), point(0, 64)),
send(@p, display, @ic, point(250, 20)).

A compound graphical may be treated as a unit. It may be moved, erased, coloured, etc. by
sending a single message to the compound. Compound graphicals are normal graphicals
and thus may de displayed on other compound graphicals, resulting in a consists-of hierarchy
of nested graphicals. See also section 12.4. The classes related to compound graphical
objects are shown in table 5.2.

5.3 Connecting graphical objects

The primary application domain of XPCE is handling graphical modelling languages. Drawing
in such languages often entails connecting graphical objects using lines. Instead of adding
an instance of line to the graphical device at the proper place, it is much better to declare
two graphical objects to be connected. Class connection provides for this.

XPCE 6.6.37

42 CHAPTER 5. SIMPLE GRAPHICS

device Most generic compound graphical object. The window is a subclass of
device and all graphical operations are defined on class device.

figure Subclass of device, provides clipping, background, containing rectangle,
border and the possibility to show a subset of the displayed graphical objects.

format A format object specifies a two-dimensional table layout. Formats may be
associated to graphical devices using ‘device → format’.

table The successor of format realises tabular layout compatible to the HTML-3
model for tables. See section 11.5.

Table 5.2: Compound graphical classes

Figure 5.2: A connection between two boxes

To prepare an object for making connections, the object should first define handles.
Below is a simple example. The link is a reusable object and therefore defined as a global
reference. See section 10.3. The screendump is shown in figure 5.2.

1 :- pce_global(@in_out_link, make_in_out_link).
2

3 make_in_out_link(L) :-
4 new(L, link(in, out, line(arrows := second))).
5

6 linked_box_demo :-
7 new(P, picture(’Linked Box demo’)),
8 send(P, open),
9 send(P, display, new(B1, box(50,50)), point(20,20)),
10 send(P, display, new(B2, box(25,25)), point(100,100)),
11 send(B1, handle, handle(w, h/2, in)),
12 send(B2, handle, handle(w/2, 0, out)),
13 send_list([B1, B2], recogniser, new(move_gesture)),
14 send(B1, connect, B2, @in_out_link).

XPCE 6.6.37

5.4. CONSTRAINTS 43

connection Subclass of class line. A connection can connect two graphicals
on the same window that have handles. The line is automatically
updated if either of the graphicals is moved, resized, changed
from device, (un)displayed, hidden/exposed or destroyed.

handle Defines the location, nature and name of a connection point for a
connection. Handles can be attached to individual graphicals as
well as to their class.

link Defines the generic properties of a connection: the nature (‘kind’)
of the handle at either side and the line attributes (arrows, pen
and colour).

connect gesture Event-processing object (see section 5.5) used to connect two
graphical objects.

Table 5.3: Classes used to define connections

If there are multiple handles of the same ‘kind’ on a graphical, a connection will automat-
ically try to connect to the ‘best’ handle.

The classes related to making connections are summarised in table 5.3.
Note that, as class connection is a subclass of graphical, connections can be cre-

ated between connections. Class graphical defines various methods to help reading the
relations expressed with connections and/or refine the generic connect gesture.

5.4 Constraints

XPCE allows the user to specify constraints between pairs of objects. In the example above
we would like the text to be centered relative to the bitmap. This may be achieved using:

10 ?- get(@ic, member, bitmap, Bitmap),
get(@ic, member, text, Text),
new(_, constraint(Bitmap, Text, identity(center_x))).

Each time either the bitmap or the text changes this constraint will invoke←center x on the
changed object and →center x with the return value on the other object. Class spatial
defines more general geometrical constraints between graphicals.

Constraints are high-level, but potentially expensive means to specify graphical relations.
An alternative is the redefinition of the→geometrymethod of (compound) graphical objects.
See chapter 7.

5.5 Activating graphicals using the mouse

Recogniser objects enable detection of mouse- and keyboard activities. XPCE defines both
primitive and complex recognisers. The first (called handler) processes a single event. The
latter processes a gesture: sequence of events starting with a mouse-button-down up to
the corresponding mouse-button-up. The following example allows us to move the icon by
dragging with the middle mouse button:

XPCE 6.6.37

44 CHAPTER 5. SIMPLE GRAPHICS

handler Binds a single event to a message.
handler group Combines multiple recognisers into a single.
key binding Maps keyboard sequences to commands.
click gesture Maps a mouse-click to a message. Allows to specify

modifiers (alt/meta, control, shift), button and multi
(single, double, triple).

connect gesture Connect two graphicals dragging from the first to the
second.

move gesture Move graphical by dragging it.
move outline gesture Move graphical by dragging an outline.
resize gesture Resize graphical by dragging a side or corner.
resize outline gesture Resize graphical by dragging a side or corner of the

outline.

Table 5.4: Recogniser classes

11 ?- send(@ic, recogniser, new(move_gesture)).

The second example allows us to double-click on the icon. This is a common way to ‘open’
an icon. In the example we will just print ’hello’ in the Prolog window.

12 ?- send(@ic, recogniser,
click_gesture(left, ’’, double,

message(@pce, write_ln, hello))).

The predefined recogniser classes are summarised in table 5.4. Besides the built-in recog-
nisers, the XPCE/Prolog library defines various additional ones. See also section 11.8.

5.6 Summary

In this section we have introduced some of the graphics capabilities of XPCE. XPCE’s graph-
ics are built from primitive and compound graphicals. A compound graphical has its own
coordinate system in which it can display any graphical object including other compound ob-
jects. Graphical objects can be connected to each others using a connection. This facility
makes the generation of graphs relatively simple. It also makes it very simple to extract the
graph represented by a drawing made by the user.

Graphical objects are made sensitive to mouse and keyboard activities by attaching
recogniser objects to them. XPCE defines standard recognisers for various complex oper-
ations such as moving, resizing, popup-menu’s, linking graphicals and clicking on graphicals.

XPCE 6.6.37

XPCE and Prolog 6
XPCE and Prolog are very different systems based on a very different programming
paradigm. XPCE objects have global state and use destructive assignment. XPCE pro-
gramming constructs use both procedures (code objects and send-methods) and functions
(function objects and get-methods). XPCE has no notion of non-determinism as Prolog has.

The hybrid XPCE/Prolog environment allows the user to express functionality both in Pro-
log and in XPCE. This chapter discusses representation of data and dealing with object-
references in XPCE/Prolog.

6.1 XPCE is not Prolog!

Data managed by Prolog consists of logical variables, atoms, integers, floats and compound
terms (including lists). XPCE has natural counterparts for atoms (a name object), integers (a
XPCE int) and floating point numbers (a real object). Prolog logical variables and compound
terms however have no direct counterpart in the XPCE environment. XPCE has variables
(class var), but these obey totally different scoping and binding rules.

Where Prolog uses a compound term to represent data that belongs together (e.g. per-
son(Name, Age, Address)), XPCE uses objects for this purpose:1

:- pce_begin_class(person(name, age, address), object).

variable(name, name, both, "Name of the person").
variable(age, int, both, "Age in years").
variable(address, string, both, "Full address").

initialise(P, Name:name, Age:int, Address:string) :->
"Create from name, age and address"::
send(P, name, Name),
send(P, age, Age),
send(P, address, Address).

:- pce_end_class.

1 ?- new(P, person(fred, 30, ’Long Street 45’)).
P = @3664437/person

These two representations have very different properties:
1This example uses XPCE user-defined classes. The details of this mechanism do not matter for the argument

in this section. User-defined classes are described in chapter 7.

XPCE 6.6.37

46 CHAPTER 6. XPCE AND PROLOG

• Equality
Prolog cannot distinguish between ‘person(’Fred’, 30, ’Long Street 45’)’
and a second instance of the same term. In XPCE two instances of the same class
having the same state are different entities.

• Attributes
Whereas an attribute (argument) of a Prolog term is either a logical variable or in-
stantiated to a Prolog data object, an attribute of an object may be assigned to. The
assignment is destructive.

• Types
XPCE is a dynamically typed language and XPCE object attributes may have types.
Prolog is untyped.

6.2 Dealing with Prolog data

By nature, XPCE data is not Prolog data. This implies that anything passed to a XPCE
method must be converted from Prolog to something suitable for XPCE. A natural mapping
with fast and automatic translation is defined for atoms, and numbers (both integers and
floating point). As we have seen in section 2, compound terms are translated into instances
using the functor-name as class-name.

In XPCE 5.0 we added the possibility to embed arbitrary Prolog data in an object. There
are three cases where Prolog data is passed natively embedded in a instance of the class
prolog term.

• Explicit usage of prolog(Data)
By tagging a Prolog term using the functor prolog/1, Data is embedded in an in-
stance of prolog term. This term is passed unaltered unless it is passed to a method
that does not accept the type Any, in which case translation to an object is enforced.

• When passed to a method typed Prolog
Prolog defined methods and instance-variables (see section 7) can define their type as
Prolog. In this case the data is packed in a prolog term object.

• When passed to a method typed unchecked
A few methods in the system don’t do type-checking themselves.

We will explain the complications using examples. First we create a code object:

1 ?- new(@m, and(message(@prolog, write, @arg1),
message(@prolog, nl))).

This code object will print the provided argument in the Prolog window followed by a newline:

2 ?- send(@m, forward, hello).
hello

From this example one might expect that XPCE is transparent to Prolog data. This is true
for integers, floats and atoms as these have a natural representation in both languages.
However:

XPCE 6.6.37

6.2. DEALING WITH PROLOG DATA 47

3 ?- send(@m, forward, chain(hello)).
@774516
4 ?- send(@m, forward, 3 + 4).
7
5 ?- send(@m, forward, [hello, world]).
@608322

In all these examples the argument is a Prolog compound term which —according to the
definition of send/3— is translated into a XPCE instance of the class of the principal functor.
In 3) this is an instance of class chain. In 4) this is an instance of class +. Class + however
is a subclass of the XPCE class function and function objects are evaluated when given to
a method that does not accept a function-type argument. Example 5) illustrates that a list is
converted to a XPCE chain.

We can fix these problems using the prolog/1 functor. Example 7) illustrates that also
non-ground terms may be passed.

6 ?- send(@m, forward, prolog(chain(hello))).
chain(hello)
7 ?- send(@m, forward, prolog(X)).
_G335

X = _G335

Below is a another realistic example of this misconception.

1 ?- new(D, dialog(’Bug’)),
2 send(D, append, button(verbose,
3 message(@prolog, assert,
4 verbose(on)))),
5 send(D, open).
6 [PCE warning: new: Unknown class: verbose
7 in: new(verbose(on))]

One correct solution for this task is below. An alternative is to call a predicate
set verbose/0 that realises the assertion.

1 make_verbose_dialog :-
2 new(D, dialog(’Correct’)),
3 send(D, append,
4 button(verbose,
5 message(@prolog, assert,
6 prolog(verbose(on))))),
7 send(D, open).

6.2.1 Life-time of Prolog terms in XPCE

.
XPCE is connected to Prolog through the foreign language interface. Its interface predi-

cates are passed Prolog terms by reference. Such a reference however is only valid during

XPCE 6.6.37

48 CHAPTER 6. XPCE AND PROLOG

the execution of the foreign procedure. So, why does the example above work? As soon
as the send/3 in make verbose dialog/0 returns the term-reference holding the term
verbose(on) is no longer valid!

To solve this problem, prolog term has two alternative representations. It is created
from a term-reference. After the interface call (send/3 in this case) returns, it checks whether
it has created Prolog term objects. If it finds such an object that is not referenced, it destroys
the object. If it finds an object that is referenced it records Prolog terms into the database
and stores a reference to the recorded database record.

Summarising, Prolog terms are copied as soon as the method to which they are passed
returns. Normally this is the case if a Prolog terms is used to fill an instance-variable in
XPCE.

XPCE 6.6.37

Defining classes 7
The user defined class interface provides a natural way to define new XPCE classes. It is
both used to create higher level libraries that have the same interface as the built-in XPCE

classes as to define entire applications. Many of the library modules and XPCE/Prolog demo
programs are implemented as user-defined classes. The PceDraw demo is an elaborate
example defined entirely in user-defined classes.

A user defined class lives in XPCE, just as any other XPCE class. There is no difference.
Both use dynamic resolution of messages to method objects and then execute the method
object. Both use the same object-management and storage facilities.

XPCE/Prolog user-defined classes have their methods implemented in Prolog. This pro-
vides a neat and transparent interface between the two systems.1

User defined classes are defined using Prolog syntax, where some operators have spe-
cial meaning. The definition of an XPCE/Prolog class is enclosed in

:- pce_begin_class(<Class>, <Super> [, <Comment>]).
<Class definition>
:- pce_end_class.

Multiple classes may be defined in the same Prolog source file, but class definitions may not
be nested.

7.1 The class definition skeleton

We introduce the syntax for user-defined classes using a skeleton. Except for the
pce begin class/[2,3] and pce end class/0, everything in the skeleton is optional
and may be repeated multiple times. The order of declarations is not important, but the order
of the skeleton is the proposed order. An exception to this rule is the pce group/1 directive,
that may be placed anywhere and defines the group-identifier for the declarations that follow.
The skeleton is given in figure 7.1.

7.1.1 Definition of the template elements

:- pce begin class(+[Meta:]Class, +Super, [+Summary])
Start the definition of an XPCE user-defined class. This directive can appear anywhere
in a Prolog source file. The definition must be closed using pce end class/0 and

1XPCE defines four implementation techniques for methods. C-function pointers are used for al-
most all the built-in behaviour. C++-function pointers are used when classes are defined in C++
([Wielemaker & Anjewierden, 1994]). Instances of c pointer are left to the host object for interpretation and
finally, code objects are executed.

XPCE 6.6.37

50 CHAPTER 7. DEFINING CLASSES

:- pce begin class([〈Meta〉:]〈Class〉[({〈TermName〉})], 〈Super〉[, 〈Summary〉]).

:- use class template(〈TemplateClass〉).
:- send(@class, 〈Selector〉{, 〈Arg〉}).
:- pce class directive(〈Goal〉).

variable(〈Name〉, 〈Type〉[:= 〈Value〉], 〈Access〉 [, 〈Summary〉]).

delegate to(〈VarName〉).

class variable(〈Name〉, 〈Type〉, 〈Default〉 [, 〈Summary〉]).

handle(〈X〉, 〈Y〉, 〈Kind〉, 〈Name〉).

:- pce group(〈Group〉).

〈SendSelector〉(〈Receiver〉{, 〈Arg〉[:[〈AName〉=]〈Type〉]}) :->
[〈Summary〉::]
〈PrologBody〉.

〈GetSelector〉(〈Receiver〉{, 〈Arg〉[:[〈AName〉=]〈Type〉]}, 〈RVal〉[:〈Type〉]) :<-
[〈Summary〉::]
〈PrologBody〉.

:- pce end class.

Figure 7.1: Skeleton for user-defined classes

XPCE 6.6.37

7.1. THE CLASS DEFINITION SKELETON 51

definitions may not be nested. Class describes the class to be created. Besides giving
the class-name, the meta-class (class of the class) may be specified. When omit-
ted, the meta-class of the Super will be used, which is normally class class. An
example of meta-class programming can be found in PceDraw’s file shape.pl, see
[Wielemaker, 1992].

The class-name may be followed by a list of TermNames that define the result of
object/2. object/2 unifies its second argument with a term whose functor is the
name of the class and whose arguments are the result of a ‘get’ operation using the
TermName as selector. For example, point(x,y) specifies that object(P, T) unifies
T to a term point/2 with the ←x and ←y of the point instance as arguments. When
omitted, the term-description of the super-class is inherited.

:- use class template(TemplateClass)
Import a class template. See section 7.5.2.

:- send(@class, ...)
Directives like this may be used to invoke methods on the class under construction.
This can be used to modify the class in ways that are not defined by this prepro-
cessor. The following example tells the system that the ‘visual’ attribute of an imag-
inary user-defined class should not be saved to file when the object is saved using
‘object → save in file’.

:- send(@class, save_style_variable, nil).

See also pce class directive/1 and section 7.5.3.

:- pce class directive(+:Goal)
Define Goal to be a goal that manipulates the class instance directly. See section 7.5.3.

variable(Name, Type, Access, [Summary])
Define a new instance variable. Name is the name of the variable, which is local to the
class and its subclasses. Type defines the type. See section 3.2.1 and section 7.5.1.
The type may be postfixed with := Value to specify an initial value. If Value can be mod-
ified (i.e. is not a constant, int or name) it is often desirable to use := new(NewTerm)
to force each instance to create its own unique copy of the initial value. Access de-
fines which implicit universal methods will be associated with the variable. A universal
method is defined to be a method that reads or writes the slot, without performing any
additional actions. See also section 7.2.

delegate to(VariableName)
Declares the variable named VariableName to be a candidate for delegation. See
section C.4.

class variable(Name, Type, Default, [Summary])
Declare a class-variable for the class. Class-variables describe common properties for
all instances of the class. The Default value for a class-variable can de defined in the
Defaults file. See chapter 8 for details.

The Default entry describes the default value if there is no value specified in the
Defaults file. Example:

XPCE 6.6.37

52 CHAPTER 7. DEFINING CLASSES

class_variable(size, size, size(400,200), "Default size of object").

handle(X, Y, Kind, Name)
Equivalent to the expression below. See also section 5.3.

:- send(@class, handle, handle(X, Y, Kind, Name)).

:- pce group(GroupIdentifier)
Sets the ‘behaviour ←→ group’ attribute of any variable or method definition follow-
ing this directive. Groups are used to organise methods by the ClassBrowser. Groups
have no semantic implications. :- pce group(@default). makes methods inherit
their group from the method that is re(de)fined. If no method is re(de)fined, the group
will be miscellaneous.

:- pce end class(Class)
End the definition of the named Class. Class must be the same as the class-name used
by the most recent pce begin class/[2,3]. This variation of pce end class/0
provides better documentation and error correction.

:- pce begin class()
Close the definition of the most recently started class. See also pce end class/1.

Syntax details

Table table 7.1 describes the details of the non-terminals in the above skeleton in more detail.
The notation is an incomplete BNF notation.

7.2 Accessing instance variables (slots)

The method ‘object ←→ slot’ is used to access slots directly, bypassing possible methods
with the same name. Normally, it should only be used in →initialise (see below) and
when defining a method with the same name as a variable. Below is a fragment where
a type slot is displayed by a text object named type in a graphical object. This variable
has access get, associating a universal method←type that yields the current value of the
slot. The implementation of →type uses the →slot method to write the argument in the
←type slot and subsequently performs the required side-effects. The ... indicate where the
fragment is incomplete.

variable(type, name, get, "Epistemological type").

initialise(D, Type:name, ...) :->
send_super(D, initialise),
send(D, slot, type, Type),
send(D, display, new(T, text(Type))),
send(T, name, type),
...

XPCE 6.6.37

7.2. ACCESSING INSTANCE VARIABLES (SLOTS) 53

〈Meta〉 ::= 〈Name〉 Name of the class this class will be an in-
stance of. Default is the meta-class of the
super-class

〈Class〉 ::= 〈Name〉 Name of the class to be defined
〈TermName〉 ::= 〈Name〉 Selector name to fetch object/2 argu-

ment. For example, a point is translated
into point(〈X〉, 〈Y〉) and the description is
point(x,y)

〈Super〉 ::= 〈Name〉 Name of the super-class. object refers to
the most general class

〈Summary〉 ::= "{〈Char〉}" Summary description as appearing in the on-
line manual. < 40 characters, no newlines,
Prolog string

〈TemplateClass〉 ::= 〈Name〉 Import a template class. See section 7.5.2
〈Selector〉 ::= 〈Name〉 Name of a method
〈X〉 ::= 〈IntExpr〉 See class handle
〈Y〉 ::= 〈IntExpr〉 See class handle
〈Kind〉 ::= 〈Name〉 Category indicator. See class handle
〈Access〉 ::= both |

get |
send |
none

Defines the access right to this variable

〈VarName〉 ::= 〈Name〉 Name of variable used for delegation
〈Group〉 ::= 〈Name〉 Functional group of the following methods or

variables. Used to organise the ClassBrowser
〈SendSelector〉 ::= 〈Name〉 Name of send-method to define
〈GetSelector〉 ::= 〈Name〉 Name of get-method to define
〈Receiver〉 ::= 〈Variable〉 Prolog variable bound to the receiver
〈Arg〉 ::= 〈Variable〉 Prolog variable bound to argument
〈RVal〉 ::= 〈Variable〉 Prolog variable that should be bound to the re-

turn value
〈AName〉 ::= 〈Name〉 XPCE name for named argument
〈Type〉 See section 3.2.1 and section 7.5.1
〈PrologBody〉 Ordinary Prolog code
〈Value〉 Initial value for the instance variable. At this

moment, only using constants is supported
(int, name, bool)

Table 7.1: Syntax details for User Defined Classes

XPCE 6.6.37

54 CHAPTER 7. DEFINING CLASSES

type(D, Type:type) :->
"Modify the epistemological type"::
send(D, slot, type, Type),
get(D, member, type, Text),
send(Text, string, Type).

object→ slot: name, unchecked
object← slot: name→ unchecked

Read or write slot without side-effects. The value will be converted to the type of the
instance variable addressed. An error is raised if this conversion is not defined or if the
slot does not exist.

7.3 Refining and redefining methods

Re(de)fining methods is a common technique in object-oriented programming. This section
describes how methods can be re(de)fined and what methods have special meaning in XPCE

and are commonly redefined.
The method definition for a re(de)fined method is exactly the same as for a new method.

The redefined method will inherit its group (see pce group/1) from the method of the super-
class.

When refining a method we often want to call the method of our super-class. For this
reason there are two additional interface predicates to access the behaviour of a specific
class. In 99% of the cases we wish to invoke a method of the immediate super-class. For
this reason the class-compiler realises compile-time rewrite of send super/[2-12] and
get super/[3-13] to send class/2 and get class/3.

send class(+Object, +Class, +Message)
Invoke Message on Object using the implementation defined with class Class. Class
must be the actual class of Object or one of its super-classes or an error is raised.

get class(+Object, +Class, +Message, -Result)
This is the get-equivalent of send class/3.

send super(+Object, +Message)
The class-compiler converts goals of this format to an appropriate send class/3 call.
Note that it is not possible to provide predicates as an alternative to the compile-time
expansion and therefore meta-calls cannot use send super/2.

get super(+Object, +Message, -Result)
This is the get-equivalent of send super/2.

Similar as the predicates send/2 and get/3 may be written as send/[3-12] and
get/[4-13] this is possible for send super/2 and get super/3. In addition the pre-5.0
‘object → send super’ and ‘object ← get super’ are expanded to send class/2
and get class/3. The following calls are all equivalent. The last one should not be used
by new code.

XPCE 6.6.37

7.3. REFINING AND REDEFINING METHODS 55

1 send_super(Object, my_method(Arg1))
2 send_super(Object, my_method, Arg1)
3 send(Object, send_super, my_method, Arg1)

7.3.1 General redefinitions

The most commonly redefined methods are →initialise and →unlink to redefine ob-
ject creation and destruction. Note that none of these methods should ever be invoked
directly on an object, because the implementation often makes assumptions that are only
true in the context they are normally invoked by the kernel.

object→ initialise: 〈Class-Defined〉
Initialise a new instance of the class. The initialisation is not allowed to access be-
haviour or slots of the super-class without invoking the →initialise on th super-
class. Omitting is a common source of errors, often leading to crashes.

The initialise method should initialise all slots declared in this class that have no spec-
ified value in the variable declaration and cannot have the value @nil. See also
checkpce/0.

If →initialise fails, the exception initialise failed will be raised, passing
the instance and the argument vector. Afterwards, the (possible named) reference is
destroyed and the object’s slots are reset to @nil. Finally, the instance is deallocated.
→unlink (see below) is not called. In general, it is not good programming style to let
→initialise fail.

object→ unlink
Called from the object-management system if the object is to be destroyed. This
method must call →unlink of the super-class somewhere in the process. It is an
error if→unlink fails.

This method is normally used to unlink the object from related objects. For example,
graphical objects use it to remove themselves from their device if they are displayed.
There is no need to reset slot-values as dereferencing the slot-values will be done by
the object-management system after→unlink has finished.

→unlink is always called, whether the object was destroyed using→free or by the
garbage-collector.

object← convert: 〈Class-Defined〉 → Instance
This get method converts another object into an object of this class. It is called by the
type-checker. Suppose an object X is handed to the type checker for checking against
this class. If X is not already an instance of this class or any of its subclasses, the type
checker will:

• Check X against the 〈Class-Defined〉 type.
• Run this method, passing the (possibly converted) X.

The receiver is not defined during the execution of this method. The method should
either fail or succeed and return an instance of the requested class or one of its super-
classes. The argument vector consists of a single argument. The type-conversion

XPCE 6.6.37

56 CHAPTER 7. DEFINING CLASSES

system guarantees the argument is of the satisfied type. It is allowed, but not obligatory
to use the method of the super-class.

For example, suppose we are defining a class person, who has a unique name. There
is a table @persons, that maps the name onto the person. We would like to be able
to pass the name rather then a person instance to a method argument with the type
person. If no such person exist, a new person instance is created. Below is the
implementation for this:

convert(_, Name:name, P:person) :<-
"Lookup from @persons or create a new one"::
(get(@persons, member, Name, P)
-> true
; new(P, person(Name))
).

See also←lookup described below.

object← lookup: 〈Class-Defined〉 → Instance
Called from the new() virtual machine operation to deal with reusable objects be-
fore →initialise is considered. The arguments are normally the same as for
→initialise. If this method returns an instance, this will be the value returned
by new(). If it fails, a new instance is allocated and→initialised.

7.3.2 Redefinition in graphical classes

The generic graphical class graphical is prepared to have several of its methods redefined
in subclasses. This section describes the most important of these methods.

graphical→ event: event
Called when a user-event needs to be dispatched. This message is initially sent to the
window object receiving the event. Graphical devices (and thus windows) collect all
graphicals for which ‘graphical →in event area’ succeeds. These are normally all
graphicals that overlap with the current position of the pointer. It will sort these objects
to their stacking order, the topmost object first. See ‘device ← pointed’. Next the
device will use ‘event → post’ to post the event to each of these graphicals until
one accepts the event, after which the method immediately returns success. If none of
the ←pointed objects is prepared to accept the event, ‘graphical → event’ will
be invoked, trying all he recogniser objects associated with this graphical.

Notably most subclasses of class dialog item, the standard controllers, refine
→event.

The method→event is commonly redefined in user-defined graphicals to make them
sensitive to the mouse. The following fragment of a class definition makes it possible
to resize and move instances.

:- pce_global(@resize_and_move_recogniser,
new(handler_group(new(resize_gesture),

XPCE 6.6.37

7.3. REFINING AND REDEFINING METHODS 57

new(move_gesture)))).

event(Gr, Ev:event) :->
"Make the object re-sizeable and movable"::
(send_super(Gr, event, Ev)
; send(@resize_and_move_recogniser, event, Ev)
).

Note that the implementation first tries the super-class. If the super-class has no
specific event-handling, this allows recognisers to be attached that overrule the re-
size/move behaviour. Also, if it is a device, invoking the super-class behaviour will test
components displayed on the device to be considered before the device as a whole.

It is not obligatory to use →event on the super-class and if it is used, no specific
ordering is required. If there is no behaviour of the super-class that conflicts with your
extension we recommend to try the super-class first, to ensure recognisers and local
event-processing in graphicals displayed on a device with redefined event-processing
are considered before your extensions.

Note the way recognisers are activated from event methods. The graphical ob-
ject itself is not passed. Instead, ‘recogniser → event’ reads the receiver from
‘event ← receiver’ set by ‘event → post’.

As a consequence, do not call ‘graphical → event’ directly. An event is directed
to a graphical using ‘event → post’. For example, the event-method of a device
displaying an editable text object may decide to forward all button and keyboard events
to the text. The following accomplishes this:

event(D, Ev:event) :->
((send(Ev, is_a, button)

; send(Ev, is_a, keyboard)
)

-> % assumes text is named ‘text’
get(D, member, text, Text),
send(Ev, post, Text)

; send_super(D, event, Ev)
).

graphical→ geometry: X:[int], Y:[int], W:[int], H:[int]
Requests the receiver to position itself at the X, Y and to be W ×H pixels in size. Any
of these values may be @default, indicating that the specific parameter is not to be
changed.

Redefining →geometry is the proper way to interfere with positioning or resizing as
this is the central method called by all move and resize methods.

The example below takes the text-box to ensure proper geometry handling by this
class. Note that (I) the size of a device is by definition the bounding box of all displayed
graphicals and (II) the text must be centered again.

XPCE 6.6.37

58 CHAPTER 7. DEFINING CLASSES

geometry(D, X:[int], Y:[int], W:[int], H:[int]) :->
get(D, member, box, B),
get(D, member, text, T),
send(B, set, @default, @default, W, H),
send(T, center, B?center),
send_super(D, geometry, X, Y).

Note that the relation between the text and the box could also be maintained using
a constraint object. The above implementation however is only executed when
the geometry of the device is changed, while constraints will be executed whenever a
message arrives on the box or text.

graphical→ request geometry: X:[int], Y:[int], W:[int], H:[int]
Is much like→geometry, except that the interpretation of the units is left to the graph-
ical. For example editor will use the current font to translate W and H to pixels and
then invoke→geometry. Not used very often.

graphical→ compute
This method cooperates with→request compute and may be used to delay expen-
sive graphical operations. Suppose we have a graphical representation and a database
object linked using a hyper like this:

new(_, hyper(Db, Gr, controller, model))

If the database object (model) is modified, it could use the following to inform all asso-
ciated controllers about the change:

send(Db, send_hyper, controller, request_compute)

XPCE remembers that the state of this graphical is not consistent. If XPCE requires the
graphical to be in a consistent state, either because it needs to paint the graphical or
because it requires information about the geometry of the graphical, it will invoke the
method→compute on the graphical.

This mechanism is used by graphicals that have a complicated structure and are dif-
ficult to update. An example in the built-in classes is class text image, displaying
the text of an editor. Any modification to the text in the displayed region of the
text image requires expensive computation to recompute the layout of the text. Sup-
pose the →request compute and →compute mechanism is not available. It this
case, multiple modifications by the program to the text would require this expensive
process to run several times. Now, after modifying the text, →request compute is
invoked on the text image. Whenever XPCE has processed all pending events, it will
invoke→compute to the text image and then repaint it.

The method below is a far to simple example, where the →compute method simply
copies the name of the represented object into the text object displayed on the device
→compute is defined on.

XPCE 6.6.37

7.4. HANDLING DEFAULT ARGUMENTS 59

compute(C) :->
"Update according to model"::
get(C, get_hyper, model, name, Name),
get(C, member, text, T),
send(T, string, Name),
send_super(C, compute).

graphical→ redraw area: area
Called by the graphical repaint thread. Its task is to repaint itself. Area indicates the
area in the device coordinate system that needs to be repainted. This area overlaps
with the←area of the device.

Exploitation of this method to realise new graphical primitives is explained in sec-
tion 10.12.

7.4 Handling default arguments

The predicate default/3 provides a comfortable way to specify the meaning of default
arguments. Future versions may incorporate the default value in the type object itself.

default(+Argument, +Default, -Value)
Used to specify and compute defaults for arguments. Argument is the actual argument
passed to the method implementation, Default is any valid XPCE object description
(reference, integer, real, atom or compound ground term describing an object, see
send/[2-12]). Default can also be the term

resource(<Object>, <Name>)

In which case the ←resource value: 〈Name〉 from 〈Object〉 will be used as default
value. Value is unified with Argument if Argument is not @default and with Default
otherwise.

The following is an example that sets the volume to a specified value or the value of
the resource ‘volume’ if @default is passed as an argument.

resource(volume, 0..130, 75, "Volume in decibels").

volume(X, Vol:[0..130]) :->
default(Vol, resource(X, volume), V),
<set the volume here>.

7.5 Advanced topics

7.5.1 More on type declarations

The basic XPCE type-syntax is described in section 3.2.1 of this manual. Types are first-
class reusable XPCE objects that are created from the type-declaration in arguments and

XPCE 6.6.37

60 CHAPTER 7. DEFINING CLASSES

variables. The conversion from the textual representation to the object is performed by XPCE

itself (together with the resource syntax, one of the few places where XPCE defines syntax).
All types can be specified as Prolog quoted atoms. For example:

mymethod(Me, A:’graphical|dict_item|0..’) :->
...

For most cases however, this is not necessary. If the type is not an atom, the class-compiler
will convert the Prolog term into an atom suitable for XPCE’s type system. Hence, [point]
will translate to the atom ’[point]’, which is interpreted by XPCE as “an instance of class point
or the constant @default”. The atoms * and ... are defined as postfix operators, while
.. is an infix operator. This makes ‘any ...’ a valid notation for “any number of anything”
(see section 7.5.2 below) and ‘0..5’ a valid expression for “an integer in the range 0 to 5
(including the boundaries).

Also, [box|circle] is a valid description for “an instance of box or circle or the con-
stant @default. Note however that [box|circle|ellipse] is not valid Prolog syntax
and should be written as ’[box|circle|ellipse]’. Whenever you are in doubt, use
quotes to prevent surprises.

7.5.2 Methods with variable number of arguments

Methods such as ‘chain → initialise’ and ‘string → format’ handle an arbitrary
number of arguments. The argument declaration for such a method first defines a num-
ber (possibly zero) of ‘normal’ arguments. The last argument is postfixed with ‘...’. The
arguments assigned to the ‘vararg’ type are passed in a Prolog list.

Below is a refinement of ‘label → report’ that will colour the label depending on the
nature of the message. The →report method takes two obligatory arguments, the kind of
the report and a format string, as well as an undefined number of arguments required by the
format specification.

1 :- pce_begin_class(coloured_reporter, label,
2 "Coloured reporter label").
3

4 report(L, Kind:name, Format:char_array, Args:any ...) :->
5 Msg =.. [report, Kind, Format | Args],
6 send_super(L, Msg),
7 get(L, colour_from_report_category, Kind, Colour),
8 send(L, colour, Colour).
9

10 colour_from_report_category(L, Kind:name, Colour:colour) :<-
11 <left to the user>.
12

13 :- pce_end_class.

Using class templates

XPCE provides two alternatives to multiple inheritance. Delegation is discussed in sec-
tion C.4. See also the directive delegate to/1 for user-defined class definitions. The

XPCE 6.6.37

7.5. ADVANCED TOPICS 61

template mechanism is much closer to real multiple inheritance. A template is a named par-
tial class-definition that may be included in other classes. It behaves as if the source-code
of the template definition was literally included at the place of the use class template/1
directive.

In fact, the class-attributes (variables, method objects) are copied, while the implemen-
tation (the Prolog clauses) are shared between multiple references to the same template.

Templates itself form a hierarchy below class template, which is an immediate subclass
of object. Including a template will make all variables and methods defined between the
template class and class template available to the receiving class.

We illustrate the example below, making both editable boxes as editable ellipses. First
we define the template class.

1 :- use_module(library(pce_template)).
2

3 :- pce_begin_class(editable_graphical, template).
4

5 :- pce_global(@editable_graphical_recogniser,
6 make_editable_graphical_recogniser).
7

8 make_editable_graphical_recogniser(G) :-
9 Gr = @arg1,
10 new(Dev, Gr?device),
11 new(P, popup),
12 send_list(P, append,
13 [menu_item(cut, message(Gr, free)),
14 menu_item(duplicate,
15 message(Dev, display, Gr?clone,
16 ?(Gr?position, plus,
17 point(10,10))))
18]),
19 new(G, handler_group(new(resize_gesture),
20 new(move_gesture),
21 popup_gesture(P))).
22

23

24 event(G, Ev:event) :->
25 (send_super(G, event, Ev)
26 ; send(@editable_graphical_recogniser, event, Ev)
27).
28 :- pce_end_class.

The main program can now be defined as:

1 :- require([use_class_template/1]).
2

3 :- pce_begin_class(editable_box, box).
4 :- use_class_template(editable_graphical).
5 :- pce_end_class.
6

7 :- pce_begin_class(editable_ellipse, ellipse).
8 :- use_class_template(editable_graphical).
9 :- pce_end_class.

XPCE 6.6.37

62 CHAPTER 7. DEFINING CLASSES

10

11 test :-
12 send(new(P, picture(’Template Demo’)), open),
13 send(P, display,
14 editable_box(100,50), point(20,20)),
15 send(P, display,
16 editable_ellipse(100, 50), point(20, 90)).

Note that use class template/1 imports the definitions from the template
in the current class. Thus, the following will not extend further on the
‘editable graphical → event’ definition, but instead replace this definition. Of
course it is allowed to subclass the definition of editable box above and further refine the
event method in the subclass.

1 :- require([use_class_template/1]).
2

3 :- pce_begin_class(editable_box, box).
4 :- use_class_template(editable_graphical).
5

6 event(Gr, Ev:event) :->
7 (send_super(Gr, event, Ev)
8 ; ...
9).
10 :- pce_end_class.

7.5.3 Implementation notes

The XPCE/Prolog class-compilation is defined using the Prolog preprocessing capabilities of
term expansion/2. While the class is compiled, Prolog gathers the expressions belonging
to the class. The expansion of :- pce end class(Class) emits the actual code for the
class.

The method implementation is realised by the predicates
pce principal:send implementation/3 and pce principal:get implementation/4. that take
the form:

send implementation(MethodId, Method(Arg...), Object)
Where MethodId is unique identifier for the class and method, Method is the method
implemented, Arg... are the arguments accepted by the method and Object is the
receiving object.

get implementation(MethodId, Method(Arg...), Object, -Result)
This is the get-equivalent of send implementation/3.

:- pce_begin_class(gnus, ...
gnu(X, A:int) :-> ...
gnats(X, A:name, B:int) :-> ...

is translated into

XPCE 6.6.37

7.5. ADVANCED TOPICS 63

pce_principal:send_implementation(’gnus$+$->gnu’, gnu(A), O) :- ...
pce_principal:send_implementation(’gnats$+$->gnu’, gnats(A, B), O) :- ...

The remainder of the class specification is translated into a number of Prolog clauses de-
scribing the class. No XPCE class is created. If XPCE generates an undefined class
exception, it will scan for the class-description in the Prolog database and create the XPCE

class instance. No methods are associated with the new class. Instead, all method binding
is again based on exception handling.

Modifications to the class beyond what is provided by the preprocessing facilities (for ex-
ample changing the ‘variable → clone style’) cannot be made by sending messages
to the class inside the class definition body as this would address the not-yet-existing class.
Instead, they should be embedded in the pce class directive/1 directive.2. The Goal
argument of pce class directive/1 should refer to the class using the XPCE var object
@class. When the class is realised the exception system will bind @class to the current
class while running Goal. Goal is called from the Prolog module in which the class is defined.

The main reason for the above approach is to exploit the runtime-generation facilities
of the hosting Prolog system to create fast-starting portable and (depending on the hosting
Prolog’s capabilities) stand-alone executables.

One of the consequences of the chosen approach is that the class-building directives are
not accessible as predicates. There is no preprocessing support for the dynamic creation
of classes and the programmer should thus fall back to raw manipulation of the XPCE class
objects.

2To facilitate the translation of old code, the construct :- send(@class, ... is treated automatically as if
it was embedded using pce class directive/1

XPCE 6.6.37

64 CHAPTER 7. DEFINING CLASSES

XPCE 6.6.37

Class Variables 8
Class variables act as read-only storage for class-constants. They are normally used for
storing setting information, such as fonts, colours etc. For this reason, the default value for
a class variable is defined with the declaration of it, but this default my be overruled
using the Defaults file. The system defaults file is located in the XPCE home directory
(‘@pce ← home’). This file contains an include statement, including the file ˜/.xpce/
Defaults,1 which may be used by the developer and application user to specify defaults.

Many XPCE built-in classes define class-variables. These can be examined using the
ClassBrowser (see section 3.3.1) from the online manual tools.

8.1 Accessing Class Variables

Class variables define get-behaviour and can be accessed using the normal get/[3-13]
call. Class variables are the last type of behaviour checked when resolving a get-method.
Below are the most commonly used methods to access class-variables.

object← class variable value: name→ any
Return the value of the named class-variable. Fails silently if the class does not define
the given class-variable.

class← class variable: name→ class variable
Return the class variable object with the given name. Fails silently if the class
does not define the given class-variable.

class variable←→ value: any
Reads or writes the class-variable value. The argument is type-checked using
‘class variable ← type’ if the value is written. Writing class-variables should
be handled with care, as existing instances of the class are not notified of the
change, and may not be prepared deal with changes of the class-variable value.
pce image directory/1 is an example of a predicate modifying the image.path
class-variable.

8.2 Class variable and instance variables

Class-variables may be used as defaults for instance-variables that can be modified through
the Defaults file. For example, class text defines both the instance- and class-variable

1On Windows systems, ˜ expands to \%HOME\%, \%USERPROFILE\%, \%HOMEDRIVE\%/\%HOMEPATH\%
or the root of the current drive. See expand file name/2 of the SWI-Prolog manual.

XPCE 6.6.37

66 CHAPTER 8. CLASS VARIABLES

font. The class-variable defines the default font, while the font can be modified explicitely at
instance-initialisation, or using the→font method afterwards.

If a class defines both an instance- and a class-variable with the same name, object-
allocation will use the constant @class default for the initial value of the slot. First
access will replace this value using the value from the class-variable.

Instance-variables supercede class-variables for get-behaviour. To access the class-
variable explicitly, use the methods from section 8.1.

8.3 The ‘Defaults’ file

The Defaults file consists of statements. Each statement is on a separate line. A state-
ment may be split over several lines by preceeding the newline with a backslash (\). The
exclamation mark (!) is the line-comment character. All input from the ! upto the following
newline is replaced by a single space-character. Empty lines or lines containing only blank
space are ignored.

Default files may include other default files using the statement

#include 〈file〉

Default statements are of the form:

〈class〉.〈class-variable〉: 〈value〉

Where 〈class〉 denotes the name of the class, or * to indicate the default applies for
any class defining this class-variable. If both forms are found, the statement with the ex-
plicit class-name is used. 〈class-variable〉 denotes the class-variable name. 〈value〉 is the
default value of the class-variable. The syntax for 〈value〉 is similar to the arguments of
send/[2-12]. The (informal) syntax for 〈value〉 is below.

〈Any〉 ::= 〈int〉
| 〈float〉
| 〈Name〉
| @〈Name〉
| 〈Chain〉
| 〈Object〉

〈Chain〉 ::= [〈Any〉 {, 〈Any〉}]
| [〈Blank〉]

〈Object〉 ::= 〈ClassName〉()
| 〈ClassName〉(〈Any〉 {, 〈Any〉})
| 〈PrefixOp〉 〈Any〉
| 〈Any〉 〈InfixOp〉 〈Any〉
| 〈Any〉 〈PostfixOp〉
| " 〈String〉 "

〈String〉 ::= {〈CharNotDoubleQuote〉|""}
〈Name〉 ::= 〈Letter〉{〈Letter〉|〈Digit〉}

| ’ {〈CharNotSingleQuote〉|’’} ’

XPCE 6.6.37

8.4. CLASS VARIABLES IN USER DEFINED CLASSES 67

8.4 Class variables in User Defined Classes

Class-variables are declared, similar to instance-variables. through macro-expansion inside
the :- pce begin class/[2,3] . . . :- pce end class/0 definition of a class. The syntax
is:

class variable(〈name〉, 〈type〉, 〈default〉, [〈summary〉]).

〈default〉 defines the value if not overruled in the Defaults file. It is a Prolog term
describing an object similar to the arguments of send/[2-12].

In the following example. there is a class with the property ‘expert level’. The program de-
fines the default level to be novice. The user may change that in his/her personal Defaults
file or change it while the application is running. As the value may change at runtime, there
should be an instance- as well as a class-variable. Below is the skeleton for this code:

variable(expert_level, {novice,advanced,expert}, get,
"Experience level of the user").

class_variable(expert_level, @default, novice).

expert_level(Obj, Level:{novice,advanced,expert}) :->
send(Obj, slot, expert_level, Level),
<handle changes>.

...,
(get(Obj, expert_level, expert)
-> ...
; ...
),
...

XPCE 6.6.37

68 CHAPTER 8. CLASS VARIABLES

XPCE 6.6.37

Program resources 9
Resources, in the new sense of the word is data that is required by an application but can-
not be expressed easily as program-code. Examples are image-files, help-files, and other
files using non-Prolog syntax. Such files are declared by defining clauses for the predicate
resource/3:

resource(?Name, ?Class, ?PathSpec)
Define the file specified by PathSpec to contain data for the resource named Name of
resource-class Class.

Name refers to the logical name of the resource, which is interpreted locally for a Prolog
module. Declarations in the module user are visible as defaults from all other modules.
Class defines the type of object to be expected in the file. Right now, they provide an
additional name-space for resources. PathSpec is a file specification as acceptable to
absolute file name/[2,3].

Resources can be handled both from Prolog as for XPCE. From Prolog, this is achieved
using open resource/3:

open resource(+Name, ?Class, -Stream)
Opens the resource specified by Name and Class. If the latter is a variable, it will
be unified to the class of the first resource found that has the specified Name. If
successful, Stream becomes a handle to a binary input stream, providing access to
the content of the resource.

The predicate open resource/3 first checks resource/3. If successful it will open
the returned resource source-file. Otherwise it will look in the programs resource
database. When creating a saved-state, the system saves the resource contents into
the resource archive, but does not save the resource clauses.

This way, the development environment uses the files (and modifications to the
resource/3 declarations and/or files containing resource info thus immediately af-
fect the running environment, while the runtime system quickly accesses the system
resources.

From XPCE, resources are accessed using the class resource, which is located next
to file below the common data-representation class source sink. Many of the methods
that require data accept instances of source sink, making resources a suitable candidate.

Below is the preferred way to specify and use an icon.

resource(my_icon, image, image(’my_icon.xpm’)).

XPCE 6.6.37

70 CHAPTER 9. PROGRAM RESOURCES

...,
send(Button, label, image(resource(my_icon))),
...,

The directive pce image directory/1 adds the provided directory to the search-path for
images (represented in the class-variable image.path), as well as to the image/1 defini-
tion of file search path/2.

Please note that MS-Windows formatted image files can currently not be loaded through
resource objects. The Windows API only provides functions to extract these objects from
a single file, or nested as Windows resources in a .dll or .exe file.

Right now, it is advised to translate the images into .xpm format using the following
simple command:

?- send(image(’myicon.ico’), save, ’myicon,xpm’, xpm).

This transformation is complete as the .XPM image format covers all aspects of the Microsoft
image formats. For further details on image formats and manipulation, see section 10.10.

XPCE 6.6.37

Programming techniques 10
This chapter is an assorted collection of techniques to programming problems that appear in
many applications and for which support for generic solutions is present, but cannot easily
be found using the online reference manual.

10.1 Control-structure of PCE/Prolog applications
Discusses the event-driven control-structure used by XPCE applications. Also de-
scribes how to avoid using this structure.

10.2 Executable Objects
Discusses XPCE code objects and their usage in controls, methods and as parameters.

10.3 Defining global named objects
Discusses handling of globally named system-wide objects.

10.4 Using object references: “Who’s Who?”
Discusses mechanism available to find object references, avoiding global references
and explicit storage of references.

10.5 Relating frames
Discusses combining frames in a application, transient frames and various styles of
modal operation and event handling.

10.7 Informing the user
Discusses the generic reporting system used to inform the user of progress, status and
errors.

10.8 Errors
Specifying, handling and generating errors.

10.9 Specifying fonts
Discusses the indirections in the font-specification mechanism.

10.10 Using images and cursors
Discusses images, icons and cursors.

10.11 Using Hyper Links to Relate Objects
Discusses a technique to relate objects.

10.12 User Defined Graphicals
Discusses the definition of new graphical primitives.

10.13 Printing
Discusses printing from XPCE applications.

XPCE 6.6.37

72 CHAPTER 10. PROGRAMMING TECHNIQUES

XPCE 6.6.37

10.1. CONTROL-STRUCTURE OF XPCE/PROLOG APPLICATIONS 73

10.1 Control-structure of XPCE/Prolog applications

This section deals with the control-structure of interactive applications written in XPCE/Prolog.
Interactive graphical applications are very different from terminal oriented applications. Ter-
minal oriented applications often have a top level control structure of the form:

go :-
initialise,
main_loop.

main_loop :-
present_question,
read_answer(Answer),
process_answer(Answer),
main_loop.

This schema is often refined with sub-loops dealing with question/answers in a specific con-
text.

Many interactive graphical applications present various UI components simultaneously:
the user is free on which component s/he wants to operate next. The users actions
(keyboard-typing, mouse movement, and mouse-clicking) must be related to the correct UI
component and interpreted accordingly in the application. This interpretation is much more
complex than the interpretation of a stream of ASCII characters typed by the user.

10.1.1 Event-driven applications

One approach is to write a main-loop that reads events, locates the UI-component referred to
and executes the appropriate actions. This loop, which must take care of repaint-requests,
various local feedback procedures (changing the mouse-cursor, inverting objects, etc.), is
complicated. The approach taken by most graphical programming systems including XPCE,
is to move this loop into the infra-structure (i.e. into the XPCE kernel). The application pro-
grammer creates the desired UI-components and supplies code fragments that will be called
by the main-loop when a certain event happens. This control-structure is called event-driven
control. Consider a button:

1 ?- new(B, button(hello,
message(@pce, write_ln, hello))),

send(B, open).

In this example the application creates and displays a button UI component and associates a
code fragment (the message) to be executed when the button is pressed. The XPCE kernel
will loop through the main event-loop. For each event it will locate the UI component that
should handle the event. When the button has recognised a ‘click’ it will execute the code
fragment attached to it. This behaviour is part of the definition of class button.

It is clear that this approach relieves the application programmer of many of the com-
plications associated with event-processing. As a consequence, the ‘main-loop’ of a XPCE
application is no longer in the application itself, but in the XPCE kernel. Below is an outline
of the control structure of a XPCE/Prolog application:

XPCE 6.6.37

74 CHAPTER 10. PROGRAMMING TECHNIQUES

go :-
initialise_database,
create_ui_components.

handle_help_pressed :-
create_help_window.

handle_solve :-
solve_the_problem,
create_solution_window.

...

The predicate go will exit after it has initialised the application and created the UI com-
ponents. Assuming the application window has a button invoking the predicate han-
dle help pressed, XPCE will call this predicate when the user presses the help button.

Keeping control

The application code often wants to wait for the user to finish an interaction. In section 4.4,
we have seen a simple way of programming this using ‘frame ← confirm’. In this section,
we will provide some other options.

Message Queue One possibility is to fall back to the XPCE 1 and 2 compatibility, where
@prolog implements a queue of messages. @prolog is an instance of class host. The
relevant methods are:

host→ call back: bool
The default is @on. In this case, a message to @prolog is translated into a
predicate call on the Prolog engine. If @off, a message is appended to the
‘host ← messages’ queue.

host→ catch all: Selector:name, Arg:any...
If ←call back equals @on, use the Selector to determine the predicate to call, and
the arguments to construct the argument vector for the predicate. Call the predicate
and succeed or fail according to success or failure of the Prolog predicate.

If←call back equals @off, create a message of the form

message(@prolog, Selector, Arg ...)

and append this message to the←messages queue.

host← message→ message
Return the ←head of the ←messages queue. If the queue is empty, en-
sure ←call back is (temporary) set to @off, and dispatch events using
‘@display → dispatch’ as long as the←messages queue is empty.

XPCE 6.6.37

10.1. CONTROL-STRUCTURE OF XPCE/PROLOG APPLICATIONS 75

Note that it is possible to create multiple instances of class host, to realise multiple
message queues. It is not desirable to modify the @prolog host object, as other code may
rely on the←call back properties of @prolog.

Warning During normal operation, event processing guards the objects cre-
ated that are not assigned to any other object and destroys all such objects after
the event has completely been processed (see section E. Using the host mes-
sage queue mechanism, the Prolog programmer becomes responsible for such
objects. For example, the message object returned should be discarded using
‘object → done’ after processing.

Explicit dispatching An alternative to the above, and the ‘frame ← confirm’
mechanism is to dispatch the events yourself. This is realised using
send(@display, dispatch), described below. This mechanism is the base of all
the others. It should be used to realise different interaction schemas than the default
callback schema.

display→ dispatch
Process events and return on any of the following conditions

• event has been processed
Either a normal event, a timer or an input stream has been processed. The
method fails in this case.

• timeout
The timeout (see ‘display manager → dispatch’) has expired. The method
fails in this case.

• Input on the console
There is input from the Prolog window. The message succeeds in this case.

For example, the following processes events in call-back style until the fact quit/0 is
in the Prolog database:

1 :- dynamic
2 quit/0.
3

4 process_to_quit :-
5 repeat,
6 send(@display, dispatch),
7 quit, !.

10.1.2 XPCE and existing applications

Due to the different control-regime described in the previous section, traditional terminal ori-
ented applications are not easily transformed into XPCE/Prolog graphical applications. De-
pending on the application, there are two ways to proceed.

The first is to keep the existing control-regime. This implies that the questions asked on
the terminal will be replaced by modal dialog windows. The main loop will be:

XPCE 6.6.37

76 CHAPTER 10. PROGRAMMING TECHNIQUES

go :-
initialise_database,
create_dialog(Dialog).

main_loop(Dialog) :-
fill_dialog_with_next_question(Dialog),
send(Dialog, fit),
get(Dialog, confirm, Answer),
process_answer(Answer),
main_loop(Dialog).

This example reuses the same dialog window for all questions. It is trivial to change this loop
to use a new dialog window for each question. Output from the program may be presented
in other windows. The approach does not exploit the potentially larger freedom for the user
that is possible in graphical user interfaces.

If the application could be viewed as a number of commands operating on some
data-structure and this data-structure is stored on the Prolog heap using assert/1 or
recorda/2 one could consider rewriting the toplevel control and provide a more flexible
interface.

XPCE 6.6.37

10.2. EXECUTABLE OBJECTS 77

10.2 Executable objects

PCE defines executable objects. Executable objects (called code objects) can be compared
to lambda functions in Lisp. They are used in the contexts given below.

• Definition of ‘call-back’ actions
The most common usage of executable objects is to specify the action undertaken by
interactive UI components when they are activated. We have seen examples of this in
section 2.8.

• As parameter to a method
Various methods take an executable object as a parameter to specify the action un-
dertaken. Suppose we want to remove all graphicals in the selection of a graphical
device. The method ‘device ← selection’ returns a chain object containing all
graphicals currently selected on the device. The implementation is:

...,
send(Dev?graphicals, for_all, message(@arg1, free)).
...

The method ‘chain → for all’ will execute the argument message object in a loop
for all elements in the chain. It will bind @arg1 to the currently processed element of
the chain.

Two major groups of code objects are distinguished: procedures and functions. The first
only returns status information similar to the send-operation. The latter returns a value or
failure status information similar to the get-operation.

10.2.1 Procedures

Procedures perform an action when executed. Similar to Prolog, the execution of a pro-
cedure either returns successful or failed completion. Procedures are normally executed
by the object or method they are handed to. For example, the procedure associated to
a button object is executed when the button is pressed. The procedure handed to the
‘chain → for all’ method we have seen above is executed by this method for each ele-
ment of the chain.

Procedures can also be executed explicitly using the method ‘code → forward’. This
binds the argument-forwarding objects @arg1, ..., and then executes the procedure and
restores the old bindings of argument-forwarding objects. For example:

1 ?- new(@m, message(@prolog, format, ’Hello ˜w˜n’, @arg1)).
2 ?- send(@m, forward, world).
Hello world

• message(Receiver, Selector, Argument ...)
A message object starts a send-operation when executed. The arguments of a mes-
sage are either objects or functions. In the latter case these are evaluated before the

XPCE 6.6.37

78 CHAPTER 10. PROGRAMMING TECHNIQUES

message itself is evaluated. If the evaluation of one of the argument functions fails, the
message is not executed. The Receiver of a the message can be @prolog to invoke
a predicate in the Prolog environment.

• and(Statement, ...)
An and is a sequence of code objects. It fails if one of the members fails and succeeds
otherwise. If a statement is a function, it will be evaluated. Functions fail only if they
return the fail control-value. Notably, a function that returned the boolean @off (false)
is considered to have succeeded.

• if(Condition, [Then], [Else])
An if implements a branch. It first evaluates Condition and then either of Then or Else.
The success of the entire if is determined by the success of the executed Then or Else.
Either or both of these statements may be omitted. The construct if(Statement)
may be used to force success of a code object.

• Conditions: (A == B, A \== B, A < B, ...)
These executable objects are commonly used as conditions for the if object.

The online manual may be used to get an overview of the other available code objects. See
section 3.3.4.

10.2.2 Functions

Functions are code objects which —when executed— evaluate to a value. They are com-
monly used as arguments to other code objects or as arguments to any method. A function
is automatically evaluated iff:

• It appears as part of a code object that is executed

• Type checking demands execution

The most important function objects are:

• ?(Receiver, Selector, Argument, ...)
Class ? starts a get-operation when executed (= evaluated). The classname is pro-
nounced as obtainer. All the arguments may be functions. These will be evaluated
before the get-operation is performed. As with message, a failing evaluation of one of
the arguments forces failure of the whole.

• var
Class var describes a variable. The objects @arg1, @arg2, ..., @arg10, @receiver
and @event are the most commonly used var objects.

The objects @arg1, ... are the message forwarding arguments. Assume the following
message.

?- new(@m, message(@pce, format,
’Hello %s\n’, @arg1)).

When executed, @arg1 (a function) is first evaluated. The method
‘code → forward: argument, ...’ binds these var objects locally:

XPCE 6.6.37

10.2. EXECUTABLE OBJECTS 79

?- send(@m, execute),
send(@m, forward, world),
send(@m, execute).

@default
world
@default

The objects @receiver and @event are functions referring to the receiver of the
currently executing method and the current user-event. Var objects are rarely created
explicitly by application programmers.

• arithmetic functions (+, -, *, /)
These functions define integer arithmetic and are commonly used to deal with graphical
computations in code objects.

• create(Class, InitArg, ...)
This function evaluates to a new instance of Class from the given InitArg initialisation
arguments. Its usage is best explained using an example. Consider we want to iterate
over all boxes in a graphical device, writing a file with lines of the form

BOX <name> at X, Y

A naive approach and common beginners mistake is to write:

...,
new(F, file(Output)),
send(F, open, write),
send(Dev?graphicals, for_all,

if(message(@arg1, instance_of, box),
message(F, append,

string(’BOX %s at %d,%d\n’,
@arg1?name,
@arg1?x,
@arg1?y)))),

send(F, close),
...

This example will yield a warning:

[PCE error: get: No implementation for:
@default/constant <-x

in: get(@default/constant, x)]
PCE: 4 fail: get(@default/constant, x) ?

The reason for this is that the interface will translate string(...) into an instance of class
string, instead of the execution of the →for all method’s body creating different
strings for each box displayed on the device. The correct solution is to use:

XPCE 6.6.37

80 CHAPTER 10. PROGRAMMING TECHNIQUES

...,
new(F, file(Output)),
send(F, open, write),
send(Dev?graphicals, for_all,

if(message(@arg1, instance_of, box),
message(F, append,

create(string,
’BOX %s at %d,%d\n’,
@arg1?name,
@arg1?x,
@arg1?y)))),

send(F, close),
...

The construct ‘create(...)’ will create an instance of class create.
‘message → execute’ will first evaluate all functions in the message and thus
create an instance of class string.

10.2.3 Example 1: Finding objects

A common problem is to find objects, notably some specific graphical object on a window.
If we want to find all instances of class box within a graphical device, we can use the call
below, collecting all boxes on the device in a new chain.

1 ...
2 get(Dev?graphicals, find_all.
3 message(@arg1, instance_of, box),
4 Boxes),
5 ...

10.2.4 Example 2: Internal behaviour of dialog window

Code are most commonly used to specify the internal behaviour of dialog windows, such that
the call-back predicate can concentrate on the real function. We have seen an example of
this in section 2.8.

Below there is another example. Data is assumed to be an XPCE string object contain-
ing a PostScripttm description of a graphical object as can be obtained using

...,
get(Graphical, postscript, PostScriptString),
...,

In this example both the internal dynamics of the dialog window (the label of the text-entry
fields changes if the user switches from file to printer) and grabbing the arguments from the
various dialog items is written using XPCE executable objects. Prolog will only be called to
do the real work: printing the data to the requested destination.

XPCE 6.6.37

10.2. EXECUTABLE OBJECTS 81

Note that XPCE/Prolog does not require you to use XPCE executable objects this way. It
is also possible to call Prolog from both the menu and the buttons, passing the dialog window
as argument and write all behaviour in Prolog. We leave this as an exercise to the user.

1 postscript(Data) :-
2 new(D, dialog(’Print destination’)),
3 send(D, append, new(T, menu(destination, marked))),
4 send_list(T, append, [printer, file]),
5 send(T, layout, horizontal),
6 send(D, append,
7 new(A, text_item(printer_name, ’PostScript’))),
8 send(T, message,
9 if(T?selection == printer,
10 message(A, label,
11 ?(A, label_name, printer_name)),
12 message(A, label,
13 ?(A, label_name, file_name)))),
14 send(D, append,
15 button(ok, and(message(@prolog,
16 print_postscript,
17 T?selection,
18 A?selection,
19 Data),
20 message(D, destroy)))),
21 send(D, append,
22 button(cancel, message(D, destroy))),
23 send(D, default_button, ok),
24 send(D, open).
25

26 print_postscript(printer, Address, Data) :- !,
27 new(F, file),
28 send(F, open, write),
29 send(F, append, Data),
30 send(F, close),
31 get(F, name, TmpFile),
32 get(string(’lpr -P%s %s’, Address, TmpFile),
33 value, Command),
34 unix(shell(Command)),
35 send(F, remove).
36 print_postscript(file, Address, Data) :-
37 new(F, file(Address)),
38 send(F, open, write),
39 send(F, append, Data),
40 send(F, close).

XPCE 6.6.37

82 CHAPTER 10. PROGRAMMING TECHNIQUES

Figure 10.1: Print destination dialog using code objects for internal behaviour

XPCE 6.6.37

10.3. DEFINING GLOBAL NAMED OBJECTS 83

10.3 Defining global named objects

As explained before, named references should be restricted to debugging and reusable ob-
jects. A couple of problems related to their creation and usage can be identified:

• Creating
Objects need to be created before they can be used. Reusable objects generally are
used from various places in the application. How are they best declared and when are
they best created?

• Versioning
Symbolic programming languages generally allow the programmer to change the pro-
gram when it is running. This property makes them suitable for rapid-prototyping.
Global objects are created from the Prolog system. It is desirable that the global object
changes if the source-code that declares it has been changed.

Various alternatives to creating global objects have been tried. We will present some
of the straight-forward approaches below and describe the (dis)advantages. Section 10.3.3
describes the pce global/2 directive to solve this problem. We will use a particular fill-
pattern (image) as an example.

10.3.1 Using directives

Using a directive to create a reusable global object appears to be a logical way of dealing
with them. This leads to the following code:

:- new(@stones_image, image(stones)).

...,
send(Box, fill_pattern, @stones_image),
...

This code has a serious disadvantage. Whenever this file is reloaded after the Prolog code
inside it has changed, the directive will be executed as well. The predicate new/2 will gen-
erate a warning on an attempt to create an object with an existing name.

10.3.2 Inline testing

Another common approach is to test inline. For the example, this would look like:

...,
(object(@stones_image)
-> true
; new(@stones_image, image(stones))
),
send(Box, fill_pattern, @stones_image),
...

This approach is bad programming style. If @stones bitmap is required at various places
in the source files this construct needs to be repeated at various places.

XPCE 6.6.37

84 CHAPTER 10. PROGRAMMING TECHNIQUES

10.3.3 The ‘pce global’ directive

This approach is based on exception-handling. If PCE translates a named reference into
an internal reference and the named reference does not exist it will raise an exception. The
pce global/2 directive installs an exception handler dealing with a specific global refer-
ence. The example becomes:

:- pce_global(@stones_image, new(image(stones))).

...,
send(Box, fill_pattern, @stones_image),
...

This directive applies some heuristics to take care of redefinitions when the file is recon-
sulted: if the definition is still the same it will not complain. If the definition has modified and
the object is already created it will rename the object using ‘object →name reference’.
A later reference to the object will trap the exception handler again, creating a new object
according to the current specification. The directive prints diagnostics messages on re-
definitions and other possible problems during compilation. See appendix D for details on
pce global/2.

10.3.4 Global objects for recognisers

Recogniser objects (see section 5.5) that make graphical objects sensitive to mouse events
are often created with a global reference. Suppose an application requires box objects that
can be moved, resized and that have a popup menu. The recogniser may be defined as:

1 :- pce_global(@mybox_recogniser, make_mybox_recogniser).
2

3 make_mybox_recogniser(R) :-
4 Gr = @arg1,
5 new(P, popup),
6 send_list(P, append,
7 [menu_item(cut, message(Gr, free))
8 ...
9]),
10 new(R, handler_group(new(resize_gesture),
11 new(move_gesture),
12 popup_gesture(P))).

This recogniser object may be attached to the graphical objects either using
‘graphical → recogniser’ or by redefining the ‘graphical → event’ method. In
the first case, the recogniser is an integral part of the graphical object and cannot be changed
easily during the lifetime of the object. In the second case, the reference to the gesture is
through the Prolog implementation of the method and replacing the global object will make
all members of the class behave according to the new definition immediately.

If the latter approach is taken and the recogniser is under development, you may wish to
use free/1 to make sure the new definition is created:

XPCE 6.6.37

10.3. DEFINING GLOBAL NAMED OBJECTS 85

:- free(@mybox_recogniser).
:- pce_global(@mybox_recogniser, make_mybox_recogniser).

XPCE 6.6.37

86 CHAPTER 10. PROGRAMMING TECHNIQUES

XPCE 6.6.37

10.4. USING OBJECT REFERENCES: “WHO’S WHO?” 87

10.4 Using object references: “Who’s Who?”

A user interface generally consists of a large amount of UI components. Some of these
are used as input devices and some as output devices. Input devices generally activate
functionality in the host system. Output devices are addressed by the host system to present
results. Both input- and output devices may be related to entities within the application. For
example, a particular icon may be the visualisation of a file in the computer’s file-system.

The application must be able to find the references to these UI components. Various
techniques are available to keep track of objects in the user interface. Below we will discuss
the following case:

We want to create a frame, consisting of a dialog window and a picture window.
The dialog contains a menu holding fill-patterns. The picture contains a box with a
popup-menu that fills the interior of the box with the currently selected fill-pattern.

To reduce the code of the individual examples, the following predicate creating the fill-
pattern menu is assumed to be available:

1 fill_pattern(@white_image).
2 fill_pattern(@grey12_image).
3 fill_pattern(@grey25_image).
4 fill_pattern(@grey50_image).
5 fill_pattern(@grey75_image).
6 fill_pattern(@black_image).
7

8 make_fill_pattern_menu(M) :-
9 new(M, menu(fill_pattern, marked)),
10 send(M, layout, horizontal),
11 forall(fill_pattern(P),
12 send(M, append, menu_item(P, @default, P))).

10.4.1 Global named references

Using this approach, we will call the menu @fill pattern menu. It leads to the following
(minimal) program:

1 fill_1(P) :-
2 new(D, dialog(’Fill 1’)),
3 make_fill_pattern_menu(@fill_pattern_menu),
4 send(D, append, @fill_pattern_menu),
5 send(new(P, picture), below, D),
6 send(D, open).
7

8 add_box_1(P) :-
9 send(P, display, new(B, box(100,100)), point(20,20)),
10 send(B, popup, new(Pop, popup)),
11 send(Pop, append,
12 menu_item(fill,
13 message(B, fill_pattern,
14 @fill_pattern_menu?selection))).

XPCE 6.6.37

88 CHAPTER 10. PROGRAMMING TECHNIQUES

1 ?- fill_1(P),
add_box_1(P).

This approach is straightforward. Unfortunately it has various serious disadvantages:

• Name conflicts
Large applications will have many objects whose references needs to be available.
Unless the application provides a structure that can be used to generate meaningful
names, one is likely to run into name conflicts quickly.

• Object life-time
With named references, the application is responsible for destruction of the object.
Thus, if a window holding named objects is freed, the named objects will not be de-
stroyed. This has to be done explicitly. See also appendix E.

• No multiple instances
The code above cannot be called more than once to create more than one such frame.

Global references are part of PCE to keep track of objects that are created once and
will remain in existence during the entire PCE session. Examples are the predefined global
objects @pce, @prolog, @display, etc. Other examples are reusable objects such as
relations, messages, recognisers, methods, images to be used as fill-patterns, etc. See
below:

:- pce_global(@center,
new(spatial(xref=x+w/2, yref=y+h/2,

xref=x+w/2, yref=y+h/2)).
:- pce_global(@move_outline,

new(move_outline_gesture)).

10.4.2 Using the prolog database

Dynamic predicates form another technique often used by novice PCE users. Using dynamic
predicates the “label” would result in:

1 :- dynamic
2 fill_pattern_menu/1.
3

4 fill_2(P) :-
5 new(D, dialog(’Fill 2’)),
6 make_fill_pattern_menu(M),
7 send(D, append, M),
8 asserta(fill_pattern_menu(M)),
9 send(new(P, picture), below, D),
10 send(D, open).
11

12 add_box_2(P) :-
13 send(P, display, new(B, box(100,100)), point(20,20)),
14 send(B, popup, new(Pop, popup)),

XPCE 6.6.37

10.4. USING OBJECT REFERENCES: “WHO’S WHO?” 89

15 fill_pattern_menu(M),
16 send(Pop, append,
17 menu_item(fill,
18 message(B, fill_pattern,
19 M?selection))).

1 ?- fill_2(P),
add_box_2(P).

This is not a proper way to deal with references either. First of all, it does not really solve
the danger of name conflicts unless one is using Prolog modules to establish storage of the
dynamic predicates local to the module that uses them. More seriously, using implicit object
references, PCE assumes it is allowed to destroy the object whenever no other PCE object
has a reference to it. The fill pattern menu/1 predicate then holds an invalid reference.

10.4.3 Using object-level attributes

PCE object-level attributes provide another approach:

1 fill_3(P) :-
2 new(D, dialog(’Fill 3’)),
3 make_fill_pattern_menu(M),
4 send(D, append, M),
5 send(new(P, picture), below, D),
6 send(P, attribute, fill_pattern_menu, M),
7 send(D, open).
8

9 add_box_3(P) :-
10 send(P, display, new(B, box(100,100)), point(20,20)),
11 send(B, popup, new(Pop, popup)),
12 get(P, fill_pattern_menu, M),
13 send(Pop, append,
14 menu_item(fill,
15 message(B, fill_pattern,
16 M?selection))).

1 ?- fill_3(P),
add_box_3(P).

This approach is much better. There no longer is a potential name-conflict and PCE has
access to all information it needs for proper memory management. Two disadvantages re-
main. First of all, the message object has a direct reference to ‘P’ and therefore the entire
recogniser object cannot be shared by multiple graphical objects (reused). Second, the code
for the box assumes the picture has an attribute fill pattern menu and this attribute refers to
a menu holding fill-patterns.

XPCE 6.6.37

90 CHAPTER 10. PROGRAMMING TECHNIQUES

10.4.4 Using window and graphical behaviour

All graphicals in PCE have a name, and graphical devices define the method
‘device ← member: name’ to find the (first) graphical with this name. The default name
for a graphical is its class name. For dialog-items it is the label of the item. Using←member
results in:

1 fill_4(P) :-
2 new(D, dialog(’Fill 4’)),
3 make_fill_pattern_menu(M),
4 send(D, append, M),
5 send(new(P, picture), below, D),
6 send(D, open).
7

8 :- pce_global(@fill_with_current_pattern,
9 make_fill_with_current_pattern).
10

11 make_fill_with_current_pattern(G) :-
12 new(G, popup),
13 send(G, append,
14 menu_item(fill,
15 message(Gr, fill_pattern,
16 ?(?(Gr?frame, member, dialog),
17 member,
18 fill_pattern)?selection))).
19

20 add_box_4(P) :-
21 send(P, display, new(B, box(100,100)), point(20,20)),
22 send(B, popup, @fill_with_current_pattern).

fill4 :-
fill_4(P),
add_box_4(P).

In this example we have made the recogniser generic. This saves both time and memory.
Note however that this approach could be used in the previous example as well.

This example has largely the same (dis)advantages as the previous two. As an advan-
tage, the attribute object may be omitted. The assumption here is that the frame the box is
in contains a dialog which in turn contains a graphical object named ‘fill pattern’ that imple-
ments a←selection method yielding an image.

10.4.5 Using user defined classes

Using user-defined classes we can hide the implementation details and make objects depend
on each other in a much more organised manner.

1 :- pce_begin_class(fill5, frame).
2

3 initialise(F) :->
4 send(F, send_super, initialise, ’Fill 5’),

XPCE 6.6.37

10.4. USING OBJECT REFERENCES: “WHO’S WHO?” 91

5 send(F, append, new(D, dialog)),
6 make_fill_pattern_menu(M),
7 send(D, append, M),
8 send(new(picture), below, D).
9

10 current_fill_pattern(F, P:image) :<-
11 get(F, member, dialog, D),
12 get(D, member, fill_pattern, M),
13 get(M, selection, P).
14

15 draw_box(F) :->
16 get(F, member, picture, P),
17 send(P, display, fillbox(100,100), point(20,20)).
18

19 :- pce_end_class.
20

21 :- pce_begin_class(fillbox, box).
22

23 :- pce_global(@fillbox_recogniser, make_fillbox_recogniser).
24 make_fillbox_recogniser(G) :-
25 Gr = @arg1,
26 new(G, popup_gesture(new(P, popup))),
27 send(P, append,
28 menu_item(fill,
29 message(Gr, fill_pattern,
30 Gr?frame?current_fill_pattern))).
31

32 event(B, Ev:event) :->
33 (send(B, send_super, event, Ev)
34 ; send(@fillbox_recogniser, event, Ev)
35).
36 :- pce_end_class.

1 ?- send(new(F, fill5), open),
send(F, draw_box).

The fillbox now only assumes it is contained in an application window that defines
←current fill pattern, while the application (the frame) hides its internal window or-
ganisation using the methods←current fill pattern and→draw box.

10.4.6 Summary

Using global references or the Prolog database to keep track of instances in the UI is not
the appropriate way. This approach quickly leads to name-conflicts, harms the memory
management of PCE and makes it difficult to write reusable code.

Using attributes or user-defined classes to find (graphical) objects solves the name-
conflict problems and allows PCE to perform proper memory management. It also allows
multiple copies of these windows to run simultaneously. Using user-defined classes allows
one to make the code more robust against later changes and allow low-level objects to be
better reusable.

XPCE 6.6.37

92 CHAPTER 10. PROGRAMMING TECHNIQUES

Large applications should carefully design the infra-structure to manage the structure of
the UI components as well as the relation between UI objects and application entities.See
[Wielemaker & Anjewierden, 1989].

Hyper objects as described in section 10.11 form an alternative to relate objects that is
suitable if dependent objects cannot rely on each other’s existence.

XPCE 6.6.37

10.5. RELATING FRAMES 93

10.5 Relating frames

Applications may consist of multiple frames, either permanent, or temporary such as for
opening a ‘settings’ window. This section discusses how frame references can be found, as
well as how frames can force the user to deal with this frame first, in favour of all the other
frames of the application: modal frames.

10.5.1 Class application

The class application is the key to this section. An application is a subclass of
visual, and optionally located between display and frame in the visual consists-of hi-
erarchy. It defines the ‘application ← member’ method to located named frames, and
thus supports locating frames similar to other graphicals as described in section 10.4.

A frame is made part of an application using the method
‘frame → application’. The application to which a frame is related may be changed.
Frames are not required to be part of an application.

frame→ application: application*
Changes the application object the receiver belongs too. Combining multiple frame
objects in an application allows for finding frames as well as defining modal relations
between frames. See ‘frame → modal’.

The application to which a frame belongs may be changed at any time. Using the @nil
argument, to frame is detached from any application.

This method invokes ‘application → delete’ to the application currently holding
the frame (if any) and ‘application → append’ to the application receiving the
frame. These methods may be redefined if an application wants to keep track of its
associated frames.

application← member: name→ frame
Return the frame for which ‘frame ← name’ returns the argument name. See also
‘device ← member’ and section 10.4.

10.5.2 Transient frames

The term transient window is taken from X11. A transient window (frame) is a frame that
supports another frame. Transient windows are normally used for prompting. The related
method is:

frame→ transient for: frame
Make the receiver a transient window for the argument. This notion is handed to the
X11 window manager, but the support varies. Therefore XPCE ensures that:

• The transient window stays on top
Whenever the main window is raised, the transient window is raised too, ensuring
the transient window does not get hidden behind the main window.

XPCE 6.6.37

94 CHAPTER 10. PROGRAMMING TECHNIQUES

• Synchronise status change and destruction
Status change (see ‘frame → status: {unmapped,hidden,iconic,open}’) of
the main window are forwarded to the transient windows. If the main window
is destroyed, so is the transient window.

10.5.3 Modal operation

The method ‘frame → modal’ works in combination with class application and tran-
sient frames to define what frames are temporary insensitive to events, forcing the user to
operate on the modal frame first.

frame→ modal: {application,transient}*
Operate as a modal frame for all frames in the ←application, the frame I am
←transient for, or none. A common sequence to display a modal dialog window
centered on a frame is below. Note that, instead of ‘frame →open centered’, one
could also have used ‘frame ← confirm centered’.

settings(Frame) :->
"Open settings dialog"::
new(D, dialog(settings)),
send(D, transient_for, Frame),
send(D, modal, transient),
...,
<fill the dialog>,
...,
send(D, open_centered, Frame?area?center).

Instead of using the center of a frame, the method can also use the location of @event
to position itself. The code fragment for that is:

...,
(send(@event, instance_of, event)
-> get(@event, position, @display, EventPos)
; EventPos = @default)
),
send(D, open_centered, EventPos).

XPCE 6.6.37

10.6. WINDOW LAYOUT IN A FRAME 95

W1

W2

W3

W4

W5

 Title

Figure 10.2: Demo window layout

10.6 Window layout in a frame

A frame is the gateway between a collection of tiled windows (graphics, dialog) and the
Window System. Any displayed window has a frame. The ‘window → create’ method
(invoked by ‘window → open’) will create a default frame for a window if the window does
not have a frame.

Windows in a frame are controlled by a hierarchy of tile objects. The leaves of this
hierarchy manage an individual window, while the non-leaf tiles either manages a left-to-
right list of sub-tiles or a top-to-bottom list. A non-leaf horizontal (left-to-right) tile forces
all windows to be as high as the highest wishes to be and distributes the horizontal space
over the sub-tiles, while a vertical tile forces all members to the same (widest) member and
distributes the vertical space.

A tile hierarchy is built using the methods ‘window → above’, etc. described below.
Each window is born with a leaf-tile. If two windows are connected using→left or→right,
a horizontal tile is created. Any other window associated to the left or right will be added as
a member to this horizontal tile. A analogous story applies to vertically stacked windows.

If a window or collection of windows is placed left of a vertical tiled stack of windows, a
horizontal tile is created.

Whenever a window receives one of the→above,→left, etc. messages, it will forward
these messages to the root of the associated tile hierarchy. Assuming both windows are not
yet related, the root tiles negotiate the alignment (combine, become member, create a new
root).

Suppose we want to realise the window layout shown in figure 10.2. Now, look for win-
dows that have equal width or height. This is the starting point, W3 and W4 in this example.
So, the first statement is:

send(W3, above, W4)

Note that ‘send(W4, below, W3)’ is the same, except that if both W3 and W4 have a
frame attached, the frame of the argument of the message will hold both windows, while
the frame of the receiver is destroyed.

Now simply continue inwards-out:

send(W2, left, W3),

XPCE 6.6.37

96 CHAPTER 10. PROGRAMMING TECHNIQUES

W1 W2 W3 W4 W5

T1 T2 T3 T4 T5

V6

H7

V8Vn

Hn

Wn

Tn

Vertical tile

Horizontal tile

Leaf tile

Window

Figure 10.3: Tile hierarchy of example

send(W1, above, W2),
send(W5, below, W2)

Note that ‘send(W2, left, W4)’ is exactly the same as positioning W2 left of W3. The resulting
tile hierarchy is shown in figure 10.3. The numbers indicate the order of creation of the
various objects.

10.6.1 Windows sizes and automatic adjustment

A tile defines six size parameters, described below.

tile→ ideal width: int
tile→ ideal height: int

These two parameters describe the ideal size of the tile. The initial values for these
parameters are read from the window for which the tile is created. A non-leaf horizontal
tile sets the ideal width to the sum of its members and the ideal height to the maximum
of its members.

tile→ hor stretch: 0..100
tile→ ver stretch: 0..100

These two parameters describe how easy the window stretches (gets bigger). A non-
leaf horizontal tile sets hor stretch to the maximum of its members and ver stretch to
the minimum of its members.

tile→ hor shrink: 0..100
tile→ ver shrink: 0..100

Same, but deals with making the window/tile smaller than its ideal size.

The various built-in window types have the following defaults shown in table 10.1.
These rules will often suffice for simple applications. You may adjust the stretch and

shrink parameters after creating the window, but before opening the window.

10.6.2 Manipulating an open frame

Windows may be added to an open frame using the →above, etc. message, specifying
any of the member windows as argument. Windows may be deleted from a frame using

XPCE 6.6.37

10.6. WINDOW LAYOUT IN A FRAME 97

class width height hor shrink ver shrink hor stretch ver stretch
window 200 100 100 100 100 100
picture 400 200 100 100 100 100
dialog 200α 100α 0 0 0 0
browser 25β 10β 0 100 0 100
view 80β 20β 100 100 100 100

aIf the dialog is not empty, the bounding box of the contents with the←gap around it will be used.
bInterpreted as character units.

Table 10.1: The window types and their default sizes

‘frame → delete’. If a window is added or deleted from an open window, the message
‘frame → fit’ will be called to readjust the contents. This will normally change the size
of the frame. If this is not desired, class frame must be sub-classed as below. Note that
fixed size should not be set to @on before the frame is open.

1 :- pce_begin_class(my_dynamic_frame, frame,
2 "Add fixed_size").
3

4 variable(fixed_size, bool := @off, both,
5 "Do not resize on ->fit").
6

7 fit(F) :->
8 "Request to fit the contents"::
9 (get(F, fixed_size, @on)
10 -> send(F, resize)
11 ; send(F, send_super, fit)
12).

XPCE 6.6.37

98 CHAPTER 10. PROGRAMMING TECHNIQUES

XPCE 6.6.37

10.7. INFORMING THE USER 99

10.7 Informing the user

10.7.1 Aim of the report mechanism

Objects perform actions on behalf of the user. Sometimes it is desirable to inform the ap-
plication user of progress, status or problems. In older applications, the action code often
contained knowledge about the environment in which the object was embedded. This harms
reusability and therefore XPCE provides a generic mechanism to deal with such messages.

10.7.2 The report interface

Whenever an object needs to inform the user, the programmer can use the
‘object → report’ method. The definition of this method is below.

object→ report: type, format, argument ...
Inform the user. The message is constructed from format and the argument list. See
‘string → format’ for a description of the C printf-like formatting syntax of XPCE.
type describes the nature of the message and is used by the reporting mechanism to
decide on the presentation-style. See section 10.7.2 for the available types and their
meaning.

The object posting the report message will normally not be able to display the message.
The main task of the implementations of this method in class object, visual, frame and
dialog is to divert the report to an object that can present it. By default, this is either a
label or the display object (@display).

The implementation of ‘object → report’ will simply check whether there is a current
event (see @event), which implicates the action was initiated by the user and then forward
the →report message to the ‘event ← receiver’, which is normally the controller ac-
tivated by the user. If there is no current event, the action must be initiated by a user query
to the host-language and therefore ‘object → report’ will print its feedback to the host-
language console using ‘@pce → format’.

The implementation of ‘visual → report’ will simply forward the message to its con-
taining visual object. If the message arrives at an instance of class frame, the implemen-
tation of ‘frame → report’ will broadcast the message to each of its windows, but avoid
sending it back to the window it came from. If this fails and the frame is a transient frame for
another frame, the report is forward to the main frame. Class dialog will look for an object
named reporter. If it can find such an object (typically a label), the report is sent to this
object.

If all fails, the report will arrive at the @display object, which takes care of default
handling. See section 10.7.2 on how the different report types are handled.

Information types

The report type indicates the semantic category of the report and defines how it is handled.
The following report types are defined:

• status
Information on progress, status change of the system, etc. such information should

XPCE 6.6.37

100 CHAPTER 10. PROGRAMMING TECHNIQUES

not attract much attention. By default, XPCE will format the message at an appropriate
location. If no such location can be found the message is ignored.

• inform
The user requested information and this is the reply. Handled as status, but if no
appropriate location can be found it will invoke ‘@display → inform’, presenting a
messagebox.

• progress
Indicates progress in ongoing computation. Feedback is generally similar to status,
but followed by a ‘graphical → flush’ to take immediate effect. A sequence of
progress reports should be closed with a done report.

• done
Terminates a (sequence of)→report: progress messages.

• warning
The user probably made a minor mistake for which a simple alert such as provided by
‘graphical → alert’ suffices. If there is an appropriate location for the message it
will be formatted there.

• error
Something serious went wrong and the user needs to be informed of this. For ex-
ample a file could not be read or written. If no appropriate location could be found
‘@display → inform’ is used to bring the message to the attention of the user.

10.7.3 Redefining report handling

There are two aspects in which the reporting mechanism can be redefined. The first con-
cerns the location and the other the presentation of the report. The location is changed by
defining the method ←report to. All the generic implementations of this method will first
invoke←report to on itself. If this method yields an answer, the report is forwarded to this
answer. For example, class text buffer defines a←report to that forwards all reports
to its associated editor object.

The presentation is changed by changing the implementation of ‘label → report’ or
‘display → report. As this determines the look and feel of an application, applications
should be reluctant using this.

10.7.4 Example

The typical way to exploit the report mechanism is by attaching a label named reporter to a
dialog window of the applications frame. For example, an application consisting of a menu-
bar, browser and a graphical window window could choose to make place for a small dialog
for feedback at the bottom. The following fragment would build the window layout of such an
application:

1 reportdemo :-
2 new(Frame, frame(’Reporter demo’)),
3 new(B, browser),

XPCE 6.6.37

10.7. INFORMING THE USER 101

4 send(new(picture), right, B),
5 send(new(MD, dialog), above, B),
6 send(new(RD, dialog), below, B),
7 send(Frame, append, B),
8

9 send(MD, append, new(MB, menu_bar)),
10 send(MD, pen, 0),
11 send(MD, gap, size(0,0)),
12 send(MB, append, new(File, popup(file))),
13 send_list(File, append,
14 [menu_item(load,
15 message(@prolog, load, Frame),
16 end_group := @on),
17 menu_item(quit, message(Frame, destroy))
18]),
19

20 send(RD, append, label(reporter)),
21 send(RD, gap, size(5, 0)),
22 send(Frame, open).

Now suppose the implementation of the ‘load’ action takes considerable time. The imple-
mentation below reads a file assuming each line in the file contains a word.

1 :- pce_autoload(finder, library(find_file)).
2 :- pce_global(@finder, new(finder)).
3

4 load(Frame) :-
5 get(@finder, file, exists := @on, FileName),
6 send(Frame, report, progress,
7 ’Loading %s ...’, FileName),
8 get(Frame, member, browser, Browser),
9 new(File, file(FileName)),
10 send(File, open, read),
11 (repeat,
12 (get(File, read_line, Line)
13 -> send(Line, strip),
14 send(Browser, append, Line),
15 fail
16 ; !,
17 send(File, close)
18)
19),
20 send(Frame, report, done).

The result is shown in figure 10.4.

XPCE 6.6.37

102 CHAPTER 10. PROGRAMMING TECHNIQUES

Figure 10.4: The ‘reporter’ demo

XPCE 6.6.37

10.8. ERRORS 103

10.8 Errors

Errors are abnormalities that are detected during a programs execution. Errors may be
caused by bugs in XPCE, bugs in the application program and finally by the application user
making errors in operating the application (e.g. specifying a protected file).

Errors may also be discriminated according to their ‘seriousness’: If a certain font cannot
be found it can easily be substituted by another. If a method expects an integer argument
but the actual argument is a graphical object it is impossible to carry-out the operation. In
such cases XPCE will normally trap the tracer. If the user decides to continue execution the
method will return failure to its caller. Finally, some problems are categorised as ‘fatal’. When
such a problem is encountered XPCE does not know how execution can be continued.

All errors (except for some that may result from XPCE bugs during the boot phase of
XPCE) are represented by an error object. An error object has the following properties:

• id
Unique identifier name of the error. It may be used to generate errors; look-up error
objects in the @errors database or catch errors (see pce catch error/2).

• kind
The kind describes how serious the error is considered to be. The possible values are:
ignored if the error is (currently) not regarded an error at all; warning if the error is to be
reported, but no further action is required; error if the error is to be fixed. After printing
the error the system will start the tracer, allowing a programmer to examine the problem
context. Finally, fatal errors do not allow execution to be continued. The system will
print context information and request Prolog to abort back to the Prolog interactive top
level.

• feedback
Determines how the error is to be reported. If print the error is printed in the Prolog
window. If report the error is reported using the report mechanism described in
section 10.7. The ‘report’ mechanism is for errors that may be caused by application
users, for example file errors. If throw and there is a Prolog goal on the stack, the
error is mapped to a Prolog exception. See below.

In the runtime-system, all errors use feedback ‘report’.

• format
A format specification to construct a message text from the context arguments provided
by the generator of the error.

The online manual “Errors Browser” may be used to examine the defined errors; change
attributes of errors and get precise description of errors.

10.8.1 Handling errors in the application

Sometimes the application wants to anticipate on certain errors. Explicit testing of all condi-
tions is a cumbersome solution to this problem. Therefore XPCE allows catching of errors by
the application.

There are two mechanism available to do this. Regardless of the ‘error ← feedback’
type of the error, all except fatal errors can be silenced using pce catch error/2:

XPCE 6.6.37

104 CHAPTER 10. PROGRAMMING TECHNIQUES

pce catch error(+ErrorSpec, :Goal)
Run Goal like once/1. It an error matching ErrorSpec is raised, this error is not re-
ported, but stored in ‘@pce ← last error’. ErrorSpec is the ←id of an error, a
chain holding error-ids or @default. The latter implies none but fatal errors are re-
ported.

The example below silently ignores errors from creating a backup of File. Note that the
call does fail if backup raises an error.

...,
pce_catch_error(backup_file, send(File, backup)),
...

If the ←feedback of the error is throw and the error is not silenced with
pce catch error/2 it is mapped to a Prolog exception of the form

error(pce(Id, ContextArgs), Goal)

For example:

?- catch(send(@pce, foobar), E, true).

E = error(pce(no_behaviour, [@pce/pce, (->), foobar]),
send(@pce/pce, foobar))

10.8.2 Raising errors

The application programmer may define new (application specific) errors. The error object is
a normal XPCE object and may thus be created using new/2. An error is raised by invoking
‘object → error’. The example below illustrates this:

:- new(_, error(no_user,
’%N: Unknown user: %s’,
warning, report)).

...,
(get(UserDatabase, user, Name)
-> ...
; send(UserDatabase, error, no_user, Name)
),
...

Note that the names of errors should be unique. It is advised to reuse existing error-id’s if
possible.

XPCE 6.6.37

10.8. ERRORS 105

10.8.3 Repairable errors

On trapping certain ‘repairable‘ errors, XPCE will first raise an exception. Exceptions may be
trapped by an exception handler which may solve the problem. If the exception-handler fails
to solve the problem, XPCE will raise an error. See section 10.8.

Exceptions are raised by invoking ‘@pce → exception: id, arg ...’. Exception handlers
are registered in the sheet ‘@pce → exception handlers’, which maps an exception-id
onto a code object that handles the exception. The following illustrates this:

1 ?- [user].
|: add_user(Name) :- write(Name), nl.
ˆD

2 ?- send(@pce?exception_handlers, value,
no_user,
message(@prolog, add_user, @arg1)).

3 ?- send(@pce, exception, no_user, fred).
fred

The context arguments passed with an exception are defined by the code raising the ex-
ception. The currently defined exceptions are listed below. See also the online manual:
‘pce → exception’ and ‘pce ← exception handlers’.

• undefined class
An attempt is made to reference a non-existing class while doing one of the following:
create an object; load an object from file using ‘File ← object’; create a subclass.
@arg1 is bound to the class-name. This trap is used by pce autoload/2, as well as
by the code that realises compiled classes.

• undefined assoc
An attempt is made to resolve a symbolic reference (i.e. @pce), but the reference
is unknown. @arg1 is bound to the missing reference name. This trap is used by
pce global/2.

• redefined assoc
An attempt is made to create an object with the same symbolic reference as an already
existing object. @arg1 is bound to the already existing reference name. This trap is
used by pce renew.

• initialisation failed
The →initialisation method for some instance failed. @arg1 is bound to the
(partial) instance; @arg2, ... are bound to the arguments given to the new-operation.

XPCE 6.6.37

106 CHAPTER 10. PROGRAMMING TECHNIQUES

XPCE 6.6.37

10.9. SPECIFYING FONTS 107

10.9 Specifying fonts

XPCE’s font specification is a two-stage process. In the first stage, XPCE physical fonts are
mapped to fonts of the underlying windowing system. In this stage, fonts are identified by
their family, style and size. For example

font(screen, roman, 13)

Refers to a fixed-width font designed for use on the screen that has normal weight, not
slanted and 13-pixels high characters.

In the second stage, logical font-names are mapped to their physical implementation. At
this level, fonts are identified by a single name from an extensible, but preferably small set.

See section B.5 for a description of Windows specific font issues.

10.9.1 Physical fonts

The default physical font set is built when the first font object is opened (i.e. its window
counterpart is located and made available to the text-drawing functions). This set is created
from class-variables on the display object. The first class-variable is display.font families,
which defines a chain with names of the font-families. The default value is:1

display.font_families: \
[screen_fonts, \
courier_fonts, \
helvetica_fonts, \
times_fonts, \
symbol_fonts

]

Each of these names refers to the name of another resource of class display, enumerating
the members of this font family. The default value can be examined using the online manual.
Below is the default value for the screen fonts font-set for X11:

display.screen_fonts: \
[font(screen, roman, 10, "6x10"), \
font(screen, roman, 12, "6x12"), \
font(screen, roman, 13, "8x13"), \
font(screen, roman, 14, "7x14"), \
font(screen, roman, 15, "9x15"), \
font(screen, bold, 13, "8x13bold"), \
font(screen, bold, 14, "7x14bold"), \
font(screen, bold, 15, "9x15bold") \

]

The set of predefined physical fonts can be examined using the FontViewer demo application
accessible through the online manual tools.

1See section 8 for the default syntax.

XPCE 6.6.37

108 CHAPTER 10. PROGRAMMING TECHNIQUES

Defining additional fonts

If an application needs additional fonts, such fonts can be declared using directives. The
fourth initialisation argument of class font determines the window-system font that will
be mapped. The syntax for this argument depends on the window-system used. For this
Unix/X11 version it is a string consisting of 15 ‘-’ separated fields. A font can be searched
using xfontsel(1) or the much better GNOME-project gfontsel(1).

For example, the 14-points ‘courier new’ TrueType font can be registered using:

:- initialization
new(_, font(courier, roman, 14,

’-winfonts-courier new-medium-r-normal-*-*-140-*-*-m-*-iso8859-1’)).

This specification has various drawbacks. For example, another library or application loaded
on top of the same XPCE process may be using the symbol,roman,14 specification, but bound
to another window-system font. A user may try to run your application on an environment
that does not have this font. Part of these problems can be eliminated by binding the font to
a logical font name. See also section 10.9.2.

:- initialization
send(@display, font_alias,

adobesymbol,
font(symbol, roman, 14,

’-*-symbol-*-*-*-*-14-*-*-*-*-*-adobe-*’)).

The application will refer to this font using the font-alias. user has other preferences or the
font is not available, the user may specify the font using the display.user fonts class-variable
described in section 10.9.2.

10.9.2 Logical fonts

.
It is not wise let your application code speak about physical fonts as the user or interface

guidelines may prefer using a different font-palette. For this reason the display defines a
mapping between logical font names and physical fonts. Applications are encouraged to use
logical font names as much as possible and leave the assignment to physical fonts to the
users preferences. XPCE predefines the following logical font-names. The value gives the
default assignment for these fonts.

• normal font(helvetica, roman, 12)
The default font. Normally a proportional roman font. Should be easy to read.

• bold font(helvetica, bold, 12)
Bold version of the normal font.

• italic font(helvetica, oblique, 12)
Slanted version of the normal font. Note that italic fonts should not be used for long
text as italics is generally not easy to read on most displays.

XPCE 6.6.37

10.9. SPECIFYING FONTS 109

• small font(helvetica, roman, 10)
Small version of the normal font. To be used in notes, subscripts, etc. May not be so
easy to read, so avoid using it for long texts.

• large font(helvetica, roman, 14)
Slightly larger version of the normal font.

• boldlarge font(helvetica, bold, 14)
Bold version of large.

• huge font(helvetica, roman, 18)
Even larger font. To be used for titles, etc.

• boldhuge font(helvetica, bold, 18)
Bold version of huge.

• fixed font(screen, roman, 13)
Terminal font. To be used for code fragments, code editors, etc. Should be easy to
read.

• tt font(screen, roman, 13)
Same as fixed.

• boldtt font(screen, bold, 13)
Bold terminal font.

• symbol font(symbol, roman, 12)
Symbol font using the adobe symbol-font encoding. This font provides many mathe-
matical symbols.

The end-user of an XPCE application can define the class-variable display.user fonts to
overrule fonts. The example below re-binds the most commonly used fonts to be slightly
larger and choose from the Times font family rather than the Helvetica fonts.

display.user_fonts: \
[normal := font(times, roman, 14), \
bold := font(times, bold, 14), \
italic := font(times, italic, 14) \

]

The mapping between logical font names and physical fonts is realised by the
methods ‘display ←→ font alias’ additional font aliases may be loaded using
‘display → load font aliases’.

Class font’s predefined conversion will translate names to font objects. This implies that
for any method expecting a font object the programmer can specify the font-name instead. In
those (rare) cases where a font needs to be passed, but the type-specification does not re-
quire this, the conversion must be done explicitly. The preferred way to make the conversion
is using the font type object:

XPCE 6.6.37

110 CHAPTER 10. PROGRAMMING TECHNIQUES

...,
get(type(font), check, bold, BoldFont),
...,

XPCE 6.6.37

10.10. USING IMAGES AND CURSORS 111

10.10 Using images and cursors

Many today graphical user interfaces extensively use (iconic) images. There are many image
formats, some for specific machines, some with specific goals in mind, such as optimal
compression at the loss of accuracy or provide alternatives for different screen properties.

One of XPCE’s aim is to provide portability between the supported platform. Therefore,
we have chosen to support a few formats across all platforms, in addition to the most popular
formats for each individual platform.

10.10.1 Colour handling

Colour handling is a hard task for todays computerprogrammer. There is a large variety in
techniques, each providing their own advantages and disadvantages. XPCE doesn’t aim for
programmers that need to get the best performance and best results rendering colours, but
for the programmer who wants a reasonable result at little effort.

As long as you are not using many colours, which is normally the case as long as you do
not handle full-colour images, there is no problem. This is why this general topic is handled
in the section on images.

Displays differ in the number of colours they can display simultaneously and whether this
set can be changed or not. X11 defines 6 types of visuals. Luckily, these days only three
models are popular.

• 8-bit colour-mapped
This is that hard one. It allows displaying 256 colours at the same time. Applications
have to negotiate with each others and the windowing systems which colours are used
at any given moment.

It is hard to do this without some advice from the user. On the other hand, this format
is popular because it leads to good graphical performance.

• 16-bit ‘high-colour’
This schema is a low-colour-resolution version of true-colour, normally using 5-bit on
the red and blue channels and 6 on the green channel. It is not very good showing
perfect colours, nor showing colour gradients.

It is as easy for the programmer as true-colour and still fairly efficient in terms of mem-
ory.

• 24/32 bit true-colour
This uses the full 8-bit resolution supported by most hardware on all three channels.
The 32-bit version wastes one byte for each pixel, achieving comfortable alignment.
Depending on the hardware, 32 bit colour is sometimes much faster.

We will further discuss 8-bit colour below. As handling this is totally different in X11 and
MS-Windows we do this in two separate sections.

Colour-mapped displays on MS-Windows

In MS-Windows one has the choice to stick with the reserved 20 colours of the system palette
or use a colourmap (palette, called by Microsoft).

XPCE 6.6.37

112 CHAPTER 10. PROGRAMMING TECHNIQUES

If an application chooses to use a colourmap switching to this application causes the
entire screen to be repainted using the application’s colourmap. The idea is that the active
application looks perfect and the other applications look a little distorted as they have to do
their job using an imperfect colourmap.

By default, XPCE makes a colour map that holds a copy of the reserved colours. As
colours are required they are added to this map. This schema is suitable for applications
using (small) icons and solid colours for graphics. When loading large colourful images the
colourmap will get very big and optimising its mapping to the display slow and poor. In this
case it is a good idea to use a fixed colourmap. See class colour map for details.

When using XPCE with many full-colour images it is advised to use high-colour or true-
colour modes.

Colour-mapped displays on X11/Unix

X11 provides colourmap sharing between applications. This avoids the flickering when
changing applications, but limits the number of available colours. Even worse, depending
on the other applications there can be a large difference in available colours. The alternative
is to use a private colourmap, but unlike MS-Windows the other applications appear in totally
random colours. XPCE does not support the use of private colourmaps therefore.

In practice, it is strongly advised to run X11 in 16, 24 or 32 bit mode when running
multiple applications presenting colourful images. For example Netscape insists creating
its own colourmap and starting Netscape after another application has consumed too many
colours will simply fail.

10.10.2 Supported Image Formats

The table below illustrates the image format capabilities of each of the platforms. Shape
support means that the format can indicate transparent areas. If such an image file is loaded,
the resulting image object will have an ‘image ← mask’ associated: a monochrome image
of the same side that indicates where paint is to be applied. This is required for defining
cursors (see ‘cursor →initialise’) from a single image file. Hotspot means the format
can specify a location. If a Hotspot is found, the ‘image ← hot spot’ attribute is filled with
it. A Hotspot is necessary for cursors, but can also be useful for other images.

Format Colour HotSpot Shape Unix/X11 Win32
load save load save

Icons, Cursors and shaped images
XPM + + + + + + +
ICO + - + - - + -
CUR + + + - - + -

Rectangular monochrome images
XBM - - - + + + -

Large rectangular images
JPEG + - - + + + +
GIF + - + + + + +
BMP + - - - - + -
PNM + - - + + + +

XPCE 6.6.37

10.10. USING IMAGES AND CURSORS 113

The XPM format (X PixMap) is the preferred format for platform-independent storage of
images that are used by the application for cursors, icons and other nice pictures. The XPM
format and supporting libraries are actively developed as a contributed package to X11.

Creating XPM files

Unix There are two basic ways to create XPM files. One is to convert from another format.
On Unix, there are two popular conversion tools. The xv program is a good interactive tool
for format conversion and applying graphical operations to images.

ImageMagic can be found at http://www.simplesystems.org/ImageMagick/
and provides a comprehensive toolkit for converting images.

The pixmap program is a comprehensive icon editor, supporting all of XPM’s features.
The image tools mentioned here, as well as the XPM library sources and a FAQ dealing with
XPM related issues can be found at ftp://swi.psy.uva.nl/xpce/util/images/

Windows XPCE supports the Windows native .ICO, .CUR and .BMP formats. Any editor,
such as the resource editors that comes with most C(++) development environments can
be used. When portability of the application becomes an issue, simply load the icons into
XPCE, and write them in the XPM format using the ‘image→save’ method. See the skeleton
below:

to_xpm(In, Out) :-
new(I, image(In)),
send(I, save, Out, xpm),
free(I).

Note that the above mentioned ImageMagick toolkit is also available for MS-Windows.

Using Images

Images in any of the formats are recognised by many of XPCE’s GUI classes. Table table 10.2
provides a brief list:

XPCE 6.6.37

114 CHAPTER 10. PROGRAMMING TECHNIQUES

bitmap A bitmap converts an image into a first class
graphical object that can be displayed anywhere.

cursor A cursor may be created of an image that has a mask
and hot-spot.

‘frame → icon’
Sets the icon of the frame. The visual result depends
on the window system and X11 window manager used.
Using the Windows 95 or NT 4.0 shell, the image is
displayed in the task-bar and top-left of the window.

‘dialog item → label’
The label of all subclasses of class dialog item can
be an image.

‘label → selection’
A label can have an image as its visualisation.

‘menu item → selection’
The items of a menu can be an image.

‘style → icon’
Allows association of images to lines in a
list browser, as well as marking fragments in an
editor.

Table 10.2: GUI classes using image objects

XPCE 6.6.37

10.11. USING HYPER LINKS TO RELATE OBJECTS 115

10.11 Using hyper links to relate objects

A hyper is a binary relation between two objects. Hypers are, like connection objects,
guarded automatically against destruction of one of the related objects. Special methods
allow for easy communication between hypered objects.

Hypers form an adequate answer if objects need to be related that depend temporary and
incidentally on each other. It is possible to be informed of the destruction of hypers, which
enables a hypered object to keep track of its environment. Good examples for the usage of
hypers are to express the relation between multiple frame objects working together to form a
single application or maintaining the relation between an application object (persistent object,
model) and its visualisation (controller).

Of course relations between objects can be maintained using instance-variables, but this
process requires awareness from both related objects as well as significant bookkeeping.

10.11.1 Programming existence dependencies

The example of this section demonstrates a common existence relationship. If the ‘main’
object is destroyed, all related ‘part’ objects should be destroyed too, but if a part is destroyed,
the main should not be destroyed. This semantic is expressed using a refinement of class
hyper that can be found in hyper of the XPCE/Prolog libraries.

1 :- pce_begin_class(partof_hyper, hyper,
2 "<-to is a part of <-from").
3

4 unlink_from(H) :->
5 "->destroy the <-to part"::
6 get(H, to, Part),
7 (object(Part),
8 send(Part, has_send_method, destroy)
9 -> send(Part, destroy)
10 ; free(Part)
11),
12 free(H).
13

14 :- pce_end_class.

This hyper is demonstrated in the following application. We have an application for editing
a graphical representation. The colour of the objects can be modified by double-clicking an
object and selecting a colour in a dialog window. In this example we do not use a modal
dialog and using the hyper serves two purposes. First of all it tells the dialog what object
should be changed, but second, it ensures the dialog is destroyed if the box is.

1 :- use_module(library(hyper)).
2

3 :- pce_begin_class(link_demo, picture).
4

5 initialise(P) :->
6 send_super(P, initialise, ’Link Demo’),
7 send(P, recogniser,
8 click_gesture(left, ’’, single,

XPCE 6.6.37

116 CHAPTER 10. PROGRAMMING TECHNIQUES

9 message(P, add_box, @event?position))).
10

11 add_box(P, At:point) :->
12 send(P, display, new(link_box), At).
13

14 :- pce_end_class(link_demo).
15

16 :- pce_begin_class(link_box, box).
17

18 handle(w/2, 0, link, north).
19 handle(w/2, h, link, south).
20 handle(0, h/2, link, west).
21 handle(w, h/2, link, east).
22

23 initialise(B) :->
24 send_super(B, initialise, 100, 50),
25 send_list(B, recogniser,
26 [click_gesture(left, ’’, double,
27 message(B, edit)),
28 new(connect_gesture),
29 new(move_gesture)
30]).
31

32 colour(red).
33 colour(green).
34 colour(blue).
35 colour(yellow).
36

37 edit(B) :->
38 "Allow changing colour"::
39 new(D, dialog(’Select colour’)),
40 send(D, append, new(M, menu(colour, choice,
41 message(?(D, hypered, box),
42 fill_pattern,
43 @arg1)))),
44 (colour(Colour),
45 send(M, append,
46 menu_item(colour(Colour),
47 @default,
48 pixmap(@nil,
49 background := Colour,
50 width := 32,
51 height := 16))),
52 fail
53 ; true
54),
55 send(D, append, button(done, message(D, destroy))),
56 new(_, partof_hyper(B, D, dialog, box)),
57 get(B, display_position, PosB),
58 get(PosB, plus, point(20,100), PosD),
59 send(D, open, PosD).
60

61 :- pce_end_class(link_box).

XPCE 6.6.37

10.11. USING HYPER LINKS TO RELATE OBJECTS 117

Figure 10.5: Using a hyper to link a window to an object

10.11.2 Methods for handling hyper objects

Methods on class hyper

hyper→ initialise: F:object, T:object, FName:name,
TName:[name]

Create a new hyper object. Seen from F, this hyper is called FName; seen from T it is
called TName. The default for TName is FName.

hyper→ unlink from
Called by the object-management system when the←from side of the hyper is being
destroyed. May be refined.

hyper→ unlink to
Called by the object-management system when the ←to side of the hyper is being
destroyed. May be refined.

Methods on class object

Below are the two most commonly used methods dealing with hypers and defined on class
object. XPCE defines various other methods for deleting and inspecting the hyper structure.
Use the online manual for details.

XPCE 6.6.37

118 CHAPTER 10. PROGRAMMING TECHNIQUES

object→ send hyper: Name:[name], Selector:name, Arg:unchecked
...

Broadcast a send-operation to all (named) ←hypered objects. Similar to
←get hyper, but does not stop if the method is received successfully. Succeeds
if at least one hypered object accepted the message.

object← hypered: Name:[name], Test:[code]→ object
Find a hyper-related object. Name is the name of the hyper (seen from the side of the
receiver). Test is an optional additional test. If present, this test is executed using the
arguments given below. The first matching object is returned. See also←all hypers.

@arg1 This object
@arg2 The hyper object
@arg3 The object at the other end of the hyper

XPCE 6.6.37

10.12. USER DEFINED GRAPHICALS 119

10.12 User defined graphicals

This section discusses various approaches for defining new graphical objects. XPCE offers
three approaches for defining new graphical objects:

• Combining graphicals
The simplest way to create a new graphical object is by combining multiple graphical
objects on a graphical device. The following predicate creates a ‘text-box’:

text_box(TB, Text, Width, Height) :-
new(TB, device),
send(TB, display,

new(B, box(Width, Height))),
send(TB, display,

new(T, text(Text, center, normal))),
send(T, center, B?center).

For some applications, this is a suitable and simple approach. However, it is not a very
good approach to build a library of GUI objects or, more in general, to make generic
and reusable new graphical objects. The above object does not handle resize properly,
and the user has to know the internal structure to modify the object.

• Subclassing class device
Since the introduction of user-defined classes (see section 7), sub-classing
device is a common way to define new graphicals. Using this technique,
‘device → initialise’ is refined to display the part of the compound graphical.
‘device → event’ and ‘device → geometry’ are normally redefined to define
event-handling and resize of the new graphical object. See section 7.3.2 for details.

• (Re)defining the repaint method
The method ‘graphical → redraw area’ can be redefined to define the look of a
graphical. We will discuss the advantages and disadvantages of this approach in this
section and give some examples.

10.12.1 (Re)defining the repaint method

The most basic way to (re)define the look of a graphical object is by redefining the
method that paints the graphical. This method is called → redraw area. The method
→ redraw area cannot be called directly by the user, but it is called by the graphical
infra-structure whenever the graphical needs to be repainted. The definition of the method is
below:

graphical→ redraw area: Area:area
This method is called by the repaint infra-structure of XPCE. Its task is to paint the
graphical on the current graphical device. Area indicates the area —in the coordinate
system of the device— that needs to be repainted. This area is guaranteed to overlap
with the←area of the graphical.

XPCE 6.6.37

120 CHAPTER 10. PROGRAMMING TECHNIQUES

→draw Paint other graphical
→clip Clip to area or←area of graphical
→unclip Undo last→clip
→save graphics state Save current pen and colours
→restore graphics state Restore saved values
→graphics state Set graphics attributes
→draw arc Draw ellipse-part
→draw box Draw rectangle (rounded, filled, etc.)
→draw fill Fill/invert/clear rectangle
→draw image Paint (part of) image
→draw line Draw a line segment
→draw poly Draw a polygon
→draw text Draw string in font
→paint selected Paint visual feedback of→selected

Table 10.3: Methods for (re)defining→ redraw area

It is not allowed for this method to paint outside the ←area of the receiver. There
is no clipping (see →clip) to prevent this. If there is no cheap way to prevent this,
bracket the graphical operations in →clip and →unclip, but be aware that setting
and undoing the clip-region is an expensive operation. Note that is is not necessary
to limit the applied paint only inside the given argument Area. The graphical infra-
structure automatically clips all graphical operation to this area. In general, Area should
only be considered to avoid large numbers of unnecessary drawing operations.

There are three sets of methods to implement the drawing job. The first is
‘graphical → draw’, that allows drawing other graphical objects in this place. The sec-
ond are methods to manipulate the clipping and state of the graphical device. The last is
a set of methods to realise primitive drawing operations, such as drawing lines, rectangles,
images, text, etc. These methods can be used in any combination. It is allowed, but not
obligatory, to call the →send super method in order to invoke the default behaviour of the
graphical. These methods are summarised in table 10.3. Full documentation is available
from the online manual.

10.12.2 Example-I: a window with a grid

XPCE built-in class window does not provide a grid. Implementing a grid using graphical
objects is difficult. The best approach would be to display a device on the window that
provides the background and displays the lines of the grid. The resize and scroll messages
need to be trapped to ensure the proper number of lines are displayed with the correct length.
Furthermore, the code handling the inside of the window needs to be aware of the grid. It
should ensure the grid is not exposed or deleted, etc.

It is much simpler to redefine the ‘window → redraw area’ method, paint the grid
and then call the super-method. The code is below.

1 :- pce_begin_class(grid_picture, picture,

XPCE 6.6.37

10.12. USER DEFINED GRAPHICALS 121

2 "Graphical window with optional grid’”).‘
3

4 variable(grid, ’1..|size*’ := 20, get,
5 "Size of the grid").
6 variable(grid_pen, pen, get,
7 "Pen used to draw the grid").
8

9 initialise(P, Lbl:[name], Size:[size], Disp:[display]) :->
10 send(P, send_super, initialise, Lbl, Size, Disp),
11 (get(@display, visual_type, monochrome)
12 -> Texture = dotted, Colour = black
13 ; Texture = none, Colour = grey90
14),
15 send(P, slot, grid_pen, pen(1, Texture, Colour)).
16

17 ’_redraw_area’(P, A:area) :->
18 "Draw a grid"::
19 get(P, grid, Grid),
20 (Grid \== @nil
21 -> (integer(Grid)
22 -> GX = Grid,
23 GY = Grid
24 ; object(Grid, size(GX< GY))
25),
26 send(P, save_graphics_state),
27 get(P, grid_pen, pen(Pen, Texture, Colour)),
28 send(P, graphics_state, Pen, Texture, Colour),
29 object(A, area(X, Y, W, H)),
30 StartX is (X//GX) * GX,
31 StartY is (Y//GY) * GY,
32 Xlines is ((W + X - StartX)+GX-1)//GX,
33 Ylines is ((H + Y - StartY)+GY-1)//GY,
34 (between(1, Xlines, Xline),
35 Xnow is StartX + (Xline-1)*GX,
36 send(P, draw_line, Xnow, Y, Xnow, Y+H),
37 fail
38 ; true
39),
40 (between(1, Ylines, Yline),
41 Ynow is StartY + (Yline-1)*GY,
42 send(P, draw_line, X, Ynow, X+W, Ynow),
43 fail
44 ; true
45),
46 send(P, restore_graphics_state)
47 ; true
48),
49 send(P, send_super, ’_redraw_area’, A).
50

51

52 grid(P, Grid:’1..|size*’) :->
53 send(P, slot, grid, Grid),
54 send(P, redraw). % changed?

XPCE 6.6.37

122 CHAPTER 10. PROGRAMMING TECHNIQUES

55

56 grid_pen(P, Penn:pen) :->
57 send(P, slot, grid_pen, Pen),
58 send(P, redraw). % changed?
59

60 :- pce_end_class.

10.12.3 Example-II: a shape with text

The following example is yet another implementation of a shape filled with text. Redefin-
ing → redraw area has several advantages and disadvantages over the device based
implementation:

• ++ Memory usage
This approach uses considerably less memory than the combination of a device, box
and text.

• -- Poor PostScript quality
The current version of the system will generate PostScript for user-defined graphicals
by painting the graphical on an image and translating the result in a PostScript image
description.

• -- More rigid
This version of the text-box does not have different colours for box and text, etc. Of
course it is possible to implement a version with all thinkable attributes, but this is a lot
of work.

Implementing edit facilities for the text will be hard. The best approach would be to
display a normal text object on top of the text-box and replace the ←→string when
editing is finished.

1 :- pce_begin_class(text_shape, graphical,
2 "text with box or ellipse").
3

4 variable(string, char_array, get,
5 "Displayed string").
6 variable(font, font, get,
7 "Font used to display string").
8 variable(shape, {box,ellipse}, get,
9 "Outline shape").
10

11 initialise(S, Str:string=char_array, Shape:shape={box,ellipse},
12 W:width=int, H:height=int, Font:[font]) :->
13 default(Font, normal, TheFont),
14 send(S, send_super, initialise, 0, 0, W, H),
15 send(S, slot, string, Str),
16 send(S, slot, shape, Shape),
17 send(S, slot, font, TheFont).
18

19 ’_redraw_area’(S, _A:area) :->
20 get(S, area, area(X, Y, W, H)),

XPCE 6.6.37

10.12. USER DEFINED GRAPHICALS 123

21 get(S, string, String),
22 get(S, font, Font),
23 get(S, shape, Shape),
24 send(S, clip), % text may be bigger
25 (Shape == box
26 -> send(S, draw_box, X, Y, W, H)
27 ; send(S, draw_arc, X, Y, W, H)
28),
29 send(S, draw_text,
30 String, Font, X, Y, W, H,
31 center, center),
32 send(S, unclip),
33 send(S, send_super, redraw).
34

35 :- pce_end_class.

XPCE 6.6.37

124 CHAPTER 10. PROGRAMMING TECHNIQUES

XPCE 6.6.37

10.13. PRINTING FROM XPCE APPLICATIONS 125

10.13 Printing from XPCE applications

You’re wonderful application is finished . . . but the users want printing???. What to do?
A computer screen is not a set of paper-sheets and therefore there is no trivial answer to
this question. It depends on the nature of the data that needs to be printed, and also on the
operating system used.

In Unix , printing is achieved by producing a document in a format that can be understood
by the print-spooler program, normally either plain text or PostScript. If formatted text and/or
included graphics are required it is often desirable to produce input for a formatting program,
call the formatter and send the result to the printer.

In Windows the printer is not driven by a document, but using a series of calls on a GDI
(Graphical Device Interface) representing the printer. The good news of this is that what-
ever you can get on the screen you easily get on the printer. The bad news has been
explained above: paper is not the same as your screen. It has pages, is generally worse in
colour-handling but provides a much higher resolution. The users do not expect a series of
screendumps from your applications. Most Windows applications however are WYSIWYG
and there are no established standards for formatting applications.

10.13.1 Options for document generation

Below is a brief overview of the options available.

• Generating PostScript
All XPCE graphical objects support the method ←postscript that creates an
Adobe PostScript representation of the object. For most objects used in diagrams
(lines, curves, text), the produced PostScript is clean PostScript ready for perfect scal-
ing. The remaining objects (for example a menu or button) are translated into an image
which is then translated to PostScript. Such objects scale poorly.

This facility is useful for creating high-quality diagrams that can be imported in a text
created on an external application. This is fairly portable, but using Microsoft appli-
cations you must have a PostScript printer attached and there is no previewing. On
Windows platform there is no well-supported automated way to print a PostScript file
unless you can asks your users to install a PostScript viewer such as Alladin GsView.

• Generating plain text
If you need to produce a listing, you can generate a plain ISO-Latin-1 (or other 8-bit
character set) string and print this. On Unix this is achieved by sending the text to the
printer-spooler. On Windows you can save the data to a temporary file and start the
command notepad /p "file". This route provides no support for graphics or any
kind of advanced formatting.

• Generating markup
Translating project data to output on a page is a craft that is understood by text-
manipulation programs that accept a high-level input specification such as Troff, LATEX

XPCE 6.6.37

126 CHAPTER 10. PROGRAMMING TECHNIQUES

or an SGML variant. If you can expect your users to have or install a particular pack-
age and this package can deal with PostScript graphics this is the ideal way to generate
good-looking documents from your application. On Unix these tools are widely avail-
able and installed on most machines. Most of them are available on Windows, but not
installed on most systms.

The http/html write library described in section ?? provides a good infra-structure
for emitting documents in HTML or another SGML or XML dialect. There is no such
library for LATEX, but this can be designed using the same principles.

Using HTML, the application can be transformed into a web-server using the infras-
tructure described in section 11.9. The user can use standard web-technologies to
process the page. Unfortunately well-established web technology does not support
vector-drawings, though the emerging SVG technology may change that.

• Generating a Windows meta-file
Windows metafiles are implemented in the class win metafile, providing both input
and output of metafiles. Such files preserve the vector properties of XPCE graphicals
and can be imported in most native Windows applications. Unfortunately the scaling
properties, especially of text, are much worse than PostScript.

An example of exporting Windows Metafiles is in PceDraw in the file draw/canvas.

• Printing to a Windows printer
Using class win printer, the user can open a device on which graphicals can be
painted and that can be advanced to the next page. This technique only works on
Windows and requires you to program all details of the page. For WYSIWYG objects
such as most drawings, this techinique is appropriate, but rendering textual documents
require the implementation of a formatter, where you are responsible for page headers
and footers, alignment, etc.

Formatting text in sections, paragraphs lists, etc. is provided by the XPCE document-
rendering classes described in section 11.10. These classes cannot handle pagination
though. Another alternative is the use of editor and friends, drawing the text image
on a page while traversing through the document.

An example of printing using win printer is in PceDraw in the file draw/canvas.

XPCE 6.6.37

Commonly used libraries 11
In this chapter we document some of the libraries from the 〈pcehome〉/prolog/lib
XPCE/Prolog library. The libraries described here are only the commonly used ones. For
more information check the file Overview in the library directory and the source-code of the
library.

11.1 Asking a filename
This library defines the object @finder, instance of finder. The finder allows for
asking filenames.

11.2 Show help-balloon
The library help message registers balloon-text with graphical objects.

11.3 Dialog utilities
Toolbars and reporting facilities. Includes example code for an application framework.

11.4 Table-of-content like hierarchies
This library extends class tree, displaying a modern-style hierarchy inside a window.
This library is used for displaying the VisualHierachy and ClassHierarchy tools of the
XPCE manual toolkit. See chapter 3.

11.5 Tabular layout
Primitives for dealing with tables.

11.6 Plotting graphs and barcharts
This section describes a number of libraries providing primitives for drawing graphs
and barcharts.

11.7 Multi-lingual applications
Discusses support for multi-lingual applications.

11.8 Drag and Drop Interface
This library allows for drapping objects within one XPCE application.

11.9 Playing WEB (HTTP) server
Class httpd is a subclass of socket that deals with the HTTP protocol. It allows
XPCE to act as a web-server.

11.10 Document rendering
Primitives for rendering mixed text/graphics, handling fonts, alignment, tables and other
common text-layout primitives.

XPCE 6.6.37

128 CHAPTER 11. COMMONLY USED LIBRARIES

XPCE 6.6.37

11.1. LIBRARY “FIND FILE” 129

11.1 Library “find file”

The library find file defines the class finder, representing a modal dialog window for
entering a filename. This class defines the method ‘finder ← file’:

finder← file: Exists:[bool], Ext:[name—chain],
Dir:[directory], Def:[file]→ name

Ask the user for a file. If Exists is @on, only existing files can be returned. Ext is either
an atom denoting a single extension or a chain of allowed extensions. Extensions can
be specified with or without the leading dot. I.e. both pl and ’.pl’ are valid specifi-
cations of files ending in ’.pl’. Dir is the directory to start from. When omitted, this
is the last directory visited by this instance of finder or the current working directory.
Def is the default file-name returned. When omitted there is no default.

Below is the typical declaration and usage. In this example we ask for an existing
Prolog file.

:- pce_autoload(finder, library(find_file)).
:- pce_global(@finder, new(finder)).

...,
get(@finder, file, @on, pl, PlFile),
...,

The Windows version of XPCE implements the method ‘display ← win file name’,
using the Win32 API standard functions GetOpenFileName() or GetSaveFileName() to ob-
tain a file-name for saving or loading. If this method is defined, ‘finder ← file’ uses it,
showing the users familiar dialog.

Names for the extensions (as ‘Prolog file’ rather than ’*.pl’) can be defined by extending
the multifile predicate pce finder:file type/2. See the library source for the standard defini-
tion.

XPCE 6.6.37

130 CHAPTER 11. COMMONLY USED LIBRARIES

XPCE 6.6.37

11.2. SHOWING HELP-BALLOONS 131

11.2 Showing help-balloons

The library help message provides support for displaying balloons. After loading this li-
brary, a loc still event causes the system to look for a graphical implementing the
←help message method. If←help message: tag yields a string, the library shows a little
window with the message. Moving the pointer out of the area of the graphical or pressing a
button causes the feedback window to disappear.

This tenchnique is commonly used in modern interfaces to provide feedback on the func-
tions behind icons. See also section 11.3.2.

In addition to registering the global event-handler, the library defines →help message
to the classes visual, graphical and menu.

visual→ help message: {tag,summary}, string*
Register string as tag (balloon) or extensive help message (summary) for the receiving
object. At the moment summary is not used.

visual← help message: {tag,summary}, event→ string
This message is defined to return the help-message registered using
→help message. User-defined classes may consider redefining this method to
generate the help-message on-the-fly.

Here is a typical usage for this library.

1 :- use_module(library(help_message)).
2 resource(print, image, image(’16x16/print.xpm’)).
3

4 ...
5 send(X, append, new(B, button(print))),
6 send(B, label, image(resource(print))),
7 send(B, help_message, tag, ’Print document’),

XPCE 6.6.37

132 CHAPTER 11. COMMONLY USED LIBRARIES

XPCE 6.6.37

11.3. DIALOG SUPPORT LIBRARIES 133

11.3 Dialog support libraries

This section deals with a number of classes from the library to simplify the creation of dialog
windows.

11.3.1 Reporting errors and warnings

Error, and warning and informational messages are raised using the→report or→error
method defined on all XPCE objects. Basic error and message handling is described in
section 10.8. The library pce report defines the classes reporter and report dialog.

• reporter
This is a refinement of class label, displayed using the fashionable lowered 3D-style.
In addition, it redefines the→report message to colour error messages red.

• report dialog
This is a trivial subclass of dialog, displaying a reporter and constraining this re-
porter to occupy the entire window.

An example using these classes is in section 11.3.2.

11.3.2 Toolbar support

The library toolbar defines the classes tool bar, tool button and
tool status button to simplify the definition of tool-bars.

tool bar→ initialise: Client:object*,
Orientation:[{horizontal,vertical}]

Create a tool bar for which the buttons execute actions on Client (see class
tool button for details). By default the buttons are placed left-to-right, but using
vertical Orientation they can be stacked top-to-bottom.

tool bar→ append: Button:tool button|{gap}
Append a tool-button to the bar or, using the name gap, make a small gap to separate
logical groups of buttons.

tool bar→ activate
Send→activate to all member buttons, reflecting whether they are ready to accept
commands or ‘grayed-out’.

tool button→ initialise: Action:name|code, Label:name|image,
Balloon:[name|string], Condition:[code]*

Define a button for ‘tool bar → append’. Action is the action to execute. If this is a
plain atom, this method without arguments is invoked on the ‘tool bar ← client’.
If it is a code object this code is simply executed. Label is the label. Normally for tool-
bars this will be an image object. Balloon defines the text for the popup-window if the
user rests the pointer long enough on the button. It it is a name, this balloon is subject
to ‘name ← label name’ (see section 11.7), otherwise it is passed literally. Finally, if
Condition is present it is evaluated by→activate to determine the activation-state of
the button.

XPCE 6.6.37

134 CHAPTER 11. COMMONLY USED LIBRARIES

Figure 11.1: Simple application framework

tool button→ activate
If←condition is present, evaluate it and send→active.

tool button→ active: Active:bool
If @off, deactivate the button and provide visual feedback for this.

A tool status button is toggled between depressed state and normal state on each
click. If it has an atomic ←action it will send action: @on to the client when going to
depressed state and action:@off when returning to normal state. If the←action is a code
object this boolean will for forwarded over the code object. See section 10.2.

11.3.3 Example

The example below uses these classes as well as class menu bar to arrive at a typical
modern application layout.

1 % Pull in the classes
2

3 :- pce_autoload(report_dialog, library(pce_report)).
4 :- pce_autoload(tool_bar, library(toolbar)).
5 :- pce_autoload(finder, library(find_file)).
6 :- pce_global(@finder, new(finder)).
7

8 % Define icons as program resources
9

10 resource(printer, image, image(’16x16/print.xpm’)).
11 resource(floppy, image, image(’16x16/save.xpm’)).
12

13 % Define the application as a subclass of frame.
14

15 :- pce_begin_class(myapp, frame,

XPCE 6.6.37

11.3. DIALOG SUPPORT LIBRARIES 135

16 "Frame representing the application").
17

18 initialise(MyApp) :->
19 send_super(MyApp, initialise, ’My application’),
20 send(MyApp, append, new(D, dialog)),
21 send(D, pen, 0),
22 send(D, gap, size(5, 5)),
23 send(D, append, new(menu_bar)),
24 send(D, append, new(tool_bar(MyApp))),
25 send(MyApp, fill_menu_bar),
26 send(MyApp, fill_tool_bar),
27 send(new(W, myapp_workspace), below, D),
28 send(new(report_dialog), below, W).
29

30 fill_menu_bar(F) :->
31 get(F, member, dialog, D),
32 get(D, member, menu_bar, MB),
33 send_list(MB, append,
34 [new(File, popup(file)),
35 new(_Edit, popup(edit))
36]),
37

38 send_list(File, append,
39 [menu_item(load,
40 message(F, load),
41 end_group := @on),
42 menu_item(print,
43 message(F, print))
44]).
45

46 fill_tool_bar(F) :->
47 get(F, member, dialog, D),
48 get(D, member, tool_bar, TB),
49 send_list(TB, append,
50 [tool_button(load,
51 resource(floppy),
52 load),
53 gap, % skip a little
54 tool_button(print,
55 resource(printer),
56 print)
57]).
58

59 print(MyApp) :->
60 "Print the document"::
61 send(MyApp, report, progress, ’Printing ...’),
62 get(MyApp, member, myapp_workspace, WS),
63 send(WS, print),
64 send(MyApp, report, progress, done).
65

66 load(MyApp) :->
67 "Ask a file and load it"::
68 get(@finder, file, @on, myp, File),

XPCE 6.6.37

136 CHAPTER 11. COMMONLY USED LIBRARIES

69 get(MyApp, member, myapp_workspace, WS),
70 send(WS, load, File).
71

72 :- pce_end_class(myapp).
73

74

75 % dummy class for the work-area of your application
76

77 :- pce_begin_class(myapp_workspace, window).
78

79 :- pce_end_class(myapp_workspace).

XPCE 6.6.37

11.4. LIBRARY “PCE TOC”: DISPLAYING HIERARCHIES 137

Figure 11.2: Exploring the filesystem

11.4 Library “pce toc”: displaying hierarchies

The table-of-content library defines a window displaying a tree in an explorer-like style.
This library is programmed by refining its base-class toc window. We will introduce this
library using an example exploring the filesystem. A screendump of this application is in
figure 11.2.

1 :- pce_autoload(toc_window, library(pce_toc)).
2 :- pce_autoload(report_dialog, library(pce_report)).
3

4 :- pce_begin_class(explorer, frame, "Explore the filesystem").
5

6 initialise(E, Dir:directory) :->
7 "Explore from directory"::
8 send_super(E, initialise, ’Simple explorer’),
9 send(E, append, new(DH, directory_hierarchy(Dir))),
10 send(new(view), right, DH),
11 send(new(report_dialog), below, DH).
12

13 open_node(E, Node:file) :->
14 "Show file content of opened node"::
15 get(E, member, view, View),
16 send(View, load, Node).
17

18 :- pce_end_class.
19

20

21 :- pce_begin_class(directory_hierarchy, toc_window,
22 "Browser for a directory-hierarchy").
23

24 initialise(FB, Root:directory) :->
25 send(FB, send_super, initialise),
26 get(Root, name, Name),
27 send(FB, root, toc_folder(Name, Root)).

XPCE 6.6.37

138 CHAPTER 11. COMMONLY USED LIBRARIES

28

29 expand_node(FB, D:directory) :->
30 "Called if a node is to be expanded"::
31 new(SubDirsNames, chain),
32 new(FileNames, chain),
33 send(D, scan, FileNames, SubDirsNames),
34

35 get(SubDirsNames, map, ?(D, directory, @arg1), SubDirs),
36 send(SubDirs, for_all,
37 message(FB, son, D,
38 create(toc_folder, @arg1?name, @arg1))),
39 get(FileNames, map, ?(D, file, @arg1), SubFiles),
40 send(SubFiles, for_all,
41 message(FB, son, D,
42 create(toc_file, @arg1?base_name, @arg1))).
43

44 open_node(FB, Node:file) :->
45 "Called if a file is double-clicked"::
46 send(FB?frame, open_node, Node).
47

48 :- pce_end_class.

Programming is achieved by subclassing toc window and in some cases the support
classes toc folder and toc file, representing expandable and leaf-nodes.

Each node is assigned an identifier, a unique reference to the node. In the example
below we used file and directory objects for this purpose. The identifier is the second
argument to the creation of the node. When omitted, the node is turned into an identifier of
itself. This distinction is used to hide the existence of graphical node objects for users of the
basic functionality.

Below we describe the important methods of this package. We start with the virtual
methods on class toc window that should be refined by most applications.

toc window→ expand node: Id:any
The user clicked the [+] sign or double-clicked a toc folder. This method is nor-
mally refined to add sub-nodes for Id to the current node using ‘toc window → son’.
If the implementation of toc window is activated at the end the window will scroll such
that as much as possible of the subtree below Id is visible.

toc window→ open node: Id:any
Called on double-click on a toc file node. The implementation of toc window is
empty.

toc window→ select node: Id:any
Called after single-click on toc folder or toc file. Note that double-clicking acti-
vates both →select node and →open node and therefore the action following se-
lect node should execute quickly.

toc window← popup: Id:any→ Popup:popup
This method is called on a right-down. If it returns a popup object this is displayed.

The methods below are used for general querying and manipulation of the hierarchy.

XPCE 6.6.37

11.4. LIBRARY “PCE TOC”: DISPLAYING HIERARCHIES 139

toc window← selection→ ChainOfNodes
Returns a chain holding the node objects that are currently selected.

toc window← node: Id:any→ Node:toc node
Map a node-identifier to a node. Fails silently if this identifier is not in the tree.

toc window→ root: Root:toc folder
Assign the hierarchy a (new) root.

toc window→ son: Parent:any, Son:toc node
Make a new node below the node representing Parent. If the node is a leaf, Son is a
subclass of toc file, otherwise it is a subclass of toc folder.

toc window→ expand root
Expands the root-node. This is normally called from→initialise to get a sensible
initial hierarchy.

The classes toc folder and toc file are summarised below. Subclassing may be
used to modify interaction and/or store additional information with the node.

toc folder→ initialise: Label:char array, Id:[any],
CollapsedImg:[image], ExpandedImg:[image],
CanExpand:[bool]

Create an expandable node. Id defaults to the node object itself and the two images
to the standard opened/closed folder images. Folders assume they can be expanded,
CanExpand may be set to @off to indicate ‘an empty folder’.

toc file→ indicate: Label:char array, Id:[any], Img:[image]
Create a ‘file’-node from its Label, Id (defaults to the created node object) and Image
(defaults to a ‘document’ icon).

XPCE 6.6.37

140 CHAPTER 11. COMMONLY USED LIBRARIES

XPCE 6.6.37

11.5. TABULAR LAYOUT 141

11.5 Tabular layout

XPCE provides various mechanisms for two-dimensional layout.

• Controller layout using ‘device → layout dialog’
This method is used by the classes dialog and dialog group. It knows about
layout requirements in controller windows, such as alignment of label- and value-width
in stacked controllers. etc. Layout of controllers is described in chapter 4.

• Simple tabular layout using format
In instance of class format can be attached to a device using ‘device → format’.
This causes the device to place its graphicals according to the specification in the
format object. This technique is frequently used to label images, place images in an
image browser, etc. See section 11.5.1.

• Full table support using table
An instance of table can be associated with a device to realise modern tables using
the same primitives as defined in HTML-3: row- and column spanning, alignment,
spacing, rules and borders, etc. The library tabular provides a user-friendly front-
end for most of the functionality of class table.

11.5.1 Using format

Class format can be seen as a poor-mens version of table. On the other hand, there
are two cases that still make it a valuable solution. One is to deal with simple compound
graphicals, such as a bitmap with a label displayed below it. The other is for browsing
collections of graphical objects such as images.

The class icon below displays a label-text below an image.

1 :- pce_begin_class(icon, device).
2

3 :- pce_global(@icon_format, make_icon_format).
4

5 make_icon_format(F) :-
6 new(F, format(horizontal, 1, @on)),
7 send(F, adjustment, vector(center)),
8 send(F, row_sep, 2).
9

10 initialise(Icon, Img:image, Label:name) :->
11 send_super(Icon, initialise),
12 send(Icon, format, @icon_format),
13 send(Icon, display, bitmap(Img)),
14 send(Icon, display, text(Label, center)).
15

16 :- pce_end_class.

An example using format for distribution graphicals over a window is the library
pce image browser.

XPCE 6.6.37

142 CHAPTER 11. COMMONLY USED LIBRARIES

Graphical Device

Layout Manager

Table

Layout Interface

Table Cell

Table Row

Table Column

Redirect layout management
and background drawing

Forward geometry changes
ask for layout info (what row?)

Figure 11.3: Layout manager interface for tables

11.5.2 Using table using the “tabular” library

The class table acts much the same way as class format in the sense that it is at-
tached to a device and modifies the layout management of this device. For this pur-
pose it uses an interface defined in XPCE version 5.0 and realised using the methods
‘device ←→ layout manager’ and ‘graphical ←→ layout interface’. Figure 11.3
gives an overview of the classes realising tabular layout.

The advantage of the approach using layout manager objects is that they can easily be
associated with any subclass of device, such as a window. The disadvantage is that the
communication gets more difficult due to the different objects involved. This complication is
hidden in the XPCE/Prolog class tabular, a subclass of device with an associated table
and methods for guiding the messages for common usage.

tabular→ initialise
Create a device with associated table.

tabular→ append: Label:name|graphical, Font:[font],
HAlign:[{left,center,right}],
Valign[{top,center,bottom}], Colspan:[1..],
Rowspan:[1..], Background:[colour],
Colour:[colour]

Append a new cell. Cells are places left-to-right. The arguments are:

• Label
Defines the content. It this is a name, a text is created. Otherwise the graphical
is immediately placed in the table.

• Font
Defines the font if a text is created from a Label of type name.

XPCE 6.6.37

11.5. TABULAR LAYOUT 143

• HAlign
Horizontal alignment. When omitted, the value from the corresponding
table column is used.

• VAlign
Vertical alignment. When omitted, the value from the corresponding table row
is used.

• Colspan
Number of columns spanned. Default is 1.

• Rowspan
Number of rows spanned. Default is 1.

• Background
Colour or pattern used to fill the background of the cell. When omitted, the value
from row or column is used or the background is left untouched.

• Colour
Defines the default foreground colour when painting the cell’s graphical. When
omitted, the row, column and finally device are tried.

tabular→ append label button: Field:name
This method appends a button that is nicely aligned with the cell. If the button is
depressed it activates →sort rows, providing the column index and the row below
the row holding the button.

tabular→ sort rows: Col:int, Row:int
A virtual method with a body that prints an informative message. It is called from a
button installed using →append label button and receives the column to sort-on
as well as the first row to sort.

tabular← table→ Table
Returns the table serving as←layout manager.

tabular→ table width: Width:int
Force the table to perform the layout in the indicated width. Initially the width of a
tabular is defined by the content. Setting the width forces the table to negotiate
with its columns and then force the width of the columns.

tabular→ event: Event:event
This refinement of ‘device → event’ determines the cell in which the event occurs.
If this cell has a ‘cell ←→ note mark’ attached and the graphical defines the method
→on mark clicked, the event is checked against the mark-image. Otherwise the
event is forwarded to the graphical inside the cell, even it it doesn’t occur in the area
of the graphical, making small (text-)objects sensitive to all events in the cell. Finally,
this method checks for attempts to drag the column-borders, changing the layout of the
table.

As tabular delegates all messages not understood to the ←table, the messages of
this class are also available. Below are the most important ones.

XPCE 6.6.37

144 CHAPTER 11. COMMONLY USED LIBRARIES

table→ next row: EndGroup:[bool]
Start the next row in the table. If EndGroup is @on, the just-finished row is marked to
end a row-group. See also→rules.

table→ border: Border:0..
Defines the thickness of border and rule-lines. Default is 0, not drawing any lines.

table→ frame: {void,above,below,hsides,vsides,box}
Defines which parts of the box around the table are painted (if ←border > 0). The
terminology is from HTML-3.

table→ rules: {none,groups,rows,cols,all}
Defines which lines between rows/columns are painted (if←border > 0). The termi-
nology is from HTML-3.

table→ cell padding: Padding:int|size
Defines the space around the content of a cell. If this is an integer this space is the
same in horizontal and vertical directions. If it is a size these can be specified inde-
pendently.

table→ cell spacing: Spacing:int|size
Defines the distance between the cells. Same rules as for →cell padding applies.
In some cases pretty effects can be achieved setting this value to minus the←border.

Below we build a small example.

1 :- use_module(library(tabular)).
2 :- use_module(library(autowin)).
3

4 make_table :-
5 new(P, auto_sized_picture(’Table with merged cells’)),
6 send(P, display, new(T, tabular)),
7 send(T, border, 1),
8 send(T, cell_spacing, -1),
9 send(T, rules, all),
10 send_list(T,
11 [append(new(graphical), rowspan := 2),
12 append(’Length/mm’, bold, center, colspan := 3),
13 next_row,
14 append(’body’, bold, center),
15 append(’tail’, bold, center),
16 append(’ears’, bold, center),
17 next_row,
18 append(’males’, bold),
19 append(’31.4’),
20 append(’23.7’),
21 append(’3.8’),
22 next_row,
23 append(’females’, bold),
24 append(’29.6’),
25 append(’20.8’),
26 append(’3.4’)

XPCE 6.6.37

11.5. TABULAR LAYOUT 145

Figure 11.4: Small table with row/column spanning

27]),
28 send(P, open).

XPCE 6.6.37

146 CHAPTER 11. COMMONLY USED LIBRARIES

XPCE 6.6.37

11.6. PLOTTING GRAPHS AND BARCHARTS 147

11.6 Plotting graphs and barcharts

This section describes three libraries residing in 〈pcehome〉/prolog/lib/plot to deal
with plotting graphs and barcharts.

11.6.1 Painting axis

The library plot/axis defines the class plot axis to draw an X- or Y-axis. The class
deals with computing the layout, placing rule-marks, values and labels as well as translation
between coordinates and real values. Normally this class is used together with plotter,
plot axis does not rely on other library classes and may therefore be used independent
of the remainder of the plotting infrastructure.

We start with a small example from the library itself, creating the picture below.

?- [library(’plot/axis’)].
% library(’plot/axis’) compiled into plot_axis 0.03 sec, 27,012 bytes

?- send(new(P, picture), open),
send(P, display,

plot_axis(x, 0, 100, @default, 400, point(40, 320))),
send(P, display,

plot_axis(y, 0, 500, @default, 300, point(40, 320))).

Below is a reference to the important methods of this class. The sources to the class
itself are a good example of complicated and advanced layout computations and delaying of
these until they are really needed.

plot axis→ initialise: type=x,y, low=int|real, high=int|real,
step=[int|real], length=[int], origin=[point]

Create a new axis. type defines whether it is an X- or Y-axis. The axis represents
values in the range [low. . . high]. If step is specified, a rule-mark with value is placed
at these intervals. Otherwise the library computes its marking dynamically. The length
argument specifies the length of the axis in pixels, the default is 200 and finally the
origin defines the pixel-location of the origin.

plot axis→ label: graphical*
Label to position near the end of the axis. This is a graphical to provide full flexibility.

plot axis→ format: [name]
Define the printf()-format for rendering the values printed along the axis.

plot axis← location: int|real→ int
Determine the coordinate in the device’s coordinate system representing the given
value. See also ‘plotter ← translate’.

plot axis← value from coordinate: int→ int|real
The inverse of←location, returning the value along the axis from a pixel coordinate.

XPCE 6.6.37

148 CHAPTER 11. COMMONLY USED LIBRARIES

Figure 11.5: A picture showing two axis

XPCE 6.6.37

11.6. PLOTTING GRAPHS AND BARCHARTS 149

Besides the principal methods below, the following methods are available for changing
attributes of an existing axis: →origin, →low, →high, →step, →small step (interval
for rule-marks without a value),→length and→type: {x,y}.

11.6.2 Plotting graphs

The library plot/plotter defines the classes plotter and plot graph for displaying
graphs. Class plotter is a subclass of device. The example below plots the function
Y = sine(X)

1 :- use_module(library(’plot/plotter’)).
2 :- use_module(library(autowin)).
3

4 plot_function :-
5 plot_function(X:sin(X)).
6

7 plot_function(Template) :-
8 To is 2*pi,
9 PlotStep is To/100,
10 Step is pi/4,
11 new(W, auto_sized_picture(’Plotter demo’)),
12 send(W, display, new(P, plotter)),
13 send(P, axis, new(X, plot_axis(x, 0, To, Step, 300))),
14 send(P, axis, plot_axis(y, -1, 1, @default, 200)),
15 send(X, format, ’%.2f’),
16 send(P, graph, new(G, plot_graph)),
17 plot_function(0, To, PlotStep, Template, G),
18 send(W, open).
19

20 plot_function(X, To, _, _, _) :-
21 X >= To, !.
22 plot_function(X, To, Step, Template, G) :-
23 copy_term(Template, X:Func),
24 Y is Func,
25 send(G, append, X, Y),
26 NewX is X + Step,
27 plot_function(NewX, To, Step, Template, G).

plotter→ axis: plot axis
Associate a plot axis. Before using the plotter both an X and Y axis must be asso-
ciated. Associating an axis that already exists causes the existing axis to be destroyed.

plotter→ graph: plot graph
Append a graph. Multiple graphs can be displayed on the same plotter.

plotter→ clear
Remove all graphs. The X- and Y-axis are not removed.

plotter← translate: X:int|real, Y:int|real→ point
Translate a coordinate in the value-space to physical coordinates.

XPCE 6.6.37

150 CHAPTER 11. COMMONLY USED LIBRARIES

Figure 11.6: Plotter showing sine function

XPCE 6.6.37

11.6. PLOTTING GRAPHS AND BARCHARTS 151

plotter← value from x: int→ int|real
Translate an X-coordinate to a value.

plotter← value from y: int→ int|real
Translate an Y-coordinate to a value.

Graphs themselves are instances of class plot graph, a subclass of path. Instead
of normal point objects, the points are represented using the subclass plot point that
attaches the real values to the physical coordinates. Methods:

plot graph→ initialise: type=[{poly,smooth,points only}],
mark=[image]*

The type argument denotes the interpolation used. Using poly (default), straight lines
are drawn between the points. Using smooth, the curve is interpolated (see path for
details) and using points only, no lines is painted, just the marks. Using the mark
argument the user may specify marks to be drawn at each control-point.

plot graph→ append: x=int|real, y=int|real
Append a control-point using the coordinate-system of the axis of the plotter.

11.6.3 Drawing barcharts using “plot/barchart”

The plot/barchart library draws simple bar-charts. It is based on the plotter and
plot axis classes, adding simple bars, grouped bars and stacked bars. Below is an ex-
ample from plot/demo showing all active XPCE, classes, where active is defined that more
than 250 instances are created. The code, except for the calculation parts is show below.

1 barchart :-
2 barchart(vertical).
3 barchart(HV) :-
4 new(W, picture),
5 active_classes(Classes),
6 length(Classes, N),
7 required_scale(Classes, Scale),
8 send(W, display, new(BC, bar_chart(HV, 0, Scale, 200, N))),
9 forall(member(class(Name, Created, Freed), Classes),
10 send(BC, append,
11 bar_group(Name,
12 bar(created, Created, green),
13 bar(freed, Freed, red)))),
14 send(W, open).

bar chart→ initialise: orientation={horizontal,vertical}, low=real,
high=real, scale length=[0..], nbars=[0..]

Initialise a bar chart, a subclass of plotter for displaying bar-charts. The orienta-
tion indicates whether the bars are vertical or horizontal. The low and high arguments
are the scale arguments for the value-axis, while scale length denotes the length of
the axis. The nbars argument determines the length of the axis on which the bars are
footed.

XPCE 6.6.37

152 CHAPTER 11. COMMONLY USED LIBRARIES

Figure 11.7: Classes of XPCE with > 250 instances created

XPCE 6.6.37

11.6. PLOTTING GRAPHS AND BARCHARTS 153

bar chart→ append: bar|bar stack
Append a single bar, bar stack or bar group to the chart. Bars and bar-stacks are
named and can be addressed using their name.

bar chart→ delete: member:bar|bar stack
Remove the given bar. The member: construct makes the type-conversion system
translate a bar-name into a bar. If the bar is somewhere in the middle, the remaining
bars are compacted again.

bar chart→ clear
Removes all bars from the chart.

bar chart←→ value: name
real Modifies or requests the value of the named bar. Fails if no bar with this name is
on the chart.

bar chart→ event: event
Processes a single-click outside the bars to clear the selection.

bar chart→ select: bar|bar stack, [{toggle,set}]

bar chart→ selection: bar|bar stack|chain*

bar stack← selection→ chain
Deal with the selection. Selection is visualised by selecting the labels, but communi-
cated in terms of the bars themselves.

Class bar

Bars can either be displayed directly on a bar chart, or as part of a stack or group. Stacked
bars are used to indicate composition of a value, while grouped bars often indicate develop-
ment or otherwise related values for the same object.

bar→ initialise: name=name, value=real, colour=[colour],
orientation=[{horizontal,vertical}]

Create a bar from its name and value. The bar itself is a subclass of box and colour is
used to fill the interior. The orientation needs only be specified if the bar is not attached
to a bar chart.

bar→ value: real
Set the value of th bar. This updates the bar-size automatically.

bar→ range: low=real, high=real
If the bar is editable (see also→message and→drag message), these are the lowest
and highest values that can be set by the user.

bar→ message: code*
If not @nil, the bar may be modified by dragging it. After releasing the mouse-button,
the new←value is forwarded over the code.

XPCE 6.6.37

154 CHAPTER 11. COMMONLY USED LIBRARIES

bar→ drag message: code*
If not @nil, the bar may be modified by dragging it. While dragging, the new value
is forwarded on every change over the code. It is allowed to specify both→message
and→drag message.

bar stack→ initialise: name, bar ...
Create a pile of bars representing a value composed of multiple smaller values.

bar group→ initialise: name, bar ...
Same as bar stack, but places the bars next to each other instead of stacked.

Class bar button group

A subclass of dialog group that can be used to associate one or more buttons or other
controllers with a bar or bar stack. This association is achieved by simply creating an
instance of this class. Figure 11.8 shows both associated buttons and a stacked bar.

bar button group→ initialise: bar|bar stack, graphical ...
Associate the given graphicals with given bar.

bar button group← bar→ bar|bar stack
Return the bar or stack this group is connected too. This behaviour may be used to
make to make the buttons less dependent on the bar they are attached too.

XPCE 6.6.37

11.6. PLOTTING GRAPHS AND BARCHARTS 155

Figure 11.8: Stacked bars with associated buttons

XPCE 6.6.37

156 CHAPTER 11. COMMONLY USED LIBRARIES

XPCE 6.6.37

11.7. MULTI-LINGUAL APPLICATIONS 157

11.7 Multi-lingual applications

XPCE provides some support for building multi-lingual applications without explicitly mapping
terms all the time. This section provides an overview of how multi-lingual operation was
realised in a simulator for optics.

When writing a multi-lingual application, several different types of information needs to
be translated. We will discuss each of them below.

• Labels
Labels as they are used by the subclasses of dialog item, menu items, etc. These
can be mapped by redefining a number of methods that realise the default mapping
between internal names and externally visible names:

dialog item← label name: Id→ Label
This method performs the mapping that ensures that the code
text item(user name, ’’) renders as:

This method may be redefined to return another name or image object, depending
on the current language mapping.

menu item← label name: Id→ Label
Similar to ‘dialog item ← label name’.

dialog group← label name: Id→ Label
Similar to ‘dialog item ← label name’, but is, in the current implementation,
not allowed to return an image. This method needs to be redefined separately as
dialog group (a super-class of tab) is not in the same branch of the inheritance
hierarchy as dialog item.

In the current implementation, window and frame labels are not covered by this
schema.

• Error messages
Although it is convenient to present error messages directly using the report mecha-
nism described in section 10.7, this approach is not very well suited for multi-lingual
applications. A better approach is to use error objects, as described in section 10.8.

Using error objects is slightly more cumbersome as errors need to be declared sep-
arately, but they improve the embedding possibilities using error handling, and the
mapping from an error identifier to a format string provides the indirection necessary in
multi-lingual applications.

• Other messages and help text
There is no special support for other textual information, help-texts, etc.

XPCE 6.6.37

158 CHAPTER 11. COMMONLY USED LIBRARIES

Below is a summary of the file language.pl as using in the optics simulator to reach at
an English/Dutch application.

1 :- module(language,
2 [message/2, % Id, Message
3 current_language/1, % -Language
4 set_language/1 % +Language
5]).
6 :- use_module(pce).
7 :- use_module(configdb).
8 :- require([concat_atom/2
9 , is_list/1
10 , memberchk/2
11]).
12

13 :- dynamic
14 current_language/1.
15

16 current_language(english). % the default
17 %current_language(dutch).
18

19 set_language(Lan) :-
20 retractall(current_language(_)),
21 assert(current_language(Lan)),
22 make_errors.
23

24 % message(+Term, -Translation)
25 % The heart of the translator. Map a term
26 % (normally an atom, but if can be an arbitrary
27 % Prolog term, into an image or atom. If no
28 % translation is found, the default case and
29 % underscore translation is performed.
30

31 message(Term, Translation) :-
32 current_language(Lan),
33 term(Term, Translations),
34 (is_list(Translations)
35 -> T =.. [Lan, Translation0],
36 memberchk(T, Translations),
37 (is_list(Translation0)
38 -> concat_atom(Translation0, Translation)
39 ; Translation = Translation0
40)
41 ; Translation = Translations
42), !.
43 message(Term, Translation) :-
44 get(Term, label_name, Translation).
45

46

47 /*******************************
48 * MAP DIALOG IDENTIFIERS *
49 *******************************/

XPCE 6.6.37

11.7. MULTI-LINGUAL APPLICATIONS 159

50

51 :- pce_extend_class(dialog_item).
52

53 label_name(DI, Id:name, Label:’name|image’) :<-
54 "Multi-lingual label service"::
55 message(Id, Label0),
56 (atomic(Label0)
57 -> get(DI, label_suffix, Suffix),
58 get(Label0, ensure_suffix, Suffix, Label)
59 ; Label = Label0
60).
61

62 :- pce_end_class.
63

64 :- pce_extend_class(dialog_group).
65

66 label_name(_DI, Id:name, Label:name) :<-
67 "Multi-lingual label service"::
68 (message(Id, Label),
69 atomic(Label)
70 -> true
71 ; get(Id, label_name, Label)
72).
73

74 :- pce_end_class.
75

76 :- pce_extend_class(menu_item).
77

78 default_label(_MI, Id:name, Label:’name|image’) :<-
79 "Multilingual label service"::
80 message(Id, Label).
81

82 :- pce_end_class.
83

84 /*******************************
85 * GENERIC LABELS *
86 *******************************/
87

88 % term(+Term, -Translated)
89 %
90 % Term translates a term. There are three examples
91 % here. The first only contains the translation
92 % for an English label name into a Dutch one. The
93 % second replaces all labels named label’ into an‘
94 % image. The last is for generating a more
95 % elaborate message from an identifier.
96

97 term(settings,
98 [dutch(’Instellingen’)
99]).
100 term(label,
101 image(’label.lbl’)).
102 term(start_named_test(Name),

XPCE 6.6.37

160 CHAPTER 11. COMMONLY USED LIBRARIES

103 [english([’Click "OK" to start test "’, Name, ’"’]),
104 dutch([’Klik op "OK" om aan de toets "’, Name,
105 ’" te beginnen’])
106]).
107

108

109 /*******************************
110 * ERRORS *
111 *******************************/
112

113 % error(Id, Kind, Translations)
114 %
115 % Specify and create the required error messages.
116 % An object that detects there are too many
117 % instruments directs this information to the user
118 % by
119 %
120 % ...
121 % send(MySelf, error, max_instruments, 5),
122 % ...
123

124 error(max_instruments, error,
125 [dutch(’%IU kunt niet meer dan %d van deze \
126 instrumenten gebruiken’),
127 english(’%IYou can not use more than %d of \
128 these instruments’)
129]).
130

131 make_errors :-
132 current_language(Lan),
133 T =.. [Lan, Message],
134 error(Id, Kind, Messages),
135 (memberchk(T, Messages)
136 -> true
137 ; Message = Id
138),
139 new(_E, error(Id, Message, Kind, report)),
140 fail.
141 make_errors.
142

143 :- initialization make_errors.

XPCE 6.6.37

11.8. DRAG AND DROP INTERFACE 161

11.8 Drag and drop interface

XPCE’s drag-and-drop interface allows the user to drag-and-drop graphical objects and
dict item objects. Drag-and-drop is a common GUI technique to specify operations that
require two objects in a specific order. Moving files to another directory by dragging them to
the icon of the target directory is a common example.

It may also be used to specify operations on a single object, where the operation is
represented by an icon. Dragging files to a trash-bin is the most commonly found example.

For the drag-and-drop interface to work, the programmer must connect a
drag and drop gesture to the object to be dragged.1. A Drop-zone defines the method
→drop and (not strictly obligatory) →preview drop. →drop is called to actually perform
the associated operation, while→preview drop may be used to indicate what will happen
if the object is dropped now.

Below is a complete example that allows the user to drag objects for moving and copying
on another window.

Class drop picture defines a graphical window that imports graphical objects when they
are dropped onto it. The feedback is a dotted rectangle indicating the area of the graphical
to be imported. See ‘graphical→preview drop’ for a description of the arguments.

1 :- pce_begin_class(drop_picture, picture).

2 preview_drop(P, Gr:graphical*, Pos:[point]) :->
3 (Gr == @nil % pointer leaves area
4 -> (get(P, attribute, drop_outline, OL)
5 -> send(OL, free),
6 send(P, delete_attribute, drop_outline)
7 ; true
8)
9 ; (get(P, attribute, drop_outline, OL)
10 -> send(OL, position, Pos)
11 ; get(Gr?area, size, size(W, H)),
12 new(OL, box(W, H)),
13 send(OL, texture, dotted),
14 send(P, display, OL, Pos),
15 send(P, attribute, drop_outline, OL)
16)
17).

The method→drop. If the graphical originates from the same picture just move it. Otherwise
←clone the graphical and display the clone.

18 drop(P, Gr:graphical, Pos:point) :->
19 (get(Gr, device, P)
20 -> send(Gr, position, Pos)
21 ; get(Gr, clone, Gr2),
22 send(P, display, Gr2, Pos)
23).

24 :- pce_end_class.

1Attach a drag and drop dict item gesture to a list browser to enable dragging the items in the
dictionary

XPCE 6.6.37

162 CHAPTER 11. COMMONLY USED LIBRARIES

Class dragbox defines a simple subclass of class box that can be resized and dragged.

25 :- pce_begin_class(dragbox, box).

26 :- pce_autoload(drag_and_drop_gesture, library(dragdrop)).
27 :- pce_global(@dragbox_recogniser, make_dragbox_recogniser).

28 make_dragbox_recogniser(G) :-
29 new(G, handler_group(resize_gesture(left),
30 drag_and_drop_gesture(left))).

31 event(B, Ev:event) :->
32 (send(B, send_super, event, Ev)
33 ; send(@dragbox_recogniser, event, Ev)
34).

35 :- pce_end_class.

The toplevel predicate creates two drop pictures in one frame (note that drag-and-drop-
gestures work accross frames, but not accross multiple XPCE processes at the moment).
It displays one dragbox in one of the windows. Dragging it inside a picture moves the box,
dragging it to the other windows makes a copy of the box.

36 dragdropdemo :-
37 new(F, frame(’Drag and Drop Demo’)),
38 send(F, append, new(P1, drop_picture)),
39 send(new(drop_picture), right, P1),
40 send(P1, display, dragbox(100, 50), point(20,20)),
41 send(F, open).

11.8.1 Related methods

drag and drop gesture→ initialise: Button, Modifier, Warp, GetSource
Initialises a new drag and drop gesture. Button is the name of the pointer-button
the gesture should be connected to (left, middle or right). Modifier is a modifier
description (see class modifier). Warp is for compatibility with older releases of this
library. GetSource is a function used to fetch the object dragged from the graphical
representing it. Suppose the graphical to which the gesture is attached represents
a database record. In this case it is much more natural to pass the identifier for the
database record to the →drop and →preview drop methods than to pass the icon
representing it. GetSource is a function that is evaluated with @arg1 bound to the
graphical when the gesture is activated. An example could be:

drag_and_drop_gesture(left,
get_source :=

@arg1?db_record)

graphical→ drop: Object:〈Type〉 [, Pos:point]
This method may be defined on any graphical object that is a drop-zone. It will only be

XPCE 6.6.37

11.8. DRAG AND DROP INTERFACE 163

activated if the drag and drop gesture can locate the method and make the necessary
type transformations. Thus, if the type is specified as file, this method will only
be activated if the dragged object can be converted to a file object. See also the
discussion about the get source argument above.

If the method accepts a point for the second argument, a point will be passed that rep-
resents the location of the pointer in the coordinate system of the drop-zone, subtracted
by the distance between the top-left corner of the dragged graphical to the pointer at
the moment the button was depressed. To get the position of the pointer itself, just ask
for the position of @event relative to the drop-zone.

graphical→ preview drop: Object:〈Type〉* [, Pos:[point]]
Sent by the drag and drop gesture to allow the drop-zone providing feedback. The
arguments and semantics are the same as for →drop, but the first argument can
be @nil, indicating that the mouse has left the drop-zone. Under this condition, the
position argument is @default.

If a position argument is available, the drag and drop gesture will be activated on
each drag event. Otherwise it is only activated if the pointer enters the area of the
drop-zone.

XPCE 6.6.37

164 CHAPTER 11. COMMONLY USED LIBRARIES

XPCE 6.6.37

11.9. PLAYING WEB (HTTP) SERVER 165

11.9 Playing WEB (HTTP) server

Web presentation has attractive features. It is well accepted, standardised (if you stick to
the basics) and network-transparent. Many people think you need a web-server like Apache
with some sort of server-scripting (CGI) to realise a server. This is not true. Any application
capable of elementary TCP/IP communication can easily act as a web-server.

Using XPCE for this task may be attractive for a number of reasons.

• Prototyping
As the XPCE/Prolog running on your desktop is the server you can use the full debug-
ging capabilities of Prolog to debug your server application.

• Including graphics
XPCE can generate GIF and JPEG images for your web-pages on the fly. You can
include XPCE graphical objects directly in the output and have the server library
handle the required transformations.

• Remote presentation
XPCE can be used as groupware server, presenting state of the applications and allow-
ing remote users to interact using their web-browser2

• Report generation
Applications may to use HTML as framework for report generation. Though rather
weak in its expressiveness, the advantage is the wide support on presentation and
distribution applications.

We start with a small demo, illustrating frames and text.

1 :- module(my_httpd,
2 [go/1
3]).
4 :- use_module(library(pce)).
5 :- use_module(library(’http/httpd’)).
6 :- use_module(library(’http/html_write’)).
7 :- use_module(library(’draw/importpl’)).

8 % Create server at Port

9 go(Port) :-
10 new(_, my_httpd(Port)).

11 :- pce_begin_class(my_httpd, httpd, "Demo Web server").

→request is sent after the super-class has received a complete request header. We get
the ‘path’ and have a Prolog predicate generating the replies.

12 request(HTTPD, Request:sheet) :->
13 "A request came in."::
14 get(Request, path, Path),
15 reply(Path, HTTPD).

16 :- discontiguous
17 reply/2.

2Using the Unix/X11 version XPCE can manage windows on multiple desktops. For MS-Windows users this
is not supported.

XPCE 6.6.37

166 CHAPTER 11. COMMONLY USED LIBRARIES

Figure 11.9: Mozilla showing XPCE generated figure

→reply html takes 〈Module〉:〈DCGRuleSet〉 to formulate a reply. This uses the html write
library, converting a complex Prolog term into a formatted HTML document. The complex
term can invoke additional DCG rulesets, providing nicely structured content-generation.

18 reply(’/’, HTTPD) :- !,
19 send(HTTPD, reply_html, my_httpd:frames).

20 frames -->
21 html(html([head(title(’Demo’)),
22 frameset([cols(’25%,75%’)],
23 [frame([src(’/index’),
24 name(index)
25]),
26 frame([src(’/blank’),
27 name(body)
28])
29])
30])).

31 reply(’/blank’, HTTPD) :-
32 send(HTTPD, reply_html, my_httpd:blank).

33 blank -->
34 page(title(’Blank’),
35 []).

36 reply(’/index’, HTTPD) :-
37 send(HTTPD, reply_html, my_httpd:index).

38 index -->
39 page(title(’Index’),
40 [a([href(’/text’), target(body)],
41 [’Show text’]),

XPCE 6.6.37

11.9. PLAYING WEB (HTTP) SERVER 167

42 br([]),
43 a([href(’/picture’), target(body)],
44 [’Show picture’])
45]).

46 reply(’/text’, HTTPD) :-
47 send(HTTPD, reply_html, my_httpd:text).

48 text -->
49 page(title(’Text’),
50 [p([’Just showing a little text’])
51]).

Reply a graphical object. The server translates the graphical to a GIF or JPEG bitmap and
provides the proper HTTP reply header. You can also embed graphicals into the HTML
structures used above.

The drawing itself is exported from the demo program PceDraw and turned into an XPCE
graphical using the support library draw/importpl.

52 reply(’/picture’, HTTPD) :-
53 make_picture(Gr),
54 send(HTTPD, reply, Gr, ’image/gif’).

55 make_picture(Dev) :-
56 new(Dev, device),
57 drawing(xpcenetscape, Drawing),
58 realise_drawing(Dev, Drawing).

59 % Drawing imported from PceDraw

60 drawing(xpcenetscape,
61 [compound(new(A, figure),
62 drawing([display(box(137, 74)+radius(17),
63 point(0, 0)),
64 display(text(’XPCE’, center, normal),
65 point(52, 30))
66]),
67 point(163, 183)),
68 compound(new(B, figure),
69 drawing([display(box(137, 74)+radius(17),
70 point(0, 0)),
71 display(text(’Netscape’, center, normal),
72 point(42, 30))
73]),
74 point(350, 183)),
75 connect(connection(A,
76 B,
77 handle(w, h/2, link, east),
78 handle(0, h/2, link, west)) +
79 arrows(both))
80]).

81 :- pce_end_class(my_httpd).

XPCE 6.6.37

168 CHAPTER 11. COMMONLY USED LIBRARIES

11.9.1 Class httpd

The library http/httpd defines the class httpd. This subclass of socket deals with most
of the HTTP protocol details, breaking down HTTP requests and encapsulating responses
with the proper headers. The class itself is an abstract class, a subclass needs to be created
and some of the virtual methods needs to be refined to arrive at a useful application.

httpd→ initialise: Port:[int]
Create a server and bind it to Port. If Port is omitted a free port is chosen. With a
specified port, 8080 is a commonly used alternative to the standard 80 used by web-
servers. If you have a web-server running on the same machine you may can generate
a page on your website redirecting a page to this server. The URI of this server is
http://〈host〉/〈Port〉.

httpd→ accepted
This is sent after a connection has been accepted. The system implementation logs
the new connection if debugging is enabled. You can refine or redefine this method,
asking for the ‘socket ← peer name’ and sending→free to the socket if you want
to restrict access.

httpd→ request: Data:sheet
This is sent from →input after a complete request-header is received. →input de-
codes the header-fields, places them in Data and then calls→request. The attribute-
names in the sheet are downcase versions of the case-insensitive request fields of the
HTTP header. In addition, the following fields are defined:

Fields that are always present
request GET, POST, etc. I.e. the first word of the request-header. In

most cases this will be GET.
path The ‘path’ part of the request. This is normally used to decide

on the response. If the path contains a ? (question mark)
this and the remaining data are removed and decoded to the
‘form’ attribute.

form If the request is a GET request with form-data, the form at-
tribute contains another sheet holding the decoded form-
data. Otherwise←form holds @nil.

http version Version of the HTTP protocol used by the client. Normally
1.0 or 1.1.

Other fields
user If authorisation data is present, this contains the user-name.

If this field is present, the password field is present too.
password Contains the decoded password supplied by the user.

After decoding the request, the user should compose a response and use→reply or
→reply html to return the response to the client.

httpd→ reply: Data:string—source sink—pixmap,
Type:[name], Status:[name], Header:[sheet]

Send a reply. This method or →reply html is normally activated at the end of the
user’s→request implementation. Data is one of:

XPCE 6.6.37

11.9. PLAYING WEB (HTTP) SERVER 169

• A string or source sink
If the reply is a string, text buffer, resource or file, the data in this
object will be returned. Unless otherwise specified →reply assumes the data
has mime-type text/plain.

• A pixmap
If the reply is a pixmap (or can be converted automatically, for example any
graphical), this image is encoded as GIF or JPEG and sent with the corre-
sponding image/gif or image/jpeg mime-type. For more information on image
save-types, see ‘image → save in’.

Type is the mimi-type returned and tells the browser what to do with the data. This
should correspond with the content of Data. For example, you can return a PNG picture
from a file using

send(HTTPD, reply, file(’pict.png’), ’image/png’),

Status is used to tell the client in a formal way how the request was processed. The
default is 200 OK. See the methods below for returning other values.

Header is a sheet holding additional name-value pairs. If present, they are simply
added to the end of the reply-header. For example if you want to prevent the browser
caching the result you can use

send(HTTPD, reply, ...,
sheet(attribute(’Cache-Control’, ’no-cache’))),

httpd→ reply html: Term:prolog, Status:[name], Header:[sheet]
Uses the http/html write library to translate Term into HTML text using DCG rules
and then invokes→reply using the Type text/html. Status and Header are passed
unmodified to→reply.

In addition to the principal methods above, a number of methods are defined for dealing
with abnormal replies such as denying permission, etc.

httpd→ forbidden: What:[name]
Replies with a 403 Forbidden message. What may be provided to indicate what is
forbidden. Default is the path from the current←request.

httpd→ authorization required: Method:[{Basic}], Realm:[name]
Challenges the user to provide a name and password. The only method provided is
Basic. Realm tells the user for which service permission is requested. On all subse-
quence contacts from this client to this server the→request data contains the user
and password fields. The demo implementation of→request in httpd contains the
following example code:

1 request(S, Header:sheet) :->
2 "Process a request. The argument is the header"::

XPCE 6.6.37

170 CHAPTER 11. COMMONLY USED LIBRARIES

3 (get(Header, path, ’/no’)
4 -> send(S, forbidden, ’/no’)
5 ; get(Header, path, ’/maybe’)
6 -> (get(Header, value, user, jan),
7 get(Header, value, password, test)
8 -> send(S, reply, ’You hacked me’)
9 ; send(S, authorization_required)
10)
11 ; send(S, reply, ’Nice try’)
12).

httpd→ not found: What:[char array]
Reply with a 404 Not Found message, using the request-path as default for What.

httpd→ moved: Where:char array
Reply with a 301 Moved Permanently. Normally the client will retry the request
using the URL returned in Where.

httpd→ server error: What:[char array]
Reply with a 500 Internal Server using ‘What as additional information to the
user. This is the default reply if→request fails or raised an exception.

XPCE 6.6.37

11.10. DOCUMENT RENDERING PRIMITIVES 171

11.10 Document rendering primitives

Dynamic HTML has enabled the presentation of user interfaces as documents the user can
interact with. None of the traditional GUI components can deal with the mixture of properly
formatted text with (interactive) graphics. XPCE provides support using a set of primitive
classes that realise a box-model based on TEX. This basic model is enhanced using a
Prolog library providing HTML-based primitives. First we will introduce the basics.

• Class parbox
This is the central class of the document-rendering support. It is a subclass of device,
placing hbox objects as words within a paragraph. Parbox devices have a ←→width,
realise alignment and adjustment and can place text around floating objects.

• Class hbox
This is an abstract super-class for tbox and grbox that allow for text and graphics
within a parbox.

• Class tbox
Represent text in a parbox. Normally, a tbox represents a word.

• Class grbox
Embeds any graphical object in a parbox. The grbox negotiates with the parbox
on the placement and then places the graphical on the parbox using normal behaviour
of device.

• Class lbox
This is another subclass of device that realises LATEX-like list-environment. The class
deals with placement of labels and text for the items. Both label and item are arbitrary
graphical objects. Items are normally instances of parbox.

• Class rubber
This is a data object containing information on the stretchability of boxes. Rubber
object are used to distribute space horizontally as well as to determine the location of
line-breaks. A space in a parbox is realised using a hbox whose natrual width is the
width of a space in the current font that can shrink a little and expand a bit easier.

Before discussing the library we show a small example using the primitives directly.

1 parbox :-
2 send(new(W, window), open),
3 send(W, display, new(P, parbox(W?width)), point(10,10)),
4 send(W, resize_message, message(P, width, @arg2?width-20)),
5

6 send(P, alignment, justify),
7 send_list(P,
8 [append(grbox(box(40,40), left)),
9 cdata(’This is the central class of the ’),
10 cdata(’document-rendering support. It is ’),
11 cdata(’a subclass of ’),
12 cdata(’device’, style(underline := @on)),
13 cdata(’, placing ’),

XPCE 6.6.37

172 CHAPTER 11. COMMONLY USED LIBRARIES

Figure 11.10: A parbox floating text around a box

14 cdata(’hbox’, style(underline := @on)),
15 cdata(’ objects as words within a paragraph. ’),
16 cdata(’Parbox devices have a <->width, realise ’),
17 cdata(’alignment and adjustment and can place text ’),
18 cdata(’around ’),
19 cdata(’floating ’, style(font := italic)),
20 cdata(’ objects.’)
21]).

In line 4, we forward changes to the width of the window to the parbox to force reformat-
ting the text if the width of the window changes. Line 6 asks for a straight right-margin. Line
8 appends a box that is left aligned, the text floating around it. The remaining lines append
text. The method ‘parbox → cdata’ breaks the argument into words and adds instances
of tbox for each word, separated by instances of hbox with appropriate rubber for each
sequence of white-space, doing much the same as an HTML browser processing CDATA
text.

Defining a document from Prolog text using these primitives is not attractive. This is the
motivation for using a library.

11.10.1 The rendering library

The directory \bnfmeta{pcehome}/prolog/lib/doc contains the document-rendering
library, providing HTML-oriented primitives for document rendering. The translation process
can be extended by defining predicates for two multifile predicates.

The central library is doc/emit. This library defines the predicate emit/3:

emit(+ListOfTerm, +PBox, +Mode)
This predicate takes a list of processing instructions and applies these on PBox, an

XPCE 6.6.37

11.10. DOCUMENT RENDERING PRIMITIVES 173

instance of class pbox, a subclass of parbox supporting this library. Mode provides
an instance of doc mode, a data-object holding style-information.

ListOfTerm consists of the following instructions:

• 〈Atomic〉
Atomic data is added as text to the output. If ‘doc mode ← space mode’ equals
preserve, spaces are preserved. Otherwise space is canonised, smashing mul-
tiple consecutive banks into a single (rubber) space.

• \ction
Execute an Action. Actions are like TEX commands, which is why we use the
backslash. The built-in actions and the definition of new actions is discussed in
section 11.10.3.

• @Object
XPCE objects are simply appended to the pbox. This can be used to append
self-created objects or use one of the predefined layout objects defined in sec-
tion 11.10.2.

Before handed to the above, emit/3 calls the multifile predicate doc:emit/3 passing
the whole list as you can see from the definition below. This allows the user-hook to
process sequences of instructions.

emit(Term, PB, Mode) :-
doc:emit(Term, PB, Mode), !.

11.10.2 Predefined objects

The file doc/objects defines a number of globally named instances of the box classes.
Appending these objects is like executing an action. These objects are:

@br Nul-dimension hbox with rubber to force a line-break.
@nbsp Non-breaking space.
@hfill Rubber hbox for alignment and centering.
@space rubber Rubber used for hbox objects representing a space. This rubber

allows for a line-break.
@h〈n〉 above Space above HTML section-headers.
@h〈n〉 below Space below HTML section-headers.

11.10.3 Class and method reference

This section provides a partial reference to the classes and methods defining the document-
rendering library. For full information, please use the ClassBrowser and check the source-
code.

pbox→ show: Content:prolog, Mode:[doc mode]
Calls emit/3 using Content and Mode. If mode is omitted, a default mode object is
created.

XPCE 6.6.37

174 CHAPTER 11. COMMONLY USED LIBRARIES

pbox→ event: Event:event
Handles clicking a button or footnote and showing balloons from buttons after trying to
pass the event to one of the embedded graphicals.

pbox← anchor: Name→ tuple(Box, Index)
Return the Box and index thereof in the ‘parbox ← content’ vector that starts the
named anchor (see section 11.10.3.

doc mode→ initialise
Creates a default document-rendering mode. This mode has the following properties:

vfont new(vfont) The virtual font for text
link colour dark green Text-colour while rendering buttons
parsep hbox(0,8) Skip 8 pixels between paragraphs
parindent hbox(0,0) Do not indent paragraphs
space mode canonical Collapse spaces
alignment justify Make a right-margin
base url ” URL for HTML hyper-links

doc mode→ set font: Att:name, Value:any
Set an attribute of←vfont and update←style and←space to reflect the new font-
settings.

doc mode→ colour: Colour
Set the colour of←style.

doc mode→ underline: Bool
Set underline mode in←style.

Class vfont

The class vfont realises virtual fonts, Microsoft also calls these logical fonts. XPCE font
objects are read-only. When dealing with incremental font manipulation it is necessary to
have a font that can be manipulated. Therefore, vfont defines a number of slots to rep-
resent the font attributes regardless of the fonts existence. At any time the user can re-
quest the best matching font using ‘vfont ← font’. The mapping between virtual font
attributes and physical fonts can be programmed by adding clauses to the multifile predicate
vfont:font map/7. This class is defined in doc/vfont where you find further programming
details.

Rendering actions

The action subsystem processes actions (\ction) from emit/3, providing a hook for adding
new actions. Before doing anything else, the hook doc:action/3 is called:

doc:action(+Action, +PBox, +Mode)
Execute Action. The actions are passed from emit/3 after stripping the backslash. If
this hook succeeds the action is considered handled.

XPCE 6.6.37

11.10. DOCUMENT RENDERING PRIMITIVES 175

The built-in actions are:

ignorespaces
Tells emit/3 eat all input until the first action or non-blank character.

space(SpaceMode)
Tells emit/3 to preserve white-space or render it canonical. Default is
canonical.

pre(Text)
Add verbatim text.

par
Start a new paragraph. This is the action-sequence parskip, followed by parsep.

parskip
Inserts←parsep from the current mode, surrounded by two line-breaks (@br).

parindent
Insert the←parindent from the current mode.

group(Group)
Use emit/3 on Group on a ←clone of the doc mode object. This is essentially the
same as a TEX group, scoping changes to the mode such as font-changes, etc.

setfont(Attribute, Value)
Set an attribute of the font. Fonts are maintained using the Prolog defined class vfont
(virtual font) that allows for independent changes to font attributes. When text needs to
be rendered, a close real font is mounted. Defined attributes are: family, encoding,
slant, weight, fixed and size. See \bnfmeta{pcehome}/prolog/lib/doc/
vfont.pl for details.

ul
Switch on underlining. Normally this should be inside a group to limit the scope.

colour(Colour)
Set the text-colour.

list(Options, Content)
Produce a list-environment. The option class(Class) defines the subclass of lbox
used to instantiate, default bullet list. The Content is passed to emit/3, using
the created list-object as 2nd argument.

When using a bullet list or enum list Content must translated into a sequence
of li commands. Using a definition list, a sequence of dt and dd commands
is expected.

li(Content)
If we are processing a bullet list or enum list, start a new item using
‘←make item’, then emit Content to the new item.

XPCE 6.6.37

176 CHAPTER 11. COMMONLY USED LIBRARIES

dt(ItemTitle)
If we are processing a definition list, create a new label from ItemTitle.

dd(ItemContent)
Create a pbox for the item body and emit ItemContent to it.

title(Title)
Get the←frame of the pbox and send it the given title using ‘frame → label’.

body(Options)
Apply options to the window as a whole. Defines options are bgcolour(Colour),
background(Image) and text(Colour).

button(Message, Content, Balloon)
Add an active area (hyper-link) to the document. When depressed, Message is exe-
cuted. When hoovering, Balloon is reported as status (see section 10.7). Content is
emitted inside a group after setting the default colour to ‘doc mode ← link colour’
and underlining to @on.

anchor(Label, Content)
Label some content. This has no visual implications, but the the anchor can be located
using ‘pbox ← anchor’.

parbox(Content, Options)
Add a sub-parbox. Defined options are:

width(Width)
Define the width of the sub-box.

rubber(Rubber)
Define the shrink- and stretchability of the sub-box.

align(Alignment)
Define text-adjustment (left,center,right,justify) within the box.

valign(VAlign)
Define the vertical alignment of the box (top, center, bottom.

auto crop(Bool)
If @on, tell the pbox its ←area is determined by the content rather than the
specified width. Text may be formatted left-to-write without wrapping by defining a
wide parbox and using this option.

table(Options, Content)
Create a tabular layout using the class doc table, a device holding a table. See
also section 11.5. The options and commands are modelled after HTML-3. Table-
related commands are tr, td, col, thead and tbody. Defined options are:

align(Align)
Graphical alignment, allowing placement as left or right floating object or
centered placement.

XPCE 6.6.37

11.10. DOCUMENT RENDERING PRIMITIVES 177

width(Width)
Give the table a specified width.

bgcolor(Colour)
Set the default background colour for the rows, columns and cells.

cellpadding(IntOrSize)
Specify the space inside a cell around its content.

cellspacing(IntOrSize)
Specify the space between cells.

tr
Open the next table-row.

tr(Options, Content)
Open a new row and emit Content therein. Options are applied to the row. See class
table row for details.

td(Options, Content)
Add a table-cell and emit Content into it. Options are applied to the new cell. See class
table cell for details.

col(Options)
Handle an HTML-3 col element, specifying parameters for the next column. De-
fined Options are span(Span) to apply these settings to the next Span columns and
width(Spec), where Spec is an integer (pixels) or a term *(N), defining the weight for
shrinking and stretching relative to other columns using this notation. The following
defines the second column to be twice as wide as the first:

[\col(*(1)),
\col(*(2))

]

tbody(Options)
Start a row-group. See ‘table row → end group’. Options is currently ignored.

thead(Options, Content)
Handle a table-head. It expects a number of rows in Content. While processing Content
it sets the default cell alignment to center and font to bold.

footnote(Content)
Add a footnote-mark. Pressing the mark shows a popup-window holding the text of the
footnote.

preformatted(Text)
Adds text in a tbox to the parbox without checking the content. The current style is
applied to Text

XPCE 6.6.37

178 CHAPTER 11. COMMONLY USED LIBRARIES

11.10.4 Using the “doc/emit” library

In section 11.10.1 and section 11.10.3 we have seen the definition of the basic render-
ing library infrastructure. It uses concepts from TEX and HTML-3, introducing primitives for
grouping, attribute settings, lists, tables and whitespace-handling.

The emit/3 predicate as described above is not intended for direct use though. It is hard
to imagine a good syntax for defining significant amounts of formatted text in a Prolog text-
file. In some cases it is feasible to define a suitable set of new commands and use emit/3
directly from Prolog. In most cases you’ll want to use tokens from an external source using
an external markup language.

One option to arrive at a token-list is using the XML/SGML parser included in SWI-Prolog.
It can be used either with a domain-specific DTD, in which case you need to define the
translations by hand or using an HTML DTD, in which case the library doc/html defines the
required translations.

We will illustrate this in a small example. First the code to show HTML inside a win-
dow is below. In line 1 we load the always-needed document rendering infra-structure and
register the doc search-path to reflect the \bnfmeta{pcehome}/prolog/lib/doc direc-
tory. Next we import emit/3 and load the HTML-rendering extensions to doc:emit/3 and
doc:action/3.

1 :- use_module(library(’doc/load’)).
2 :- use_module(doc(emit)).
3 :- use_module(doc(html)).
4 :- use_module(library(sgml)).
5

6 show_html(File) :-
7 send(new(P, picture), open),
8 send(P, display, new(PB, pbox), point(10,10)),
9 send(P, resize_message, message(PB, width, @arg2?width - 20)),
10

11 load_html_file(File, Tokens),
12 send(PB, show, Tokens).

Here is the HTML code loaded and the visual result.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">

<html>
<head>
<title>Document rendering</title>

</head>
<body>
<h1>SWI-Prolog SGML-DOM</h1>

<p>
SWI-Prolog 4.0 provides a library for loading XML, SGML and
HTML files and convert them to a complex Prolog term. This
term has the format

XPCE 6.6.37

11.10. DOCUMENT RENDERING PRIMITIVES 179

Figure 11.11: Rendering HTML code

<p>
<pre>
element(Name,

ListOfNameValue
ListOfContent)

</pre>

<p>
Where <var/ListOfNameValue/ reflects the attribute-list of the
element and <var/ListOfContent/ is mixed list of atoms representing
<em/CDATA/ and element/3 terms representing nested elements.
</body>
</html>

In general you do not want to render plain HTML using XPCE/Prolog as it is far less flexible
than real browsers dealing with errornous HTML, the implementation of HTML is incomplete
and it supports Java nor Javascript.

It has proved to be worthwile using the extensibility of SGML and this layout to render
domain-specific documents, often using HTML elements for the basic layout.

XPCE 6.6.37

180 CHAPTER 11. COMMONLY USED LIBRARIES

XPCE 6.6.37

Development and debugging
tools 12
This section describes various tools and techniques to help finding bugs in XPCE/Prolog
code. Most of the tracing is done in the hosting Prolog language. XPCE provides addi-
tional tools for tracing the execution of certain methods, breaking on the implementation of a
Prolog-defined method, finding and inspecting objects.

12.1 Object-base consistency

Unlike Prolog, XPCE is not secure: if a Prolog environment traps a fatal error there is almost
always a bug in the Prolog system. Except for violating system limits there is no Prolog
program that can make the Prolog environment crash. For XPCE this is different. Consider
the following example:

1 ?- new(@p, picture),
send(@p, display, new(B, box(100,100))),
get(B, area, Area),
free(Area).

Area = @ 803438, B = @803419/box

After these calls, the ←area attribute of the box has been destroyed, but the box is not
aware of this fact. The utility predicate checkpce/0 scans the XPCE object-base for various
inconsistencies and will report that the box contains a slot referring to a freed object.

2 ?- checkpce.

[WARNING: Freed object in slot area of @803419/box: @803438/area]
[PCE: Checked 13173 objects]

XPCE uses heuristics trying to avoid that such problems actually crash the system (in the
example above execution continues normally).

We advice using checkpce/0 regularly during program development to verify your ap-
plication is not violating object consistency. Please see section 10.4 and section 10.11 for
techniques to avoid ‘dangling’ object references.

12.2 Tracing methods

It is often useful to inspect the execution of a particular method. Suppose we want to mon-
itor geometry-changes of graphical objects. The utility predicate tracepce/1 (see also
section D) may be used:

XPCE 6.6.37

182 CHAPTER 12. DEVELOPMENT AND DEBUGGING TOOLS

1 ?- tracepce((graphical->geometry)).
Trace method: graphical ->geometry

As -> is a standard Prolog operator with priority over 1000, tracepce/1 requires two brack-
ets. Get-methods may be specified in a similar way. <- is not an operator. It is suggested
to define <- as an infix operator in the XPCE initialisation file, so this operator is available
during program development:

:- op(100, xfx, <-).

Instance variables may be specified as 〈class〉-〈variable〉. A trace-point on an instance vari-
able makes both reading and writing the variable visible.

The predicate notracepce/1 disables a tracepoint.

12.3 Breaking (spy) on methods

Prolog-defined methods are all implemented using the same predicate, which makes it hard
to use spy/1 for starting the debugger on a method. One way around is to stick a call to
trace/0 into the method body and recompile the file. For those among us who dislike this
idea there is the possibility to use spypce/1.

spypce(+Spec)
Spec specifies a send- or get-method like tracepce/1. If the method is defined in
Prolog XPCE calls trace/0 just before starting the implementation of the method.

12.4 Visual hierarchy tool

The “Visual Hierarchy” tool provides an overview of the consists-of relations between the
various UI components in a tool. It is part of the online manual tools and may be started
from the “Tool” entry in the main dialog. Figure 12.1 shows this tool examining the structure
of the “PceDraw” demo program.

This tool is very useful to examine the structure of existing applications (for example the
various demo programs). It may also be used to find object-references and to launch the
inspector (section 12.5) on a particular object.

There are three ways to expand the tree of the visual hierarchy tool. The first is to expand
the tree from the initially displayed root object. The second is to type the reference in the
“Visual” text item and press RETURN. The most comfortable way is to position the mouse in
the target object and type META-SHIFT-CONTROL-V.1

12.5 Inspector tool

The inspector provides a visual representation of all attributes of an object. It is a visual
form of the debugging predicate show slots/1 which dumps the class and slot value of the

1To remember this sequence: V for Visual and all defined modifiers to avoid a conflict with application defined
key-bindings.

XPCE 6.6.37

12.5. INSPECTOR TOOL 183

View/Edit class source
Open ClassBrowser
View instance details

Built-in class

Prolog class

Click flashes the object

Figure 12.1: Visual Hierarchy Tool showing “PceDraw”

XPCE 6.6.37

184 CHAPTER 12. DEVELOPMENT AND DEBUGGING TOOLS

reference/class

Memory management info:
 Flags(A=answer, P=protected, L=locked)
 Reference count

Value as reference/class:
 - single-click: flash, display term
 - double-click: open card

Type reference to add

Figure 12.2: Inspector Tool

argument reference in the Prolog window. The inspector is started from the “Tools” entry of
the manual tools.

XPCE 6.6.37

Bibliography

[Anjewierden, 1992] A. Anjewierden. XPCE/Lisp: XPCE Common Lisp Inter-
face. SWI, University of Amsterdam, Roetersstraat 15,
1018 WB Amsterdam, The Netherlands, 1992. E-mail:
anjo@swi.psy.uva.nl.

[Anjewierden et al., 1990] A. Anjewierden, J. Wielemaker, and C. Toussaint. Shel-
ley — computer aided knowledge engineering. In
B. Wielinga, J. Boose, B. Gaines, G. Schreiber, and
M. van Someren, editors, Current trends in knowledge
acquisition, pages 41 – 59, Amsterdam, May 1990. IOS
Press.

[Chambers et al., 1989] Craig Chambers, David Ungar, and Elgin Lee. An effi-
cient implementation of SELF, a dynamic-typed object-
oriented language based on prototypes. Sigplan No-
tices, 24(10):49–70, Oct 1989.

[Goldberg & Robson, 1983] A. Goldberg and D. Robson. Smalltalk–80: The Lan-
guage and its Implementation. Addison-Wesley, 1983.

[Wielemaker & Anjewierden, 1989] J. Wielemaker and A. Anjewierden. Separating User
Interface and Functionality Using a Frame Based Data
Model. In Proceedings Second Annual Symposium on
User Interface Software and Technology, pages 25–33,
Williamsburg, Virginia, November 1989. ACM Press.

[Wielemaker & Anjewierden, 1993] J. Wielemaker and A. Anjewierden. XPCE-4 Reference
Manual. SWI, University of Amsterdam, Roetersstraat
15, 1018 WB Amsterdam, The Netherlands, 1993. Pa-
per version of online manual.

[Wielemaker & Anjewierden, 1994] J. Wielemaker and A. Anjewierden. A C++ interface for
XPCE. SWI, University of Amsterdam, Roetersstraat 15,
1018 WB Amsterdam, The Netherlands, 1994. E-mail:
jan@swi.psy.uva.nl.

[Wielemaker, 1992] J. Wielemaker. PceDraw: An example of using XPCE-
4. SWI, University of Amsterdam, Roetersstraat 15,
1018 WB Amsterdam, The Netherlands, 1992. E-mail:
jan@swi.psy.uva.nl.

[Wielemaker, 1994] J. Wielemaker. XPCE/Prolog Course Notes. SWI,
University of Amsterdam, Roetersstraat 15, 1018

XPCE 6.6.37

186 BIBLIOGRAPHY

WB Amsterdam, The Netherlands, 1994. E-mail:
jan@swi.psy.uva.nl.

[Wielemaker, 1996] J. Wielemaker. SWI-Prolog 2.5: Reference Man-
ual. SWI, University of Amsterdam, Roetersstraat 15,
1018 WB Amsterdam, The Netherlands, 1996. E-mail:
jan@swi.psy.uva.nl.

XPCE 6.6.37

The dialog editor A
The dialog editor is a GUI based tool for the definition of dialog windows (windows with
controls). It supports the following phases of the definition of a GUI:

• Specifying the required controls
Prototypes of controls are dragged to the target dialog window. They are moved to—
roughly—the right location.

• Refining the controls
The controls may be refined: specifying labels, sizes, fonts, items in menus, etc.

• Fixing the layout and size of the window
The layout specification for the dialog window is established. The Dialog Editor
guesses the layout intentions of the user and translates these into XPCE’s dialog-
window symbolic layout statements.

• Specifying behaviour
Both internal behaviour and the link to the application may be established using graph-
ics. The dialog may be tested, while graphical animation illustrates how user-actions
are processed and transferred to the application.

• Generation of code
A Prolog description of the dialog window is realised by dragging the dialog from the
list of dialog-windows to a PceEmacs window running in Prolog mode.

• Linking the dialog in the application
The generated code is a clause of the predicate dialog/2. The first argument of this
clause identifies the dialog, while the second arguments describes the structure and
behaviour of the dialog. The body is empty. The library predicate make dialog/2 is
used to create a dialog window from the description of dialog/2.

A.1 Guided tour

We will now illustrate the functionality of the Dialog Editor by defining a simple prompt dialog
that asks for a name and has an ok and cancel button to confirm or cancel the operation.
The result is shown in figure A.1

A.1.1 Creating the target dialog window

First, start the manual tools using manpce/0 or user help/0. Then, start the dialog editor
using the option Tools/Dialog Editor. The main window of the dialog editor is now opened on

XPCE 6.6.37

188 APPENDIX A. THE DIALOG EDITOR

Figure A.1: Ask-name dialog generated by the Dialog Editor

Prototype controls

Menus for save, help, etc.

Dialog Windows under construction

Mode control ‘Target’ Dialog Window

Figure A.2: The Dialog Editor with the ask-name target

the screen. Use the option File/New Dialog and enter the name ‘ask name’. This will add
ask name to the Dialog Windows browser and open an window with the title ‘Ask Name’.
See figure A.2. This window is called the ‘target window’.

A.1.2 Adding controls to the new window

Next, the controls are dragged to the dialog window. The control marked specifies a
text-entry-field. Drag this icon using the left-mouse button to the target dialog. If the mouse
is above the target dialog, a dotted box will indicate the outline of the new item when it is
dropped. Drop it in about the right location. Now drag two instances of to the target dialog
and place them again at about the right location. Items can be moved by dragging them with
the left button. They can also be copied to other target dialog windows by dragging them
there and they can be deleted by dragging them to the window holding the prototypes.

Now, double-click, using the left button, the text-entry field. A dialog with attributes will
appear. The caret is positioned at the Name field. Clear the name field (Control-U is the
fastest way) and enter name, followed by RETURN. The system will automatically fill the La-
bel field with Name (capitalising the name of the control). If the label should be anything else
than the capitalised name, type the correct label now. The other fields are self-explanatory,
except for the Type field. This specifies the type of object edited by the text-entry field. See
‘text item ←→ type’ for details. Pressing Help creates a window containing the online

XPCE 6.6.37

A.1. GUIDED TOUR 189

Figure A.3: The Dialog Editor after specifying attributes

manual cards of all displayed attributes.
Double click on both buttons to fix the name/label. Assign the ok button to be the default

button. The result is shown in figure A.3.

A.1.3 Defining the layout

Next, the Mode menu of the main Dialog Editor window is used to select Layout Mode. The
button Layout guesses the symbolic layout description of the dialog and places the items. If
you are not satisfied with the result, press Undo. Next, you can help the layout mechanism
by positioning the items closer to the intended position and try again, or place the items
by hand. In the latter case, the generated code will express the layout using pixel-locations
rather then a symbolic description and the result may look bad if the end-user runs XPCE with
a different look-and-feel. The Fit button adjusts the size of the dialog window to its content.

A.1.4 Specifying the behaviour

The next step is to specify the behaviour of the dialog window. Select the Action mode and
press the Behaviour Model button to open the behaviour window. Now drag all items from
the target dialog window to the behaviour window.

Each control is now represented by a behavioural component. Each such component
defines a number of ports. The Dialog Editor distinguishes between three types of ports:

• send-port
A send-port is the representation of a send-method defined on the controller repre-
sented by the behavioural component.

• get-port
A get-port is the representation of a get-method defined on the controller.

XPCE 6.6.37

190 APPENDIX A. THE DIALOG EDITOR

• event-port
An event-port is the representation of an instance variable defined on the controller that
can hold an executable (code) object (see section 10.2). Controls use these variables
to define the callback actions of the dialog item.

The window (background) represents the target dialog as a whole. Ports may be added to
both behavioural components and the background window using the popup menu associated
with the right mouse-button.

While hovering over the various parts of the behavioural model, the feedback window
at the bottom describes the meaning of the current item. The popup menus defined on all
components of the model provide context-sensitive access to the XPCE online manual as
well as the online documentation of the Dialog Editor.

In general, the action(s) associated with a control are specified by connecting its event-
ports to a send-port in the diagram. The line connecting both ports has a fat dot in the middle.
Get-ports may be linked to this fat dot to specify arguments for the send-operation. If a get-
method needs to be performed on the value of a get-port to define the argument, Extend the
get-port, define a new get-port on the extension and link the result to the argument dot.

For our Ask Name dialog, we need to make a modal dialog, see section 4.4. Such a
dialog returns by invoking the →return method on the dialog window. The popup of the
background is used to define a send-port named return, representing →return to the
dialog. Position the pointer above the new item to validate your action.

Now, as both methods will make the dialog return immediately, link the message event-
port of both buttons to this return send-port. Link the selection get-port of the text field
to the argument dot of the link from the Ok button. This specifies that the dialog will return
with the ‘text item ← selection’ if the Ok button is pressed. Add the constant @nil
to the background using the popup menu on the background. This finishes the specification
of our dialog window. The resulting behaviour model is shown in figure A.4.

A.1.5 Generating source code

To generate source code, start PceEmacs using the Edit command from the background
menu. This will open PceEmacs on the file ask name.pl. Any other PceEmacs window
editing a Prolog source file will do as well. Drag the ask name entry from the main window
of the Dialog Editor to the PceEmacs window. The window will indicate it is ready to accept
the Prolog source code. Now ‘drop’ the code. The source code will be inserted at the caret
location. See figure A.5.

A.1.6 Linking the source code

The generated source is a description of the dialog window. This description requires an
interpreter to create the dialog window and use it in an application. This interpreter is imple-
mented by make dialog/2:

make dialog(?Reference, :Identifier)
Create a dialog window from a description generated by the Dialog Editor. The pred-
icate make dialog/2 searches for a predicate dialog/2 and calls this using the
given dialog Identifier to obtain a description of the dialog window. See dialog/2 for
the syntax of the description.

XPCE 6.6.37

A.1. GUIDED TOUR 191

Behavioural component event-port

constantsend-portget-port activate-relation

argument-relation

argument-position

Figure A.4: Behaviour model of Ask Name

dialog(?Identifier, ?Description)
Clause as generated by the dialog editor. The description is a list of 〈Name〉 := 〈Value〉
pairs. It contains the following elements:

• object
Points to the Prolog variable defining the main object reference (the first argument
of make dialog/2).

• parts
A list of 〈Var〉 := 〈NewTerm〉. make dialog/2 will simply call new/2 on these
terms to create the parts of the dialog window.

• modifications
List of 〈Var〉 := 〈ListOfModifications〉 that have to be applied to the parts to modify
them from the default to the target configuration. The 〈ListOfModifications〉 is a
list of 〈Attribute〉 := 〈Value〉.

• layout
List of below(〈Part1〉, 〈Part2〉) and right(〈Part1〉, 〈Part2〉), describing the
symbolic layout of the dialog window.

• behaviour
List of 〈Part〉 := 〈ListOfBehaviour〉, describing the behaviour of the control ele-
ment. 〈ListOfBehaviour〉 is a list of 〈Attribute〉 := 〈Message〉, describing the code
objects associated with the controls.

XPCE 6.6.37

192 APPENDIX A. THE DIALOG EDITOR

Drag with left-mouse-button

Figure A.5: Creating source-code

XPCE 6.6.37

A.2. MISCELLANEOUS TOPICS 193

The wrapper program to make the dialog-description useful from an application is given
below. First make dialog/2 is used to create the dialog. Next the dialog is opened in the
center of the display and the system waits for the ‘frame → return’ message to be send.

ask_name(Name) :-
make_dialog(D, ask_name),
get(D, confirm_centered, RawName),
send(D, destroy),
Name = RawName.

A.1.7 Summary

We have now completed the first guided tour through the Dialog Editor, introducing the main
concepts and the process of creating a dialog window using this tool. After creating a target
dialog window, controls are added to the dialog using drag-and-drop. Their attributes are
edited by double-clicking the new controls and filling the subsequently shown dialog window.
Next, the items are dragged roughly to the right location, the editor is placed in layout mode
and the layout button is used to let the Dialog Editor guess the symbolic layout descrip-
tion. Next the behaviour is defined using the behaviour model editor. Event-ports (control-
attributes defining the callback of a control) are linked to send-ports (send-method ports)
and arguments are linked to this activation relation. Finally the dialog window is dropped in
a PceEmacs window running in Prolog mode (the default when editing a file with extension
.pl or .pro). Finally, a small wrapper must be defined that creates the dialog window from
the description using make dialog/2 and opens the dialog in the proper way.

A.2 Miscellaneous topics

This section discusses various topics that were omitted from the Guided Tour to keep it
simple.

A.2.1 Specifying callback to prolog

Using the background popup of the behaviour editor, the object @prolog (see section 6)
can be added to the model. Select Add Send Port to add a new predicate to the @prolog
interface. Then type the name of the predicate. Now link the event-port of a control to the
predicate and link the arguments.

If the predicate is not defined, select ‘Edit’ on menu of @prolog to start PceEmacs on
the source file. Now drag the predicate to the PceEmacs window. This will insert the head
of the predicate at the caret. See figure A.6

A.2.2 Advanced example of behaviour

Figure A.7 is the screen dump of an application and its behaviour model of a tool that shows
all files in a directory and clicking on a file shows the file’s contents in the editor to the left. It
demonstrates various aspects of advanced features for specifying behaviour.

XPCE 6.6.37

194 APPENDIX A. THE DIALOG EDITOR

Control-left-drag

Figure A.6: Specifying Call-back to Prolog

XPCE 6.6.37

A.2. MISCELLANEOUS TOPICS 195

• The text-field directory
Represented in the model by (1). It is a normal text item, but the
‘text item ←→ type’ field is set to ‘directory’. This implies the←selection of the
text-item will return a directory object.

• Showing the files of the directory
If the text-item is modified, a list of files in the directory should be shown in the ‘file list’,
a list browser. The method ‘list browser → members’ may be used to fill the
browser with a collection of items. This method expects a chain object. The get
method ‘directory ← files’ provides a chain holding the names of all files in the
directory.

Thus, the event-port ‘message’ of the directory field must invoke the send-port ‘mem-
bers’ of the file-list. The argument should be the result of applying ←files on the
←selection of the text-entry field. To specify this, the get-port ‘selection’ is expanded
using the popup menu of this port. This operation adds (2) to the diagram. The system
infers this expansion is an instance of class directory and shows the most useful
get-ports in its get-port menu. The ‘files’ get-port is added to (2) and linked to the activa-
tion relation between ‘text item → message’ and ‘list browser → members’.

To test this part, put the Dialog editor in ‘run’ mode, type the name of a directory and
ENTER to activate the event-port. If anything goes wrong, the Simulate option of the
various popup menus in the diagram may be used to test small parts of the model. The
Documentation option of these menus may be used to view the relevant documentation
from the online manual tools.

• Specifying the initial directory as a parameter
Initialisation of the dialog is expressed by adding one or more init-ports to the diagram
using the background menu. In this particular case, we would like to be able to pass a
directory to start as a parameter. Hence, a parameter-port is added with the name ‘dir’.
First, the →selection is set using the parameter and then the item is →executed
to activate its→message.

Code generation will append the directory parameter to the identifier of the dialog/2
clause. In this case, this clause will start as:

dialog(viewer(Dir),
[...
]).

An instance is opened using the following calls:

...,
make_dialog(D, viewer(StartDir)),
send(D, open),
...

• Showing a file
The first step is to link the event-port ‘select message’ of the file list to the file contents

XPCE 6.6.37

196 APPENDIX A. THE DIALOG EDITOR

1

2

3

4

5

A

Figure A.7: A file viewer

(3) editor object’s send-port ‘load’. This method expects a file. Due to the type con-
version rules of class file, the name of a file suffices, but the names from file list are
relative to the directory object (2). First, the←selection of the file list is expanded,
resulting in (5), a dict item object. The ‘dict item ← key’ contains the name of
the file.

The method ‘directory ← file’ can be used to create a file object from a name,
that specifies an absolute path. A get-port ‘file’ is added to (2) and this get-port is linked
to the activation relation. This get operation requires the filename argument from (5).

A.2.3 Specifying conditional actions

Figure A.8 shows an example of a conditional activation relation. A conditional relation is
created making a connection from the fat dot in the middle of an activation relation to a send-
port. Success or failure of the send-port will be interpreted as a condition on the activation
relation.

A.2.4 Load and save formats

The Dialog Editor provides two load/save formats. The Load, Save, Save As and
Save All save and load the status of the dialog editor as an XPCE object using
‘object → save in file’. This format loads quickly, but is rather vulnerable to future
changes in the Dialog Editor or any of the graphical classes.

XPCE 6.6.37

A.2. MISCELLANEOUS TOPICS 197

Figure A.8: Conditional activation

XPCE 6.6.37

198 APPENDIX A. THE DIALOG EDITOR

Alternatively, the Dialog Editor can restore itself from the identifier of a dialog/2 clause
generated by itself or (slightly) modified. In this case, the layout of the behaviour model will
be lost.

We advice to use Save/Load during application development. If, during the maintenance
phase of your product it is necessary to modify a dialog, either simply edit the dialog/2
clause, or load both the application and the dialog editor and use Reload From Id to restart
the Dialog Editor.

A.3 Status and problems

The current version of the Dialog Editor is experimental. It can be used for serious application
development as the output format is extensible, so future extensions to the Dialog Editor will
not break already generated dialog windows. The main problems identified are:

• Defining new controls
It is desirable to be able to create new (compound) controls using the dialog editor
and save these in a library. At the moment new controls can only be created by pro-
gramming them as a user-defined class. Connecting these user-defined controls to the
Dialog Editor is not difficult, but no supported interface has been defined.

• Layout detection
The layout detection often makes mistakes, partly because it does not know about
various important layout concepts.

• Integration with user-defined classes
It is desirable to integrate the dialog editor in a neat way with user-defined classes.
Notably, the editor should support activating and defining methods on a user-defined
refinement of the containing frame.

A.4 Summary and Conclusions

Though the dialog editor has attracted quite some attention when it was developed, it remains
a difficult product. Using WYSIWYG style of interface building appears attractive, but looses
generalisations that can be made in a programming language. If you have been in a country
of which you don’t speak the language you understand that pointing is a rather crippled
way to express your needs. Especially XPCE/Prolog is strong in meta-representation and
symbolic layout and the combination can easily be exploited to automate most of the simple
control generation.

A good WYSIWYG should provide a smooth transition between the beginners choice for
WYSIWYG and the expert choice of using language. It was one of the aims of this project to
achieve this transaction but modern XPCE/Prolog applications are generally programmed in
classes and the dialog editor presented here is build around direct relations between objects.

XPCE 6.6.37

Notes on XPCE for
MS-Windows B
The binary version of XPCE runs on Windows NT, 2000 and XP.1 Its functionality is very
close to the Unix/X11 version, making applications source-code compatible between the two
platforms. .

XPCE does not build on top of the hosting window-systems GUI library. Instead, the
primitive windowing and graphics facilities of the host are used to implement ‘XPCE’s Virtual
Window System’. All of XPCE’s graphical functionality is build on top of this ‘Virtual Window
System’. This approach guarantees full portability of applications between the platforms.

The look-and-feel of XPCE may be tailored using the defaults file located in
〈pcehome〉/Defaults.

B.1 Currently unsupported features in the Win32 version

• Class socket
No support of file-based addressing (Unix domain sockets). Inet-domain sockets are
provided (interfacing to WinSock).

B.2 Interprocess communication, extensions and interaction

• DDE
Not (yet) supported by XPCE. SWI-Prolog supports it though, making DDE a feasible
interprocess communication approach.

• WinSock
Provides standard TCP/IP communication, both server- and client-side.

• Named Pipes
Not (yet) supported.

• OLE
Not considered yet. We however are considering CORBA, which provides an
open standard for object-oriented, network-transparent interprocess communications.
CORBA and OLE are integrated.

• Drag-And-Drop
XPCE can accept dropped files from other applications. Inside the application, drag-
and-drop is fully compatible to the Unix version. See dragdrop.

1As of 6.5.x, XPCE is a UNICODE application and is no longer supported for Windows 95, 98 and ME.

XPCE 6.6.37

200 APPENDIX B. NOTES ON XPCE FOR MS-WINDOWS

• Cut/Paste
Supported for exchanging text, and pictures using the Windows MetaFile format.

• DLL
Not supported by XPCE. SWI-Prolog provides it though, making DLL available to
XPCE/Prolog applications.

B.3 Accessing Windows Graphics Resources

XPCE on Win32 defines the same cursor, colour and font-names as the Unix/X11 version
to guarantee portability. It is desirable to have access to all the native Windows graphical
resources. This allows the application to maintain better look-and-feel compatibility to other
Win32 applications. Therefore the classes colour, cursor and font provide access to related
Window resources.

It is NOT advised to use these objects in your application code directly as this will
stop the application to run on the Unix/X11 version of XPCE. We advice using these
objects in the XPCE defaults file (〈pcehome〉/Defaults) only, or use conditional code
using ‘pce ← window system’.

B.4 Accessing Windows Colours

Colours may be created from their X11 names. The X11 name-table is in
〈pcehome〉/lib/rgb.txt. In the Windows API, all colours described as RGB (Red, Green,
Blue) tuples. This is no problem as XPCE also provides RGB colours. Note however that
Win32 intensity is ranged 0..255, where the XPCE intensity is ranged 0..65535. This is true
on all XPCE’s platforms.

To provide access to the window-system colours as they can be obtained using the Win32
API function GetSysColor(), XPCE binds these colours to named colour objects. These colour
objects are normally used in the XPCE resource file (〈pcehome〉/Defaults) to colour XPCE’s
controller objects according to the user’s preferences.

If the name of the Windows API colours are COLOR SOMETHING, the XPCE name is
win something. The full list is in table B.1.

B.5 Accessing Windows Fonts

The normal screen, helvetica, roman and times font families available in the Unix/X11 version
are available using the same names. The system will try to use an as close as possible
equivalent Windows TrueType font for these.

The Windows ‘stock’ fonts as available from the GetStockObject() API are available under
the special ‘family’ ”win”. They are in table B.2

Note that these fonts do not have a specified point-size. Their point-size depends on the
Windows installation. The get-method←points will return the←height of the font.

Other Windows fonts may be accessed using a similar method as in Unix/X11: provide a
fourth argument describing the font using the hosts conventions. For the Win32 API, this is a
textual description of the Windows API structure LOGFONT passed to CreateFontIndirect().

XPCE 6.6.37

B.5. ACCESSING WINDOWS FONTS 201

win 3ddkshadow Dark shadow for three-dimensional display
elements.

win 3dface
win btnface Face color for three-dimensional display

elements.
win 3dhilight
win 3dhighlight
win btnhilight
win btnhighlight Highlight color for three-dimensional display

elements
win 3dlight Light color for three-dimensional display

elements
win 3dshadow
win btnshadow Shadow color for three-dimensional display

elements
win activeborder Active window border.
win activecaption Active window title bar.
win appworkspace Background color of MDI applications.
win background
win desktop Desktop.
win btntext Text on push buttons.
win captiontext Text in caption, size box, and scroll bar arrow

box.
win gradientactivecaption Right side color of an active window’s title bar.
win activecaption specifies the left side color.
win gradientinactivecaption Right side color of an inactive window’s title bar.
win inactivecaption specifies the left side color.
win graytext Grayed (disabled) text.
win highlight Item(s) selected in a control.
win highlighttext Text of item(s) selected in a control.
win hotlight Color for a hot-tracked item.
win inactiveborder Inactive window border.
win inactivecaption Inactive window caption.
win inactivecaptiontext Color of text in an inactive caption.
win infobk Background color for tooltip controls.
win infotext Text color for tooltip controls.
win menu Menu background.
win menutext Text in menus.
win scrollbar Scroll bar gray area.
win window Window background.
win windowframe Window frame.
win windowtext Text in windows

Table B.1: Windows colour name mapping

XPCE 6.6.37

202 APPENDIX B. NOTES ON XPCE FOR MS-WINDOWS

font(win, ansi fixed) Default ANSI encoded fixed font
font(win, ansi var) Default ANSI encoded variable font
font(win,
device default)

Default device font

font(win, oem fixed) Computers ‘native’ fixed font (PC)
font(win, system) Variable pitched system font
font(win, system fixed) Fixed system font

Table B.2: Windows font name mapping

charset ansi
height 〈points〉 × font.scale
weigth bold if 〈style〉 is bold, normal otherwise
italic TRUE if 〈style〉 is italic or oblique
pitch fixed if 〈family〉 is screen
family swiss if 〈family〉 is helvetica, roman if 〈family〉 is times,

modern if 〈family〉 is screen dontcare otherwise.
face 〈family〉

Table B.3: Windows font defaults

The description is a ‘:’ (colon) separated list of attributes of the structure. The attributes need
not be specified in the order of the structure-layout. Omited attributes are set to their default.

Attributes come in four types: numeric, boolean, enumerated and string. In general, an
attribute is specified as:

〈name〉(〈value〉)

〈name〉 is matches case-insensitive against the name of the structure field without the lead-
ing ‘lf’ string. For numeric types, the argument is interpreted as a decimal number (spaces
are not allowed). For a boolean argument, the (value) part is omitted. By default the
boolean attributes are FALSE. Including the attribute name in the specification sets the field
to TRUE. Enumerated fields are specified using their symbolic name. Name-matching is
case-insensitive. Common parts of the API identifier to make the symbol unique (for exam-
ple CHARSET in ANSI CHARSET) are removed. String arguments simply take the value
between the brackets. Spaces are included in the output, case is not changed and there is
no escape for the closing-brace.

The default settings are in table B.3, the attributes are in table B.4.
The following example binds the Windows ‘WingDings’ symbol-font:

1 ?- new(F, font(wingdings, roman, 20, ’charset(symbol)’)).

The following example uses this font to create an image from such a character:

:- send(@display, font_alias, wingdings,
font(wingdings, roman, 20, ’charset(symbol)’)).

XPCE 6.6.37

B.6. ACCESSING WINDOWS CURSORS 203

height(int) point-size of the requested font
width(int) average width of the characters
escapement(int) angle in 1/10 degrees of the baseline
orientation(int) angle for each character
weigth(int) 0..1000 scale for thickness
italic request italic look
underline underline all characters
strikeout use strikeout-fonts
charset(enum) character encoding {ansi, oem, symbol}
outprecision(enum) accurate aspects {character, default,

string, stroke}
clipprecision(enum) how the characters clip {character, default,

stroke}
quality(enum) Quality of output {default, draft, proof}
pitch(enum) Spacing attributes {default, fixed, variable}
family(enum) Style of the characters {decorative, dontcare,

modern, roman, script, swiss}
face(string) Use specific font database

Table B.4: Windows font attributes

wingding_image(Index, Image) :-
new(Image, image(@nil, 32, 32)),
new(T, text(string(’%c’, Index), center, wingdings)),
send(T, center, point(16, 16)),
send(Image, draw_in, T),
send(T, done).

test :-
wingding_image(60, Floppy),
send(label(test, Floppy), open).

B.6 Accessing Windows Cursors

The Win32 version of XPCE supports all the X11 cursors. It also supports the definition of
cursors from images. Note that such cursors are generally limited to 32 × 32 pixels on Win-
dows (formally there is no limit in X11, but many (colour) servers exhibit strange behaviour
when given cursors larger than this size). The window cursor names are in table B.5. Use
the File/Demo/Cursors entry from the PCE Manual to inspect all available cursors.

The distributed Defaults file assigns win arrow as the default cursor under Windows.
win ibeam is the default editor cursor and win wait is the default wait cursor.

XPCE 6.6.37

204 APPENDIX B. NOTES ON XPCE FOR MS-WINDOWS

win arrow Default Windows arrow
win ibeam Like xterm
win wait hour-class (good replacement of ‘watch’)
win cross like crosshair
win uparrow long up arrow (no good X11 replacement)
win size A bit like ‘fleur’
win icon (see icon and icon cross)
win sizenwse NorthWest - SouthEast arrow (no X11 replacement)
win sizenesw NorthEast - SouthWest arrow
win sizewe West - East arrow
win sizens North - South arrow
win sizeall as win size
win no Stop-sign
win appstarting Arrow with hour-class

Table B.5: Windows cursor name mapping

XPCE 6.6.37

XPCE/Prolog architecture C
In this appendix we present an overview of XPCE’s primitives and the interaction to the
XPCE/Prolog environment.

C.1 What is “Object-Oriented”?

XPCE is an object-oriented system. This implies that the basic entity in XPCE’s world is an
object, an entity with state capable of performing actions. Such an action is activated by
sending the object a message.

So far, most object oriented systems agree. Starting from these notions however one
can find object oriented environments that take widely different approaches for representing
objects, actions on objects and sending messages.

Rather than specifying operations on each individual object most OO environments de-
fine some way of sharing the operation definitions (called methods). There are two ways
to share methods. One is to create objects as a copy of other objects and then modify
them (by attaching and deleting slots and methods) to fit the particular need. If a series
of similar objects is needed, one first creates an object that satisfies the common function-
ality and then creates multiple copies of this object. This approach is followed by SELF
[Chambers et al., 1989]. The other —more traditional— approach is to define a class. A
class is an entity in the object oriented environment that defines the constituents of the per-
sistent state and the methods for each of its instantiations.

XPCE takes the latter approach, but adds some notions of the object-copying approach
because GUI’s often contain unique objects and because object modification is more dy-
namic and therefore more suitable for rapid prototyping.

C.2 XPCE’s objects

More concretely, a XPCE object is a set of values of instance variables bundled into a single
entity which is referred to by its object reference. An object is an instantiation of a class.
A class holds the key to decoding the information of its instances:1 the instance variables.
The class also serves as a placeholder for storing the methods understood by its instances.
Figure C.1 illustrates this.

1We will mix the terms instance and object freely in this document. They are considered synonyms.

XPCE 6.6.37

206 APPENDIX C. XPCE/PROLOG ARCHITECTURE

Class Point

@4546474
10
20

Var x of type int at 1
Var y of type int at 2

Get-method ‘get_distance’ with argument a point
and implementation getDistancePoint()

Send-method ‘set’ with arguments two integers
and implementation setPoint()
....

@p2
100
-100

Figure C.1: Classes and Objects in XPCE

C.2.1 Classes

As explained above, a XPCE class describes the storage-layout and the methods of its in-
stances. In XPCE a class is a normal object. It is an instance of class class.2 As in most
OO systems XPCE classes may inherit from a super-class. XPCE classes are organised in a
single-inheritance hierarchy.3 The root of this hierarchy is class object. Class object is the
only class without a super-class. Figure C.2 gives the complete hierarchy of XPCE built-in
classes.

C.3 Objects and integers

Except for integers, everything accessible to the user is represented as an object. By imple-
menting classes, instance variables, methods, messages, conditions, constants, variables,
etc. as objects everything in XPCE may be accessed through the basic predicates new/2,
send/[2-12] and get/[3-13] from Prolog.

C.4 Delegation

XPCE does not offer multiple inheritance. Sharing functionality from multiple classes is gen-
erally dealt with using delegation. Delegation implies that messages not understood by a
principal object are forwarded to an object that is associated to it.

For example, XPCE defines class editor to be a graphical object capable of editing text.
Most applications require a window capable of editing text. This is implemented by XPCE’s
class view, which is not a subclass of both editor and window, but just of window. The
window displays an instance of class editor and constrains the size of the editor to occupy
the entire visible area of the window. Any message arriving on the view that is not defined
on class view (or class window) will be forwarded to the associated editor object.

The dynamic nature of delegation makes this mechanism more flexible than multiple
inheritance. For example, XPCE defines class node. This class defines the communication

2Class class is an instance of itself. In other systems (SmallTalk, [Goldberg & Robson, 1983]), classes are
instances of a meta-class. Yet in other systems, classes have a completely different status (for example widgets
in the X11 Intrinsics)

3Multiple inheritance introduces various technical and conceptual problems. XPCE uses delegation and tem-
plates to achieve similar results. This is explained in section C.4 and section 7.5.2.

XPCE 6.6.37

C.4. DELEGATION 207

object

:=
area
c_pointer
chain

char_array
name
string

colour
colour_map
constant bool
constraint
cursor
date
directory
elevation
error
event
event_node
event_tree
font
format
handle
hash_table chain_table

hbox
grbox
tbox

host c
host_data prolog_term
layout_interface table_cell
layout_manager table
link
modifier
number
operator
parser
pce
pen
point

program_object

attribute

behaviour

class_variable

method
get_method
send_method

variable
class

code

==
@=
\==
and block
assign

binary_condition

<
=
=<
>
>=

function

?

binary_expression

*
+
-
/

create
progn
var
when

if
message
not
or
while

hyper chain_hyper
type

quote_function
real

recogniser

gesture

browser_select_gesture
click_gesture
connect_gesture
edit_text_gesture
move_gesture move_outline_gesture
popup_gesture
resize_gesture resize_outline_gesture
resize_table_slice_gesture
select_editor_text_gesture

handler
handler_group
key_binding

regex
region

relation
identity
spatial

relation_table
rubber
sheet
size
source_location

source_sink
file
resource
text_buffer

stream
process
socket

style
syntax_table
tile
timer
tokeniser
tuple

vector
code_vector

table_slice
table_column
table_row

visual

application
dict
dict_item
display
display_manager
fragment
frame

graphical

arrow
bitmap
box
circle

device

dialog_group
label_box
tab

editor
figure tree
lbox
list_browser
parbox
tab_stack

window

browser
dialog
picture
view
window_decorator

dialog_item

button
label
menu popup
menu_bar
slider
text_item int_item

ellipse

joint

arc
bezier_curve
line connection
path

scroll_bar
text
text_cursor
text_image
text_margin

image pixmap
menu_item
node

Figure C.2: XPCE’s Class hierarchy

XPCE 6.6.37

208 APPENDIX C. XPCE/PROLOG ARCHITECTURE

P
r
o
l
o
g

@prolog

PCE
Virtual Machine

send/[2-12]

new/2

get/[3-13]

message(@prolog, ...)

?(@prolog, ...)

hostSend()

hostGet()

Prolog/PCE
Interface

Control
flow

Figure C.3: Data and Control flow in XPCE/Prolog

to a tree to automate the layout of hierarchies. A node can manipulate any graphical object.
Using multiple inheritance would require a class box node, circle node, etc.

C.5 Prolog

As we have seen in section 2, activating XPCE is done by providing the user with access
to XPCE’s message passing primitives. Near the end of section 2 we briefly explained how
control is passed from XPCE to Prolog. The predefined object @prolog is (the only) instance
of class host. Any message sent to this instance will be mapped on a Prolog goal and given
to the Prolog system as a query: the selector of the method will be used as a predicate
name. The arguments will be translated from XPCE data-types to their corresponding Prolog
data-types according to the transformation rules described in section D.

The relation between XPCE and Prolog is described in detail in chapter 6. Examples can
be found throughout this manual.

Figure C.3 shows the data- and control-flow between XPCE and Prolog. The lines with ar-
rows indicate data-flow in the direction of the arrow. The dotted ellipse with arrows indicates
the flow of control.

XPCE 6.6.37

C.6. EXECUTABLE OBJECTS 209

C.6 Executable objects

Executable code (statements, control-structures, variables, etc.) can be expressed as first-
class objects. Such expressions can be associated with controls to specify their actions, to
method objects to specify their implementation and as arguments to method invocation to
specify details of the operation to be performed.

Executable objects are used in many of the examples in this manual. Section 10.2 pro-
vides an overview of them.

C.7 Summary

This section explained the basic object-oriented notions used in XPCE. XPCE’s data is or-
ganised in objects and integers. An object represents a state. An object is an instance of
a class. A class describes the constituents of the state represented in its instances and the
methods (actions) understood by its instances.

A class is a normal object, as are all the other constituents of XPCE’s programming world:
methods, instance variables, messages, expressions, etc. This uniform representation al-
lows for inspecting and changing XPCE using the four basic interface predicates from Prolog.

The basic interface predicates pass control from Prolog to XPCE. As control is to be
passed from XPCE to Prolog (for example if the user presses a button), a message is send
to @prolog, the only instance of class host. This object will create a goal from the message
and pass this goal to the Prolog environment.

XPCE 6.6.37

210 APPENDIX C. XPCE/PROLOG ARCHITECTURE

XPCE 6.6.37

Interface predicate definition D
This appendix provides a description of the Prolog predicates to communicate with PCE.
Most of these predicates have been introduced informally in the previous sections.

D.1 Basic predicates

This section describes the basic interface predicates. These predicates reside in the library
module ‘pce’, which is loaded when Prolog is started with PCE loaded on top of it.

new(?Reference, +TermDescription)
Create a XPCE object from TermDescription and either unify an integer reference
(e.g. @2535252) with Reference or give the new object the provided atomic reference
(e.g. @my diagram). The argument TermDescription is a complex term of the form
Functor(...InitArg...). Functor denotes the class from which to create an object and Ini-
tArg are the initialisation arguments for the object creation. Each InitArg is translated
to a XPCE data object using the following rules:

• atom
Atoms are translated into XPCE name objects. This is a loss-less transformation.

• integer
Prolog integers are translated into XPCE int data-types. The range of XPCE int is
half that of Prolog (i.e. ±230 on a 32-bit machine).

• Class(+InitArg...)
Creates an instance of class Class using InitArg.

• new(+TermDescription)
Same as plain InitArg, but an atom is translated to an instance of the named class.
E.g. the term new(chain) is translated to an empty chain object rather then the
atom chain.

• new(?Reference, +TermDescription)
Same as new/2, handling Reference the same as the predicate new/2.

• prolog(Term)
Pass Term as an unmodified Prolog term.

Below we illustrate the use of embedded new/2 terms in InitArg to get access to the
reference of in-line created objects. The examples are functionally equivalent.

1 ?- new(@icon_viewer, dialog(’Icon Viewer 1’)),

XPCE 6.6.37

212 APPENDIX D. INTERFACE PREDICATE DEFINITION

new(P, picture),
send(P, below, @icon_viewer),
new(TI, text_item(name, ’’,

and(message(P, display, @arg1),
message(@arg1, recogniser,

new(move_gesture))))),
send(TI, type, bitmap),
send(@icon_viewer, append, TI),
send(@icon_viewer, open).

2 ?- D = @icon_viewer,
new(D, dialog(’Icon Viewer 1’)),
send(new(P, picture), below, D),
send(D, append,

new(TI, text_item(name, ’’,
and(message(P, display, @arg1),

message(@arg1, recogniser,
new(move_gesture)))))),

send(TI, type, bitmap),
send(D, open).

Using new/2 with a variable reference argument is equivalent to invoking
‘Class ← instance: InitArgs ...’. The arguments needed to instantiate a class are
defined by the→initialise method of this class. See also section 3.3.1.

send(+Receiver, +Selector(+Argument...))

send(+Receiver, +Selector, +Argument...)
Invoke a send-method on the Receiver. Receiver is processed as the InitArgs de-
scribed with new/2. This implies that a complex term is translated into an object be-
fore the method is invoked. An atom is translated into an XPCE name object. Selector
is a Prolog atom which is translated into a XPCE name object. The Arguments are
processed as the InitArgs described with new/2.

The predicate send/[2-12] fails with an error message if one of the arguments can-
not be translated or there is a type-error or an argument-error. The method itself may
also produce error messages. This predicate only succeeds if the requested method
was executed successfully.

Trailing arguments that can handle @default (indicated by square brackets in the type
declaration) may be omitted.

If the method accepts many arguments of which most are default, using the named
argument convention may be preferred. For example:

...,
send(Graphical, graphics_state, colour := red),
...,

XPCE 6.6.37

D.1. BASIC PREDICATES 213

The first form using Selector(Argument...) is the principal form. The second is
translated by the XPCE/Prolog macro-layer and available for compatibility and style-
preference.

get(+Receiver, +Selector(+Argument...), -Result)

get(+Receiver, +Selector, +Argument..., -Result)
Invoke a get-method on Receiver. Receiver, Selector and Argument... are processed
as with send/[2-12]. If the method fails, this predicate fails too. Otherwise the XPCE

result of invoking the method is unified with Result.

If the return value is a XPCE integer, real object or name object, it is unified with a Prolog
integer, float or atom. Otherwise if the Prolog return argument is a variable or a term
@/1 it is unified with the object reference. Otherwise the Prolog argument should be a
compound term. Its functor will be compared with the class-name of the XPCE return
value. The arguments will be unified in the same manner with the term-description
arguments as declared with the class. Examples:

1 ?- get(@pce, user, User).
User = fred
2 ?- get(@display, size, Size).
Size = @474573
3 ?- get(@display, size, size(W, H)).
W = 1152, H = 900

It is not advised to use the latter construct for other objects than elementary objects
such as point, area, size, string, etc..

free(+Reference)
Send→free to Reference if it is a valid reference. Defined as

free(Ref) :- object(Ref), !, send(Ref, free).
free(_).

This definition implies free/1 only fails if the object may not be freed (see
‘object → protect’).

send class(+Reference, +Class, +Selector(+Arg...))

get class(+Reference, +Class, +Selector(+Arg...), -Result)

send super(+Reference, +Selector(+Arg...))

get super(+Reference, +Selector(+Arg...), -Result)

XPCE 6.6.37

214 APPENDIX D. INTERFACE PREDICATE DEFINITION

send super(+Reference, +Selector, +Arg...)

get super(+Reference, +Selector, +Arg..., -Result)
The predicates send class/3 and get class/4 invoke methods on a super-class of
the class Reference belongs to. In most cases methods access the immediate super-
class and this is the function of send super/[2-12] and get super/[3-13].

The * super calls are macro-expanded to send class/3 or get class/4. They
must appear within a XPCE class definition. Though not enforced, using any of these
predicates or macros outside the context of a method-definition should be considered
illegal. See chapter 7 for further discussion on defining classes and methods.

object(+Reference)
Succeeds if Reference is a term of the form @/1 and the argument is a valid object
reference. Fails silently otherwise. Note that the form @Integer is only save to test
whether or not an object has already been freed as a side-effect of freeing another
object. Consider the following example:

1 ?- new(P, point(100,100)).
P = @235636/point
2 ?- free(@235636).
3 ?- object(@235636). ---> fail
4 ?- new(S, size(50,50)).
S = @235636/size

If→free is invoked on an object that has no references, its memory will be reclaimed
immediately. As long as the memory has not been reused object/1 is guaranteed to
fail. If the memory is reused for storing a new object object/1 will succeed, but point
to another object than expected. Finally, the memory may be reused by a non-object
data structure. In this case object/1 only applies heuristics to detect whether the
memory holds an object. See also section 12 and section 10.3.3

object(+Reference, -TermDescription)
Unify object description with the argument. Normally only used for debugging pur-
poses. Equivalent to:

object(Ref, Term) :-
object(Ref),
get_object(Ref, self, Term).

:- pce global(+Reference, :Create)
Define exception handler for undefined global (named) reference. When XPCE refers
to a non-existing named reference an exception is raised. The standard handler for
this exception will scan the pce global/2 database and execute the Create action.
Create is either a term of the form new(+TermDescription) or another term. In the first
case TermDescription is transformed into a XPCE object as the second argument of
new/2. In the latter case, Reference is appended to the list of arguments of the term
and the term is called as a Prolog goal:

XPCE 6.6.37

D.1. BASIC PREDICATES 215

:- pce_global(@succeed, new(and)).
:- pce_global(@event_receiver,

new(@event?receiver)).
:- pce_global(@select_recogniser,

make_select_recogniser).

make_select_recogniser(R) :-
new(G, handler_group),
send_list(G, append,
[click_gesture(left, ’’, single,

message(@event_receiver?device,
selection, @event_receiver))

, click_gesture(left, s, single,
message(@event_receiver,

toggle_selected))
]).

See section 6 for more examples.

pce open(+Object, +Mode, -Stream)
The predicate pce open/3 opens an XPCE object as a Prolog stream. Using this
stream, the normal Prolog I/O predicates for reading from, or writing to the object can
be used.

This predicate works on any object that implements the *as file methods. Currently
this is only implemented for class text buffer. See ‘text buffer ← read as file’,
‘text buffer ← size as file’, ‘text buffer →truncate as file’ and
‘text buffer → write as file’.

The stream handle is discarded using Prolog’s close/1 predicate. For example, to
write to a view, one could use:

...
pce_open(View, append, Stream),
format(Stream, ’Hello World˜n’, []),
close(View),
...

See also ‘text buffer → format’. Reading from a stream is used by the
PceEmacs editor to verify the syntax of an entered clause.

pce catch error(+ErrorIds, +Goal)
This predicates allows the application to handle errors occuring while Goal is called.
ErrorIds is either an atom representing the id of XPCE error or a chain of such id’s. If
one of the given errors occurrs the goal will silently fail and ‘@pce ← last error’
holds the id of the trapped error. Any other error that occurs during the execution of
Goal will be handled by XPCE’s normal error handling mechanism. See section 10.8.

XPCE 6.6.37

216 APPENDIX D. INTERFACE PREDICATE DEFINITION

D.1.1 Portable declaration of required library predicates

Different Prolog implementations to which XPCE has been connected provide a different
library structure and offers different means for accessing library predicates. For this reason,
XPCE introduced the require/1 directive. This directive is the preferred way to import
library predicates. Below is a typical declaration of an XPCE/Prolog module:

:- module(mymodule, [myapp/0]).
:- use_module(library(pce)).
:- require([member/2,

send_list/3
]).

require(:ListOfNameArity)
Defines that this module requires the named predicates. It is the task of the Prolog
system to make sure the module can make calls to the named predicates and this
predicate has the ‘commonly accepted semantics’. This predicate is built-in for SICStus
and SWI-Prolog. It is defined in the module library(pce) for ProWindows-3/Quintus.
This is the reason why library(pce) should always be imported explicitely.

Note the command Pce/PceInsertRequireDirective in PceEmacs Prolog mode, which
automatically determines the required require-directive for the current module-file.

auto call(:Goal)
Acts like call/1, but dynamically loads the predicate required by Goal if this predicate
is not defined. On systems not having autoloading, the definition is:

auto_call(Goal) :-
strip_module(Goal, Module, Predicate),
functor(Predicate, Name, Arity),
require(Module:[Name/Arity]),
Goal.

D.2 Additional interface libraries

This section describes Some of the predicates available from the XPCE/Prolog library.

D.2.1 Library “pce util”

The predicates in this section used to be XPCE principal predicates. Changes to XPCE, the
interface and our current understanding about programming the XPCE/Prolog environment
have made these predicates less important.

send list(+Receiver, +Selector [, +Argument])
Invoke send-behaviour as send/[2-12]. Each of the arguments is either as accepted
by send/[2-12] or a list of such arguments. The definition of send list/2 is below.

XPCE 6.6.37

D.2. ADDITIONAL INTERFACE LIBRARIES 217

send_list([], _) :- !.
send_list(_, []) :- !.
send_list([Object|Objects], Selectors) :- !,

send_list(Object, Selectors),
send_list(Objects, Selectors).

send_list(Object, [Selector|Selectors]) :- !,
send_list(Object, Selector),
send_list(Object, Selectors).

send_list(Object, Selector) :-
send(Object, Selector).

Note that, since send/2 accepts Selector(Arg...) the following is now valid code:

...,
send_list(Box,

[colour(red),
fill_pattern(colour(greed))

]),

get object(+Receiver, +Selector, +Argument..., -Result)
Equivalent to get/[3-13], but instead of unifying a variable with a reference the vari-
able is unified with the term-description. The arguments are unified as in get/[3-13].
Normally only used from the Prolog top level for debugging purposes.

chain list(?Chain, ?List)
Converts between a XPCE chain and a Prolog list. This may be useful to exploit Prolog’s
list-processing primitives. Note however that XPCE chains define various operations
that may be exploited to avoid the translation. Suppose ‘Pict’ is a picture and ‘Pos’ is a
point object. We want to determine the topmost graphical object overlapping with ‘Pos’.
The following two programs are identical:

topmost_graphical(Pict, Pos, Gr) :-
get(Pict, graphicals, Grs0),
chain_list(Grs0, Grs1),
topmost(Grs1, Pos, @nil, Gr),
Gr \== @nil.

topmost([], _, Gr, Gr).
topmost([H|T], Pos, _, Gr) :-

send(H, overlap, Pos), !,
topmost(T, Pos, H, Gr).

topmost([_|T], Pos, Gr0, Gr) :-
topmost(T, Pos, Gr0, Gr).

Or, using XPCE’s list processing:

XPCE 6.6.37

218 APPENDIX D. INTERFACE PREDICATE DEFINITION

topmost_graphical(Dev, Pos, Gr) :-
get(Dev, graphicals, Grs),
get(Grs, find_all,

message(@arg1, overlap, Pos), O),
get(O, tail, Gr),
send(O, done).

The second implementation is not only shorter, it also requires far less data conversions
between Prolog and XPCE and is therefore much faster.

get chain(+Receiver, +Selector, -List)
Utility predicate implemented as:

get_chain(Receiver, Selector, List) :-
get(Receiver, Selector, Chain),
chain_list(Chain, List).

See comments with chain list/2.

D.2.2 Library “pce debug”

The predicates in this section provide shorthands for common commands for debugging
XPCE programs. See section 12 for more information on debugging XPCE/Prolog programs.

tracepce(+Class <-|->|- Selector)
Find send- (->), get- (<-) method or variable (-) and cause invocations thereof to be
printed on the console.

Syntax note: (->) is a standard Prolog operator with priority > 1000. Therefore many
Prolog systems require additional brackets:

1 ?- tracepce((graphical ->selected)).

In SWI-Prolog this is not necessary. To be able to trace get-methods with this predicate
(<-) must be declared as an infix operator.

notracepce(+Class <-|->|- Selector)
Disables trace-point set with tracepce/1.

checkpce
Collect all global (named-) objects and run ‘object → check’ on them. This per-
forms various consistency checks on the objects and prints diagnostic messages if
something is wrong. ‘object → check’ checks all objects it can (recursively) find
through slot-references, chains, vectors and hash-tables and deals properly with loops
in the data-structure.

show slots(+Reference)
Prints the values of all instance variables of Reference:

XPCE 6.6.37

D.2. ADDITIONAL INTERFACE LIBRARIES 219

1 ?- new(@move_gesture, move_gesture).
2 ?- show_slots(@move_gesture).
@move_gesture/move_gesture

active @on/bool
button middle
modifier @810918/modifier
condition @nil/constant
status inactive
cursor @default/constant
offset @548249/point

A graphical tool for inspecting instance variables is described in section 12.5.

D.2.3 Accessing the XPCE manual

manpce
Start the XPCE online manual tools. This opens a small GUI console at the top-left of
the screen, providing access to the manual, demo programs and tools described in this
manual. See chapter 3.

manpce(+Spec)
As manpce/0, but immediately opens the the manual from Spec. Spec is either
a class-name, opening the ClassBrowser, or a term Class <-|->|- Selector (see
tracepce/1) to open the manual-card of the specified behaviour. Examples:

1 ?- manpce(box).
2 ?- manpce((view->caret)).

XPCE 6.6.37

220 APPENDIX D. INTERFACE PREDICATE DEFINITION

XPCE 6.6.37

Memory management E
This chapter describes the memory- and object-management aspects of PCE.

E.1 Lifetime of an object

Object lifetime management is a difficult issue in PCE/Prolog as PCE cannot be aware of
all references to PCE objects stored in Prolog. Another complicating factor is that non-
incremental garbage collection as performed by most Lisp systems is undesirable because
they harm the interactive response of the system. For these reasons PCE performs incre-
mental garbage collection. It distinguishes a number of prototypical ‘life-cycles’ for objects.
Heuristics tell the system which of these is applicable and when the object may be deleted.

PCE distinguishes between global-, top level-, support-, argument- and answer- objects.
Global objects are created and exist for the entire PCE session: @prolog, class objects,
etc. Top-level objects are the principal objects of the application. They should exist even if
no other PCE object refers to them. An example of a top level object is a frame or hash table
representing a database in the application. Support objects only complete the definition of
other objects. If this ‘other’ object is removed, the support object may be removed as well.
An example is the area attribute of a graphical. Argument objects are objects created to
serve as an argument to a message. For example a graphical may be moved to a position
described by a point object. The point may be deleted when the message is completed.
Finally, answer objects are the result of some computation. For example ‘area ← size’
returns a size object. This object may be deleted when the code that requested the value is
done with it.

PCE maintains the following information on objects to support garbage collection. This
information may be requested using the PCE inspector (see section 12.5).

Protect Flag
This flag may be set using ‘object → protect’. When set, the object can not be
freed by any means. This flag is set for most global and reusable objects: @prolog,
@pce, @display, names, classes, etc.

Lock Flag
This flag indicates that the object may not be removed by the garbage collector. Locked
objects can only be freed by sending an explicit ‘object → free’ message’ or using
the predicate free/1. It is used to avoid that ‘top level’ objects such as frames are
deleted by the garbage collector. It is also used to indicate that Prolog wants to be
responsible for destruction of the object rather than PCE’s garbage collector. The lock
flag is automatically set on any object that has a named reference. If Prolog wants

XPCE 6.6.37

222 APPENDIX E. MEMORY MANAGEMENT

to store integer object references in the Prolog database locking is often necessary to
protect the object for the PCE garbage collector. See also section 6.

Answer Flag
This flag indicates that the object has been created as an answer of some computation
or as a result of the Prolog predicate new/2. The answer status is cleared if the object
is used to fill a slot of another object1 or ‘object → done’ is invoked on the object.

Reference Count
PCE maintains the number of other objects referring to this object. When the reference
count drops to zero and none of the protect, lock or answer flags are set PCE assumes
the object is garbage and removes the object from the object base.

E.2 Practical considerations

The principal predicates new/2, send/[2-12] and get/[3-13] will destroy all argument-
and answer- objects created during their execution except for the object created by new/2
and the object returned by get/[3-13].

An object created by new/2 with an integer (anonymous) object reference must either
be attached to another object, locked against PCE’s garbage collector or destroyed using
‘object → done’ if it is created during the initialisation of the application or in a loop that
is passed many times. Such objects will be automatically reclaimed if (1) the object is created
while handling a user-event after handling the event is finished or (2) the object is created in
the implementation of a method on a user-defined class and the method terminates execu-
tion.

If is is not known whether or not the result of get/[3-13] is a computed object the user
should invoke ‘object → done’ to this result when the result is no longer needed. This
will free the result if it was a computed (and no longer referenced) object and has no effect
otherwise. If the result of the get operation is known to be an integer, no such message
should be send.

E.3 Memory usage of objects

Currently an object consists of an object-header and an array of instance variables. The
object-header includes various flags, a reference count and a pointer to the class. The size
of an object header is 12 bytes. Each instance variable consumes an additional 4 bytes. For
example a point object has ‘x’ and ‘y’ instance variables and thus consumes 12 + 2 ∗ 4 = 20
bytes.

The method ‘class ← instance size’ returns the size of an instance of this class in
bytes. Note that the costs of supporting objects is not considered in this value. For example
a box object has instance size:

1 ?- get(class(box), instance_size, S).

1PCE assumes the object has become a support object. This is generally not correct for code objects. Class
code therefore has ‘class ← un answer: @off’, which implies that objects that fill a slot of a code object will
not loose their ‘answer’ status.

XPCE 6.6.37

E.3. MEMORY USAGE OF OBJECTS 223

S = 72

But a box has an←area instance variable consuming an additional 28 bytes.

XPCE 6.6.37

224 APPENDIX E. MEMORY MANAGEMENT

XPCE 6.6.37

Commonly encountered
problems F
In this chapter we list a number of commonly encountered problems in using PCE/Prolog.

Cannot open display
PCE tries to open the display from the address specified by the DISPLAY environment
variable. It ignores the ‘–display’ command line option. The display might also be
specified explicitly using ‘display ←→ address’. PCE will open the display as soon
as it needs X-resource values or it needs graphical operations. This will fail if the
specified address is not legal, there is no X-server at that address or the X-server
denies the access. Examine the error message carefully. Make sure X-windows is
running at the specified address. Make sure you have access to this server. See
xauth (when running MIT MAGIC COOKIE) and xhost. If PCE still complains, validate
the access rights by starting a normal X-application (e.g. xterm) in the same context.
Always restart PCE after a fatal or system error as the system might be corrupted.

This problem is not possible in the Win32 implementation.

Bad integer reference
This is a PCE/Prolog interface warning. It implies the integer object reference given
to send/[2-12], etc. is not valid. The most common reason is that the object has
already be freed, either explicitly or by PCE’s incremental garbage collector. See sec-
tion E.

Unknown class
Attempt to create an instance of a non-existing class. Apart from the common mistakes
like mistyped class-names, etc. this might be caused by 1) giving a list argument to a
send- or get- operation (class ‘.’) or 2) trying to pass a term through send/[2-12] or
get/[3-13]. See section 6.1.

Illegal PCE object description
This implies a non-translatable Prolog datum was passed to the interface. Normally
this will be a non-ground1 argument to new/2, send/[2-12] or get/[3-13].

1A ‘ground’ term is a Prolog term that has no unbound variables.

XPCE 6.6.37

226 APPENDIX F. COMMONLY ENCOUNTERED PROBLEMS

XPCE 6.6.37

Glossary G
Attribute

A attribute object is used to define additional properties of an object. The term
attribute is also used as a synonym for slot and instance-variable referring to class
defined properties.

Class
A class is an object that acts as a description of other objects called instances of
the class. Besides various house-keeping information, a PCE class describes the
instance-variables and methods of its instances.

Class-Variable
A class-variable defines a constant for all instances of the class. Class variables can be
used to define default values for an instance-variable. Initial values for class-variables
can be specified in the Defaults file. See section 8.

Code
A code object is an object that represents a procedure. Code objects are used for
implementation of methods and to associate actions with various events. For example
a button object executes its associated code object when depressed. The most typical
code object is a message.

Control
A control is a standard GUI object normally placed in dialog windows. Examples are
buttons, text-entry fields and menus.

Event
An event is an object that represents an activity of the user: mouse-movements,
mouse-buttons, keyboard activities.

Forwarding of argument
When code objects are executed it is common to bind the var objects @arg1, @arg2,
... to pass context information for the executing code. For example, when a method
object executes its code it will bind the arguments given to the method to @arg1, ...

Function
A function is a subclass of class code which yields a value when executed. The most
important functions are local variables (var), obtainers and mathetical operations. They
may be used as arguments to code objects. They are executed when the code object
is executed or when the function needs to be converted to a type that does not accept
a function.

XPCE 6.6.37

228 APPENDIX G. GLOSSARY

Get operation
Virtual machine operation to request information from some object. Started by the
Prolog predicate get/[3-13], when an obtainer is executed or from PCE’s built-in
functionality.

GUI
Abbreviation for Graphical User Interface.

Inheritance
The sharing of definition from a super-class. When a PCE class is created from a
super-class it is initially a copy of this super-class. After creation, instance variables
and methods may be added and/or redefined.

Instance
Synonym for object, often use to stress the fact that an object belongs to a particular
class.

Instance-variable
Placeholder for the local-state associated with an object. An instance-variable is as-
sociated with a class and has a name and a type. Each of the instances of the class
defines a value for the instance variable. Instance variables are represented by class
variable.

Message
A message is an object representing a send-operation. The phrase “sending a mes-
sage to X” is equivalent to “invoking a get- or send-operation on X”.

Method
A method maps a selector and a type vector onto an implementation which is either
a C-function or a code object. PCE defines both get- and send-methods. If a send-
operation is invoked on an object, PCE will find a method associated with the class of
the object with a matching selector, check the argument types and invoke the imple-
mentation of the method.

Object-reference
An object-reference is the identifier for a particular instance. In Prolog object-
references are represented by @Integer or @Atom.

Object
An object is en entity in PCE’s world that is identified by an object-reference and has a
local state. An object is an instance of a class. The class defines both the constituents
of the local state as well as the operations (methods) understood by the object.

Obtainer
An obtainer is a function which invokes a get-operation when evaluated. The class
name is ‘?’.

Recogniser
A recogniser object parses events for a graphical object.

XPCE 6.6.37

229

Selector
A selector is the name of a send-operation or get-operation.

Send Method
Refinement of method that maps a send-operation onto its implementation. See also
Method

Send operation
Virtual machine operation which invokes of a send-method on some object. Started
by the Prolog predicate send/[2-12], when an message is executed or from PCE’s
built-in functionality.

Slot
Equivalent to instance variable.

Super-class
The super-class of a class serves as the initial definition of a class. See also inheri-
tance.

Template-class
User-defined subclass of class template. The refinements introduced from
template can be imported in another user-defined class using the predicate
use class template/1.

Var
A var object is a function. The commonly used vars objects are: @arg1, ... (gen-
eral argument forwarding), @receiver (receiver or a message), @event (currently
processes event object).

XPCE 6.6.37

230 APPENDIX G. GLOSSARY

XPCE 6.6.37

Class summary descriptions H
This appendix provides a complete overview of all built-in classes of XPCE. For each class,
it presents the name, arguments needed to create an instance, place in the inheritance and
delegation hierarchies as well as a summary description. For many classes we added a
small illustrative example of typical usage of the class.

The summaries stress on describing what the class is commonly used for and what other
classes are designed to cooperate with the class.

The classes are presented in alphabetical order. Some classes that are closely related
and have symbol-names (>, +) are combined into one description, sometimes violating the
alphabetical order.

object :=

:=()
Instances of this class are used to specify named arguments, see section 2.4. Exam-
ple:

...,
send(Editor, style,

sensitive, style(underline := @on,
colour := dark_green)),

...,

object program_object code
==
\==

==()
\==()

Conditional code object that succeeds if both arguments evaluate to the same object.
Normally used to specify the conditions of if or while. The following example yields
the names of all user-defined classes:

?- new(UDC, chain),
send(@classes, for_all,

if(@arg2?creator \== built_in,
message(UDC, append, @arg1))).

object program_object code function ?

?()
Class ?, pronounced as ‘obtainer’, represents a ‘dormant’ get-operation. Obtainers are
commonly used to ‘obtain’ arguments for other code objects. For example:

XPCE 6.6.37

232 APPENDIX H. CLASS SUMMARY DESCRIPTIONS

...,
send(Dialog, append,

new(TI, text_item(name))),
send(Dialog, append,

button(ok, message(Dialog, return, TI?selection))),

object program_object code @=

@=()
Class @= assigns a symbolic reference name to the argument object. It is used to
define global objects in the class-variable display.initialise. See the system defaults file
〈pcehome〉/Defaults. The following example from Defaults creates the objects
@ dialog bg and @ win pen depending on whether or not the display is monochrome
or colour.

display.initialise: \
and(_dialog_bg @= when(@colour_display, \

grey80, white), \
_win_pen @= when(@colour_display, \

0, 1))

object
program_object code and
chain

and()
Code object that executes its arguments one by one. It fails as soon as one of the
arguments fails and succeeds otherwise. Commonly used to specify multiple actions
for controllers. For example:

...,
get(Dialog, frame, Frame),
send(Dialog, append,

new(Function, text_item(function))),
send(Dialog, append,

button(switch_to,
and(message(Frame, switch_to,

Function?selection),
message(Function, clear)))),

...,

object visual application

application()
An application object is a visual object used to combine multiple frames. See sec-
tion 10.5 for a discussion on its usage.

object
visual graphical joint arc
layout_interface

arc()
Graphical primitive describing a section from a circle. It may be used to create a pie-
chart segment.

XPCE 6.6.37

233

?- new(A, arc(100, 20, 50)),
send(A, close, pie_slice).

object area

area()
Combination of X, Y, Width and Height used by graphical to store the bounding box
of the graphical. Also used to communicate with graphical objects and frames about
their dimension.

...,
get(Box, area, area(X, Y, W, H)),
...,

object
visual graphical arrow
layout_interface

arrow()
Arrow-head. Normally only used implicitly to attach arrows to a line, arc or path, the
subclasses of class joint. See ‘joint → arrows’. arrow can be used directory
to create fancy arrows.

?- new(L, line(0, 0, 100, 50, second))

object program_object code assign

assign()
Assign a value to an instance of class var, an XPCE variable. Used to realise variables
in compound executable objects.

and(assign(new(C, var), @arg1?controller),
message(C, ...),
message(C, ...),
...)

object program_object attribute

attribute()
Attributes can be associated with any object to store data related to that object without
the need to create a subclass. Normally attribute objects are used implicitly through
the method ‘object ←→ attribute’.

send(Frame, attribute, visualises, bicycle24)

object program_object behaviour

behaviour()
Super class of method and variable, representing the two types of objects that can
realise behaviour in classes. Not useful for the application programmer.

XPCE 6.6.37

234 APPENDIX H. CLASS SUMMARY DESCRIPTIONS

object
visual graphical joint bezier_curve
layout_interface

bezier curve()
Create a Bezier curve from start to end using one or two control-points (quadradic or
cubic Bezier curve). Bezier curves are nice smooth curves departing and arriving in a
specified direction. See also path.

object program_object code binary_condition

<
=
=<
>
>=

binary condition()
<()
=()
=<()
>()
>=()

Arithmetic conditional code objects. These objects are normally used to specify the
conditions of if or while. The following example creates a chain holding all graphi-
cals on a device that either have←width < 5 or←height < 5.

...,
get(Device?graphicals, find_all,

or(@arg1?width < 5,
@arg1?height < 5),

SmallGraphicals),
...,

object program_object code function binary_expression

*
+
-
/

binary expression()
*()
+()
-()
/()

Arithmetic functions, commonly used for computation of graphical dimensions or to
specify spatial relations using class spatial or for simple functional computation from
Prolog. For example:

...
send(Box, height, Text?height + 10),
...

XPCE 6.6.37

235

object
visual

graphical bitmap
image

layout_interface

bitmap()
A bitmap turns an image or pixmap into a graphical object that can be displayed on a
device.

?- new(I, image(’pce.bm’)),
new(B, bitmap(I)).

object
program_object code and block
chain

block()
A block is similar to and, but provides formal parameters.

?- send(block(new(A, var),
new(B, var),
message(@pce, write_ln, A, B)),

forward, hello, world).

hello world

object constant bool

bool()
Class bool defines two instances: @on and @off, representing ‘true’ and ‘false’. The
use cannot create instances of this class.

...,
send(Image, transparent, @on)
...

object
visual graphical box
layout_interface

box()
Graphical representing a rectangle. Corners can be rounded, the interior can be filled,
the texture and thickness of the line can be controlled and a shadow can be defined.

?- new(B, box(100, 50)),
send(B, radius, 10).

object
visual

graphical device
window

browser
window_decorator

list_browser
dict
frame

layout_interface
tile

browser()
A browser is a window version of a list browser. A browser visualises a list of

XPCE 6.6.37

236 APPENDIX H. CLASS SUMMARY DESCRIPTIONS

dict item objects. The items are organised in a dict, providing fast access to
browser items, even if there are many items in the browser. Individual items may
be coloured, underlined, etc. using the style mechanism also available for editor.
Columns can be realised using tab stops on the text image object that displays the
actual text of the browser.

?- new(B, browser),
send_list(B, append, [gnu, gnat]).

object recogniser gesture browser_select_gesture

browser select gesture()
Internal class dealing with selection handling in class list browser.

object
visual graphical dialog_item button
layout_interface

button()
A button is a push-button controller. It has an associated message that is executed if
the button is activated using the mouse. Inside a dialog, one button can be assigned
as ‘default’ button.

?- new(B, button(hello,
message(@pce, write_ln, hello))).

object host c

c()
Class c is a subclass of class host, providing communication to C and C++ code. It is
not used directly by the application programmer.

object c_pointer

c pointer()
Class c pointer encapsulates an anonymous C pointer (void *). It is used to reg-
ister references to Prolog predicates with XPCE methods. See also chapter 7.

?- pce_predicate_reference(gnat:gnu(_,_), X).
X = @1190997/c_pointer

object chain

chain()
Class chain represents a single-linked list of arbitrary objects. Chains are commonly
used inside XPCE to represent collections. Chains have methods to find elements, sort
the chain, delete elements, etc. The predicate chain list/2 converts between an
XPCE chain and a Prolog list. It also provides methods to run code on all elements of
the list, which is generally faster than translating the chain to a Prolog list and using
Prolog iteration. In the example, ‘device ← graphicals’ returns a chain holding
the graphicals displayed on the device. The example changes the font of all objects of
class text to ‘bold’.

XPCE 6.6.37

237

...,
send(Device?graphicals, for_all,

if(message(@arg1, instance_of, text),
message(@arg1, font, bold))),

...

object program_object hyper chain_hyper

chain hyper()
Link two objects with a ‘chain’. If either dies, the other will die with it. See also the
library hyper and section 10.11.

object hash_table chain_table

chain table()
Version of a hash table that allows multiple values to be associated with the same
key. The key can be any object. If the value for a key is requested, a chain of values
associated with this key is returned.

object char_array

char array()
Class char array is a super-class of the classes string, representing modifiable
text and name, representing read-only unique textual constants. Class char array
defines most of the analysis methods for its two subclasses. Almost the only usage of
this class for application programmers is as type specifier for methods in user-defined
classes that do not modify textual arguments.

insert_bold_text(Editor, Text:char_array) :->
"Insert text with fragment of bold text"::
get(Editor, caret, Start),
send(Editor, insert, Text),
get(Editor, caret, End),
Len is End-Start,
new(_, fragment(Editor, Start, Len, bold)).

object
visual graphical circle
layout_interface

circle()
Equivalent to an ellipse with the same←width and←height. Not used frequently.

object program_object class

class()
All XPCE classes are represented by an instance of class class. A class is a normal
object and can thus be manipulated using send/[2-12], get/[3-13] and new/2.
Classes are normally only created and modified through the user-defined class layer
described in chapter 7. Get methods on classes are used to extract meta-information
about its instances, as exploited by the online manual tools.

XPCE 6.6.37

238 APPENDIX H. CLASS SUMMARY DESCRIPTIONS

?- get(@pce, convert, box, class, ClassBox),
get(ClassBox, super_class, X).

X = @graphical_class/class.

object program_object behaviour class_variable

class variable()

A class variable provides can be used to describe class properties as well as to
provide access to the XPCE Defaults database. Typically, class-variables are defined
similar to instance-variables in the XPCE/Prolog class definition:

:- pce_begin_class(title_text, text).

class_variable(font, font, huge, "Default font for titles").

...

object recogniser gesture click_gesture

click gesture()
Class click gesture is a recogniser that parses button-events to a click. If the
click is detected, it will execute the associated message. This class is normally used
to make graphical objects sensitive to clicks.

...,
send(Bitmap, recogniser,

click_gesture(left, double, message(Bitmap, open))),
...

object program_object code

code()
Class code is a super-class for all ‘executable’ objects. An important sub-class is
class function, representing executable objects that yield a value. The method
‘code → forward: any ...’ pushes the var objects @arg1, . . . and then executes
the code object. Code objects are often associated with controllers to describe the
action the controller should perform. They also serve the role of lambda functions. See
also section 10.2.

?- send(message(@prolog, format, ’Hello ˜w.’, @arg1),
forward, world).

Hello world.

object vector code_vector

code vector()
A code vector is a subclass of class vector that can represent functions as well
as normal objects. It is used for packing multiple arguments passed to a variable-
argument method. Do not use this class directly. See section 7.5.2.

XPCE 6.6.37

239

object colour

colour()
A colour represents an ‘RGB’ triple.1 Colours are used as attributes to graphicals,
windows, styles and pixmaps

object colour_map

colour map()
Manipulate the colourmap. Colourmaps are normally left untouched, but using a 256
entries colour palette in MS-Windows they can be used to improve full-colour image
rendering. See also section 10.10.1.

object recogniser gesture connect_gesture

connect gesture()
A connect gesture allows the user to connect two graphicals by dragging from the
first to the second. This requires two graphicals with handless attached, a link that
is compatible with the handles and a connect gesture associated width the graph-
ical at which the connection should start. The demo program PceDraw as well as the
XPCE Dialog Editor described in chapter A exploit connections and connect gestures.

object
visual graphical joint line connection
layout_interface

connection()
A connection is a line between two graphical objects that automatically updates
on geometry, device and displayed-status changes to either of the connected graphi-
cals. Both of the graphicals must have one or more handles associated with them.
The connection can be attached to a specific handle, or to any handle of the proper
‘handle ← kind’. In the latter case, the system will automatically choose the ‘best-
looking’ handle.

object constant

constant()
A constant is a unique handle. XPCE predefines the following constants: @nil,
@default, and from the subclass bool, @on and @off. The use can define additional
constants and give them their own unique meaning. The most obvious usage is to
indicate a slot that can hold arbitrary data including @nil and @default is in a special
state.

?- new(@uninitialised,
constant(uninitialised,

’Not yet initialised slot’)).

object constraint

constraint()
A constraint is a relation between 2 objects that has to be maintained if either of the

1Colour screens create their colour by mixing the ‘primary’ colours ‘red’, ‘green’ and ‘blue’. With an ‘RBG’
triple, we refer to a triple of three numeric values representing the intensities of the three primary colours

XPCE 6.6.37

240 APPENDIX H. CLASS SUMMARY DESCRIPTIONS

objects is changed. The ‘constraint ← relation’ is a description of the relation
maintained by the constrained. The system defines the relations identity (both ob-
jects have an attribute that has same value) and spatial (general purpose geometry-
relation between two (graphical) objects. It is possible to define new relation
classes. Constraints are getting out of fashion as XPCE lacks a good mechanism to
detect when an object has been changed and therefore evaluates the relation far too
often. User-defined classes, possibly combined with hyper objects form an attractive
alternative. The following keeps a text centered in a box.

...,
new(_, constraint(Box, Text, identity(center))),
...

object program_object code function create

create()
Function that creates an instance of a class. It is often required if a code fragment
executed by an ‘iterator’ method such as ‘chain → for all’ has to create objects.
The following code generates dict items from all send methods of the specified
class and displays them to a browser.

send_methods_of_class(ClassName) :-
new(B, browser(ClassName)),
get(@pce, convert, ClassName, class, Class),
get(Class, send_methods, SendMethods),
send(SendMethods, for_all,

message(B, append,
create(dict_item,

@arg1?name,
@default,
@arg1))),

send(B, open).

object cursor

cursor()
A cursor defines the shape that indicates the position of the pointer (also called
mouse). The system provides a large set of predefined cursors from X11. The Win32
version adds the standard Windows cursors to this set. Cursors can also be created
from an image. The demo program Cursors displays all defined cursors.

Cursors can be associated with graphicals and windows using the→cursor method.
They are also associated to gestures, where they define the cursor that is visible
while the gesture is active (i.e. while the mouse-button that activated the gesture is
down).

Type-conversion converts names into cursor objects. Explicit creation of cursors is
rarely used.

XPCE 6.6.37

241

...,
send(Box, cursor, gobbler),
...

object date

date()
A date objects represents a point in time. The underlying representation is the POSIX
file time-stamp: seconds elapsed since 00.00, Jan 1-st, 1970. This limits the applica-
bility of this class to time-stamps of computer resources (files), agenda systems and
other domains that do not require a granularity below 1 second or have to represent
time-stamps in far history or future. Class date can parse various textual representa-
tions into date objects.

?- send(@pce, format, ’It is now "%s"\n’,
new(date)?string).

It is now "Tue Jan 30 14:07:05 1996"

object
visual graphical device
layout_interface

device()
A graphical device is a compound graphical. It is the super-class of class window. It
is a sub-class of graphical, which implies devices can be used to create a consist-of
structure of graphical objects, giving structure to a diagram. Devices are commonly
refined to establish user-defined graphics, see section 10.12. See also class figure.

make_icon(Icon, Image, Label) :-
new(Icon, device),
send(Icon, display,

new(BM, bitmap(Image))),
send(Icon, display,

new(T, text(Label, center))),
send(T, y, BM?bottom_side),
send(T, center_x, BM?center_x).

object
visual

graphical device window
dialog
window_decorator

frame
layout_interface
tile

dialog()
A dialog is a window specialised for the layout and message handling required by
dialog items, the super-class of the XPCE controllers. In most cases, controller-
windows are created by simply →appending a number of controllers to a dialog win-
dow. The frame- and dialog-layout services take care of proper window sizes and
layout of the controllers. Dialog windows are also involved in forwarding →report
messages (see section 10.7) and keyboard accelerators, handling the default button.

XPCE 6.6.37

242 APPENDIX H. CLASS SUMMARY DESCRIPTIONS

:- pce_autoload(file_item, library(file_item)).

edit_file_dialog :-
new(D, dialog(’Edit File’)),
send(D, append,

file_item(edit_file, ’’)),
send(D, append,

button(edit, message(@prolog, emacs, @arg1))),
send(D, append,

button(cancel, message(D, destroy))),
send(D, open).

object
visual graphical device dialog_group
layout_interface

dialog group()
A dialog group is a collection of dialog items. Dialog groups may be used to
realise a (labeled) box around a group of controllers, or to combine multiple controllers
into a compound one for technical or layout reasons. See also tab.

object
visual graphical dialog_item
layout_interface

dialog item()
Class dialog item is a super-class of all XPCE controllers. It contains the code nec-
essary to negotiate geometry with its neighbours and enclosing dialog window and
provides default fonts for the label, etc. Class graphical defines similar methods to
allow integration of raw graphical objects into dialog windows easily, but graphical
uses the more expensive object-level attributes for storing the necessary status. Open
the class-hierarchy below class dialog item to find all available controllers.

object visual dict

dict()
A dict is an abbreviation of dictionary. Dicts map keywords to dict item objects.
Small dicts simply use a linear list (chain) of items. Large dicts will automatically built
a hash table for quick lookup on the first request that profits from the availability of a
table. A dict provides the storage for a list browser. See also class browser.

object visual dict_item

dict item()
Item in a dict. The key is used for lookup. label is the text displayed by the browser
(@default uses the key). Object is an arbitrary object that can be associated to the
dict. If a dict presents a set of XPCE objects, it is common practice to extract the key
and or label from the object and store the object itself in the ‘dict item ←→ object’
slot.

A name is translated to a dict item using the name as key, default label and @nil
object. ‘dict item ←→ style’ can be used to give an item special attributes (colour,
font, etc.).

XPCE 6.6.37

243

object directory

directory()
A directory represents an node (folder) in the computer’s file-system. Directories
are most commonly used to enumerate the files and sub directories. Directory objects
can also be used to create or delete directories from the file-system.

?- get(directory(.), files, Files).

object visual display

display()
A display represents what X11 calls a screen, a desktop on which windows can be
displayed with a mouse and keyboard attached to it. XPCE support multiple display
instances under X11 and only the predefined default display @display under Win32.
The display implements a number of global operations: getting the screen ←size,
showing modal message boxes using→inform and→confirm, etc.

?- get(@display. size, size(W, H)).
W = 1024, H = 786

object visual display_manager

display manager()
The object @display manager is the only instance of this class. It represents the
collection of available display objects and provides access to the system-wide event-
dispatching services. It is the root of the consist-of hierarchy of visual objects as
displayed by the Visual Hierarchy tool.

object recogniser gesture edit_text_gesture

edit text gesture()
Used internally to handle selection inside a text object. See also the library
pce editable text.

object
visual graphical

device editor
text_margin

layout_interface
source_sink text_buffer

editor()
An editor is a general-purpose text editor. It is a graphical. Class view provides a
window-based version of the editor. XPCE’s editors have commands and key-bindings
that are based on GNU-Emacs. Editors are fully programmable. The associated
key binding object parses key-strokes into commands that are defined as methods
on the editor.

An editor is a compound object and a subclass of device. The other components
are a text image to form the actual display, a text buffer to provide the storage
for the text, elementary operations on the text and undo, a text cursor to indicate
the location of the caret, and optionally a text margin to visualise the presence of
annotations.

XPCE 6.6.37

244 APPENDIX H. CLASS SUMMARY DESCRIPTIONS

A single text buffer can be associated with multiple editor objects, providing
shared editing.

Editors can handle sensitive regions, different fonts, colours and attributes using
fragment objects. All text windows in XPCE’s demo programs (PceEmacs, cards from
the online help, application help, etc.) either use class view or class editor to display
the text.

object elevation

elevation()
An elevation object describes an elevated region on the screen. Elevations come
in two flavours: as a shadow for monochrome displays and using light and dark edges
on colour displays. The elevation object itself just contains the colour definitions. The
actual painting is left to the graphical object the elevation is attached to.

Most controllers handle elevations. The only general purpose graphical supporting an
elevation is figure.

object
visual graphical ellipse
layout_interface

ellipse()
Elliptical shape. Class ellipse defines similar attributes as box: pen, texture,
fill pattern and shadow. See also circle.

object error

error()
An error object represents a runtime message. Whenever an error is trapped or a
message needs to be displayed, the system will invoke ‘object → error: id, con-
text ...’ to the object that trapped the error. If this method is not redefined, the sys-
tem will report the error using the ‘object → report’ mechanism described in sec-
tion 10.7. Errors can be prevented from being reported using pce catch error/2.
The Error Browser of the online manual shows all defined errors.

The development system will report errors that are considered ‘programming errors’
(undefined methods, type violations, invalid object references, etc.) to the terminal and
start the tracer. See also section 12.

object event

event()
An event represents an action from the application user: pressing a key, moving the
mouse, pressing a mouse-button, or entering or leaving an area with the mouse. The
main loop of XPCE will read window-system events from the computing environment
(X11 or Win32). If the event concerns a repaint or similar system event, it will be
handled appropriately. If it can be expressed as an XPCE event, an event object will
be created and send to the window for which the event was reported by the system
using the method ‘event → post’.

Graphical objects and windows can redefine their event handling using two mecha-
nisms: by redefining the →event method or by associating a recogniser object
using ‘graphical → recogniser’.

XPCE 6.6.37

245

Normally, XPCE will read and dispatch events when ‘there is nothing else to do’.
For processing events during computation, see ‘graphical →synchronise’ and
‘display → dispatch’.

object event_node

event node()
An event node is a node in the event ‘is a’ hierarchy. See the demo program Events.
Event-types are normally tested using ‘event → is a’.

event(Dev, Ev:event) :->
"Forward all keyboard events to the text"::
(send(Ev, is_a, keyboard)
-> get(Dev, member, text, Text),

send(Ev, post, Text)
; send(Dev, send_super, event, Ev)
).

object event_tree

event tree()
Event ‘is a’ hierarchy. The only instance is @event tree.

object
visual graphical device figure
layout_interface

figure()
A figure is a refinement of a device. It is a compound graphical, but in addition
can define a background, surrounding box with margin, possibly rounded corners and
elevation and a clipping region. Finally, figures may be used not only to display
all member graphicals, but also to show ‘one of’ the member graphicals only. See
‘figure → status’. An example of the usage of figures are the ‘object cards’ of the
Inspector tool.

object source_sink file

file()
An XPCE file object represents a file on the computers file-system. It can be used to
specify a file, query a file for various attributes, read a file, etc. See also directory.

?- get(file(’summary.doc’, size, Size).
Size = 30762

object font

font()
A font is a reusable object that describes the typeface of text. Section 10.9 documents
the specification of physical and logical fonts.

...,
send(Text, font, bold),
...

XPCE 6.6.37

246 APPENDIX H. CLASS SUMMARY DESCRIPTIONS

object format

format()
A format describes the layout of graphicals on a device. It can specify ‘tabular’
and ‘paragraph’ style layout. A format itself just specifies the parameters, ‘device
→format’ actually realises the format.

object visual fragment

fragment()
A fragment defines a region of text in a text buffer using a start-position and a
length. Fragments are automatically updated if the contents of the text buffer changes.
A fragment can be assigned a logical ‘category’, called ‘style’. The editor visu-
alising the text buffer maps the style-names of fragments into style objects using
‘editor → style’.

...,
send(Editor, style, title, style(font := huge)),
new(_, fragment(Editor, Start, Len, title)),
...

object visual frame

frame()
A frame is a collection of tiled windows. Frames handle the layout, resizing, etc.
of its member windows. Any XPCE window is enclosed in a frame, though it is often
not necessary to specify a frame explicitly. Applications are often implemented as
subclasses of frame. Section 10.6 describes the layout of windows inside a frame.

...,
new(F, frame(’My application’)),
send(F, append, new(B, browser)),
send(new(P, picture), right, B),
...
send(F, open).

object program_object code function

function()
A function is a code object that yields a value when executed. See section 10.2.2.

object recogniser gesture

gesture()
Class gesture is the super-class for the recogniser classes that deal with the
sequence mouse-button-down . . . dragging . . . mouse-button-up. This super-class
validates the various conditions, handles the cursor and focus and activates the
→initiate,→drag and→terminate methods that are redefined in its subclasses.
This class is often sub-classed.

XPCE 6.6.37

247

object program_object behaviour method get_method

get method()
Specification of get-behaviour that is associated with a class using
‘class → get method’ or with an individual object using ‘object →get method’.
Normally specified through the preprocessor layer defined in chapter 7.

object
visual graphical
layout_interface

graphical()
The most generic graphical object. This class defines generic geometry management,
display, update, event-handling, etc. This class can be sub-classed to defined spe-
cialised graphics. See section 10.12.

object
hbox grbox
visual graphical
layout_interface

grbox()
Embed a graphical in a parbox. Using left or right alignment, grbox can also be
used to have text floating around graphical illustrations. See section 11.10.

object handle

handle()
A handle defines a typed and named position on a graphical used by connections
to connect to. The positions are formulas expressed in the with and height of the
graphical. The following definitions are encountered regularly:

:- pce_global(@north_handle,
new(handle(w/2, 0, link, north))).

:- pce_global(@south_handle,
new(handle(w/2, h, link, south))).

:- pce_global(@east_handle,
new(handle(0, h/2, link, east))).

:- pce_global(@west_handle,
new(handle(w, h/2, link, west))).

object recogniser handler

handler()
A handler is the most primitive recogniser, mapping an event-type to a message.
Since the introduction of the more specialised gesture and key binding as well as
the possibility to refine the ‘graphical → event’ method, it is now rarely used.

...,
send(Graphical, recogniser,

handler(area_enter,
message(Graphical, report,

’Hi, I’’m %s’,

XPCE 6.6.37

248 APPENDIX H. CLASS SUMMARY DESCRIPTIONS

Graphical?name))),
...

object recogniser handler_group

handler group()
A handler group is a compound recogniser object. When asked to handle an
event, it will try each of its members until one accepts the event, after which it will
return success to its caller. The following defines a combined move- an resize-gesture.
Note the order: resize gestures only activate close by the edges of the graphical, while
move gestures do not have such a limitation.

:- pce_global(@move_resize_gesture,
new(handler_group(new(resize_gesture),

new(move_gesture)))).

object hash_table

hash table()
A hash table is a fast association table between pairs of objects. For example,
@classes is a hash table mapping class-names into class objects. Names are of-
ten used as keys, but the implementation poses no limit on the type of the key.

?- new(@ht, hash_table),
send(@ht, append, gnu, image(’gnu.img’)).

?- get(@ht, member, gnu, Image).

object hbox

hbox()
Superclass of tbox and grbox dealing with document-rendering. Instances of hbox
itself can be used to define ‘rubber’. See section 11.10 for details.

object host

host()
Class host represents the host-language, Prolog for this manual. It predefines a single
instance called @prolog. Sending messages to @prolog calls predicates. See also
section 6.

?- send(@prolog, write, hello).
hello

object host_data

host data()
Support class for passing data of the host-language natively around in XPCE. The
Prolog interface defines the subclass prolog term and the interface-type prolog.
Details are discussed in the interface definition in section 6.2.

XPCE 6.6.37

249

object program_object hyper

hyper()
A hyper is a binary relation between two objects. The relation can be created, de-
stroyed and inspected. It is automatically destroyed if either of the two connected
objects is destroyed. The destruction can be trapped. Messages may be forwarded
easily to all related objects. See also section 10.11.

object relation identity

identity()
An identity is a relation that maintains the identify between an attribute on one
object and an attribute on another object. Given a slider and a box, the following
ensures the selection of the slider is the same as the width of the box, regardless of
which of the two is changed. See also constraint.

new(_, constraint(Slider, Box,
identity(selection, width)))

object program_object code if

if()
Code object implementing a branch. All three arguments are statements. Both ‘then’
and ‘else’ are optional, and when omitted, simply succeed. Class if is most commonly
used in combination with the iteration methods such as ‘chain → for all’:

...,
send(Device?graphicals, for_all,

if(message(@arg1, instance_of, device),
...)),

...

object visual image

image()
An image is a two-dimensional array of pixels. Images come in two flavours:
monochrome, where each pixel represents a boolean and colour, where each pixel
represents a colour. XPCE can save and load both monochrome and colour images.
Images are displayed on a graphical device using a bitmap. They are also used to
specify cursor objects and the icon associated with a ‘frame’. See section 10.10.

object
visual graphical dialog_item text_item int_item
layout_interface

int item()
Subclass of text item for entering integer values. Has stepper buttons for increment-
ing and decrementing the value.

object
visual graphical joint
layout_interface

joint()
Class joint is a super-class of the various line-types with a start- end end-point.

XPCE 6.6.37

250 APPENDIX H. CLASS SUMMARY DESCRIPTIONS

It provides the code dealing with attached arrow-heads at either end. As well as
common code to reason about the start and end. See also line, path, arc and
connection.

object recogniser key_binding

key binding()
A key binding object parses events into messages or methods on the object for
which it is handling events. Key-bindings are used by the classes text, text item,
editor and list browser. They can be used to defined keyboard-accelerators,
though ‘menu item ←→ accelerator’ is generally more suitable for this purpose.

object
visual graphical dialog_item label
layout_interface

label()
A label is a controller used to display read-only text or image. Labels can handle
→report messages. See section 10.7. The code below is the typical way to asso-
ciate a label that will catch report messages for all windows of the frame in which the
dialog is enclosed.

...,
send(Dialog, append, label(reporter)),
...

object
visual graphical device dialog_group label_box
layout_interface

label box()
Subclass of dialog group for the definition of compound controllers with a properly
aligned label at their left-hand side.

object
layout_manager
layout_interface

layout manager()
layout interface()

A layout manager may be attached to a graphical device (including a window)
to manage the layout of graphicals displayed on the device, as well as painting the
background of the device. See table for a typical example.

object
visual graphical device lbox
layout_interface

lbox()
Class of the document-rendering system to render a list environment, a sequence of
labels and text. See section 11.10 for details.

object
visual graphical joint line
layout_interface

line()

XPCE 6.6.37

251

A line is a straight line-segment with optional arrows, thickness and texture. Class
path implements a ‘multi-line’.

object
link
visual graphical joint line
layout_interface

link()
A link is a reusable specification for a connection. Links are used for defining
connections and connect gesture objects. A connection knows about the link used
to instantiate it. The example defines the handles, link and connect gesture and
shapes that allows the user to create links with an error from ‘out’ ports to ‘in’ ports.

:- pce_global(@in_handle,
new(handle(0, h/2, in, in))).

:- pce_global(@out_handle,
new(handle(w, h/2, out, out))).

:- pce_global(@inout_link,
new(link(out, in,

line(arrows := second)))).
:- pce_global(@link_in_out_gesture,

new(connect_gesture(left, ’’,
@inout_link))).

make_shape(S) :-
new(S, box(50,50)),
send_list(S, handle,

[@in_handle, @out_handle]),
send(S, recogniser, @link_in_out_gesture).

object
visual

graphical device list_browser
dict

layout_interface

list browser()
A list browser is a graphical version of a browser, the visualisation of a list of
items (dict item) stored in a dict. The graphical version is sometimes displayed
with other controllers on a dialog window. The example created a list browser
holding all current Prolog source files. Double-clicking a file will start PceEmacs on the
file. Selecting a file and pressing Consult will (re)consult the file.

show_source_files :-
new(D, dialog(’Prolog Source Files’)),
send(D, append, new(B, list_browser)),
forall(source_file(X), send(B, append, X)),
send(B, open_message,

message(@prolog, emacs, @arg1?key)),
send(D, append,

XPCE 6.6.37

252 APPENDIX H. CLASS SUMMARY DESCRIPTIONS

button(consult,
message(@prolog, consult,

B?selection?key))),
send(D, open).

object
visual graphical dialog_item menu
layout_interface

menu()
Class menu realises various different styles of menus and is the super-class for popup.
Basically, a menu presents multiple values, allows the user to choose one or more
items (‘menu →multiple selection’) and defines a ‘look’. The ‘menu → kind’
set the various attributes to often-used combinations. The other ‘look-and-feel’ at-
tributes may be used to fine-tune the result afterwards.

Menu-items can have a textual or image label. Labels can be coloured and specify a
different font.

...,
new(M, menu(gender, choice)),
send_list(M, append, [male, female]),
send(M, layout, horizontal),
...,

object
visual graphical dialog_item menu_bar
layout_interface

menu bar()
A menu-bar is a row of pull-down menus. Many applications define a single menu-bar
at the top of the frame presenting the various commands in the application.

:- pce_begin_class(my_application, frame).

initialise(F) :->
send(F, send_super, initialise,

’My Application’),
send(F, append, new(MBD, dialog)),
new(V, view),
send(new(B, browser, left, V)),
send(B, below, MBD),
send(MBD, append, new(MB, menu_bar)),
send(MB, append, new(F, popup(file))),
send(MB, append, new(E, popup(edit))),
send_list(F, append,

[menu_item(load,
message(F, load)),

...

XPCE 6.6.37

253

object visual menu_item

menu item()
Item of a menu or popup. For popup menus, the items are normally created explicitly
as each item often defines a unique command. For menus, it is common practice to
simply append the alternatives as menu item will translate a name into a menu item
with this←value,←message @default and a←label created by ‘capitalising’ the
value.

object program_object code message

message()
A message is a dormant ‘send-operation’. When executed using →execute or
→forward, a message is sent to the receiver. Message are the most popular code
objects. See section 10.2 and many examples in this chapter.

object program_object behaviour method

method()
Class method is the super-class of send method and get method. Instances of this
class itself are useless.

object modifier

modifier()
A modifier is a reusable object that defines a condition on the status of the three
‘modifier keys’ shift, control and meta/alt. Modifiers are used by class gesture and
its sub-classes. They are normally specified through their conversion method, which
translates a name consisting of the letters s, c and m into a modifier that requires the
shift, control and/or meta-key to be down an the other modifier keys to be up. The
example specifies a ‘shift-click’ gesture.

...,
click_gesture(left, ’s’, single,

message(...)),
...

object recogniser gesture move_gesture

move gesture()
If a move gesture is attached to a graphical, the graphical can be moved by drag-
ging it using the specified mouse-button. See also move outline gesture.

...,
send(Box, gesture, new(move_gesture)),
...

object recogniser gesture move_gesture move_outline_gesture

move outline gesture()
Similar to a move gesture, but while the gesture is active, it is not the graphical itself
that is moved, but a dotted box indicating the outline of the graphical. If the button

XPCE 6.6.37

254 APPENDIX H. CLASS SUMMARY DESCRIPTIONS

is released, the graphical is moved to the location of the outline. Should be used for
complicated objects with many constraints or connections as a direct move gesture
would be too slow.

object char_array name

name()
A name is a unique textual constant, similar to an atom in Prolog. Whenever an atom
is handed to XPCE, the interface will automatically create a name for it. There is no
limit to the number of characters that can be stored in a name, but some Prolog im-
plementations may limit the number of characters in an atom. On these platforms, it
is implementation-dependent what will happen to long names that are handed to the
Prolog interface.

object
visual

node
graphical

layout_interface

node()
A node is a node in a tree of graphical objects.

...,
new(T, tree(new(Root, node(text(shapes))))),
send(Root, son, node(circle(50))),
send(Root, son, node(box(50, 50))),
...

object program_object code not

not()
Code object that inverses the success/failure of its argument statement. Often used for
code objects that represent conditions.

primitives(Device, Primitives) :-
get(Device?graphicals, find_all,

not(message(@arg1, instance_of, device)),
Primitives).

object number

number()
A number is the object version of an integer (int). If may be as a storage bin. To
compute the widest graphical of a device:

widest_graphical(Device, Width) :-
new(N, number(0)),
send(Device, for_all,

message(N, maximum, @arg1?width)),
get(N, value, Width),
send(N, done).

XPCE 6.6.37

255

object

object()
Class object is the root of XPCE’s class-inheritance hierarchy. It defines methods
for general object-management, comparison, hypers, attributes, etc. It is possible to
create instances of class object, but generally not very useful.

object operator

operator()
Part of XPCE’s object parser. Not (yet) available to the application programmer.

object
program_object code or
chain

or()
Disjunctive code object. An or starts executing its argument statements left-to-right
and terminates successfully as soon as one succeeds. The empty or fails immediately.

object
visual graphical device parbox
layout_interface

parbox()
Class to render text with mixed fonts and colours together with graphics. Class parbox
is the heart of the document-rendering primitives described in section 11.10.

object
parser
tokeniser

parser()
Part of XPCE’s object parser. Not (yet) available to the application programmer.

object
visual graphical joint path
layout_interface

path()
A path is a multi-segment line. It comes in two flavours: poly as a number of straight
connected line-segments and smooth as an interpolated line through a number of
‘control-points’. Its line attributes can be defined and the interior can be filled. Paths
are used both to define new graphicals, for example a triangle, or to defines curves.

draw_sine :-
send(new(Pict, picture), open),
send(Pict, display, new(P, path)),
(between(0, 360, X),

Y is sin((X * 6.283185)/360) * 100,
send(P, append, point(X, Y)),

fail
; true
).

XPCE 6.6.37

256 APPENDIX H. CLASS SUMMARY DESCRIPTIONS

object pce

pce()
Class pce defines a single instance called @pce. Actions that cannot sensibly be
related to a particular object are often defined on class pce.

?- get(@pce, user, User).
User = jan

object pen

pen()
Reserved for future usage.

object
visual

graphical device window
picture
window_decorator

frame
layout_interface
tile

picture()
A picture is a window with scrollbars, normally used for application graphics. If a
graphical window without scrollbars is required, window should be considered.

object visual image pixmap

pixmap()
A pixmap is a subclass of image that is reserved for colour images. All functionality
of this class is in class image. The main reason for its existence is that some graphical
operations require a colour image and the introduction of a class for it is the only way
to allow this to be specified using XPCE’s type system. The→initialise method is
specialised for handling colour images.

object point

point()
Position in a two-dimensional plane. Together with size and area used to communi-
cate with graphicals about geometry.

...
get(Box, center, Point),
get(Point, mirror, Mirrored),
send(Box, center, Mirrored),
...

object
visual graphical dialog_item menu popup
layout_interface

popup()
A popup menu is a menu that is shown after pressing a button on the object the menu
is attached to. Popups are used in two different contexts, as pulldown menus attached

XPCE 6.6.37

257

to a menu bar and as popup-menus associated with windows or individual graphical
objects.

Popups are →appended to menu bars. Various classes define the method →popup
to associate popup menus. Finally, class popup gesture provides a gesture that
operates popup menus.

A popup consists of menu items, each of which normally defines a message to be
executed if the corresponding item is activated. Pull-right sub-menus are realised by
appending a popup to a popup.

...,
new(P, popup(options)),
send(P, append,

new(L, popup(layout, message(Tree, layout, @arg1)))),
send_list(L, append, [horizontal, vertical, list]),
send(P, append,

menu_item(quit, message(Tree, destroy))),
...

object recogniser gesture popup_gesture

popup gesture()
A popup gesture parses events and activates a popup menu. Popup gestures are
explicitly addressed by the application programmer to define compound gestures in-
volving a popup:

:- pce_global(@graph_node_gesture,
make_graph_node_gesture).

make_graph_node_gesture(G) :-
new(P, popup),
send_list(P, append, [...]),
new(G, handler_group(connect_gesture(...),

move_gesture(middle),
popup_gesture(P))).

object stream process

process()
A process encapsulates a stream- or terminal program to get its input from a graphical
program and redirect its output to the same graphical program. Various of the XPCE

tools and demo programs exploit processes: The M-x shell, M-x grep and other
shell commands of PceEmacs, the ispell program and the chess front-end. See also
socket.

object program_object code function progn

progn()
Code object with semantics like the LISP progn function. A progn executes its

XPCE 6.6.37

258 APPENDIX H. CLASS SUMMARY DESCRIPTIONS

statements. If all statements are successfully executed and the last argument is a
function, execute the function and return the result of it or, if the last argument is not
a function, simply return it. Used infrequently in the XPCE/Prolog context.

object program_object

program object()
The super-class of almost the entire ‘meta-word’ of XPCE: classes, behaviour,
attributes, types, etc. Class program object defines the XPCE tracer. See
tracepce/1 and breakpce/1.

object
quote_function
program_object code function

quote function()
Most of XPCE is defined to evaluate function objects at the appropriate time without the
user having to worry about this. Sometimes however, type-checking or execution of a
statement will enforce the execution of a function where this is not desired. In this case
class quote function can help. As a direct sub-class of object, it will generally
be passed unchanged, but type-conversion will translate extract the function itself if
appropriate, while delegation allows the quote function to be treated as a function.

In the example, ChainOfChains is a chain holding chains as its elements. The task is to
sort each of the member chains, using the function ?(@arg1, compare, @arg2)
for sorting. If not enclosed in a quote function, the message will try to evaluate
the function. Now it passes the quote function unchanged. The ‘chain → sort’
method requires a code argument and therefore the function will be extracted from the
quote function.

...,
send(ChainOfChains, for_all,

message(@arg1, sort,
quote_function(?(@arg1, compare, @arg2)))),

...

object real

real()
A real is XPCE’s notion of a floating-point number. Reals are represented using a C
single-precision ‘float’. Reals define the same operation as class number, its integer
equivalent.

object recogniser

recogniser()
Class recogniser is the super-class of all event-parsing classes. The sub-tree
gesture handles mouse-button related events, key binding handles typing and
handler may be used for all events. The main purpose of this class itself is to provide
a type for all its sub-classes.

XPCE 6.6.37

259

object regex

regex()
A regex is XPCE’s encapsulation of the (GNU) Regular Expression library. Regular ex-
pression form a powerful mechanism for the analysis of text. Class regex can be used
to search both char array (name and string) text and text from a text buffer as
used by editor. It is possible to access the ‘registers’ of the regular expression.

?- new(S, string(’Hello World’)),
new(R, regex(’Hello\s +\(\w+\)’)),
send(R, match, S),
get(R, register_value, S, 1, name, W).

W = ’World’

object region

region()
A region defines a sub-region of a graphical. They are used to restrict handler
objects to a sub-area of a graphical. Backward compatibility only.

object relation

relation()
Class relation is the super-class of identity and spatial. Relations form the
reusable part of constraints. Class relation may be sub-classed to define new
relation-types.

object recogniser gesture resize_gesture

resize gesture()
A resize gesture handles mouse-drag events to resize a graphical object on the
corners or edges. See also move gesture and resize outline gesture.

...,
send(Box, recogniser, new(resize_gesture)),
...

object recogniser gesture resize_gesture resize_outline_gesture

resize outline gesture()
Outline version of the resize gesture, often used to resize objects that are expen-
sive to resize, such as editor or list browser.

object recogniser gesture resize_table_slice_gesture

resize table slice gesture()
Gesture that can be used together with class table to allow the user dragging the
boundaries between columns and rows in a table. See also section 11.5.

object source_sink resource

resource()

XPCE 6.6.37

260 APPENDIX H. CLASS SUMMARY DESCRIPTIONS

A resource is data associated with the application. It is most commonly used to get
access to image-data. Example:

resource(splash, image, image(’splash.gif’)).

show_splash_screen :-
new(W, window),
send(W, kind, popup), % don’t show border
new(I, image(resource(splash))),
get(I, size, size(W, H)),
send(W, size, size(W, H)),
send(W, display, bitmap(I)),
send(W, open_centered),
send(timer(2), delay),
send(W, destroy).

object rubber

rubber()
Defines how elastic objects in the document-rendering system such as hbox and its
subclasses are. Used by parbox to realise layout. See section 11.10 for a full descrip-
tion of the rendering primitives.

object
visual graphical scroll_bar
layout_interface

scroll bar()
A scroll bar is used to indicate and control the visible part of a large object viewed
through a window. Though possible, scroll bars are rarely used outside the context of
the predefined scrollbars associated with list browser, editor and window.

...,
send(Window, scrollbars, vertical),
...

object program_object behaviour method send_method

send method()
A send method maps the name of a method selector onto an implementation and
defines various attributes of the method, such as the required arguments, the source-
location, etc. Send-methods are normally specified through user-defined classes pre-
processor as described in chapter 7.

object sheet

sheet()
A sheet is a dynamic set of attribute/value pairs. The introduction of object-level
attributes implemented by ‘object←→attribute’ and user-defined classes have made
sheets obsolete.

XPCE 6.6.37

261

object size

size()
Combination of ←width and ←height used to communicate with graphical objects
about dimension. See also point and area.

object
visual graphical dialog_item slider
layout_interface

slider()
Controller for a numeric value inside a range that does not require exact values. Spec-
ifying volume or speed are good examples of the use of sliders. They can also be used
to realise a percent-done gauge.

...,
new(Done, slider(done, 0, 100, 0)),
send(Done, show_label, @off),
send(Done, show_value, @off),
...
send(Done, selection, N),
send(Done, synchronise),
...

object stream socket

socket()
Communication end-point for a TCP/IP or Unix-domain interprocess communication
stream. XPCE supports both ‘server’ and ‘client’ sockets. On the Win32 platform,
only TCP/IP sockets are provided and only Windows-NT supports server sockets. The
pce server provides a good starting point for defining server sockets. The support
executable xpce-client may be used to communicate with XPCE server sockets.
See also PceEmacs server mode as defined in ’emacs/server’.

object source_location

source location()
Specifies the location in a source file. Used by method objects to register the location
they are defined.

object source_sink

source sink()
Abstract super-class of file, resource and text buffer for type-checking pur-
poses. All source sink objects may be used for storing and retrieving image-
data. Notably a resource can be used for creating images (see section 9 and
text buffer can be used to communicate images over network connections (see
section 11.9).

object relation spatial

spatial()
A spatial defines a geometry relation between two objects. The first two equa-
tions express the reference point of the 1st graphical in terms of its x, y, w and h. The

XPCE 6.6.37

262 APPENDIX H. CLASS SUMMARY DESCRIPTIONS

second pair does the same for the second graphical, while the remaining two equations
relate the mutual widths and heights. The example defines the second graphical to be
10 pixels wider and higher than the first, to share the same lower edge and be centered
horizontally.

new(_, constraint(Gr1, Gr2,
spatial(xref=x+w/2, yref=y+h,

xref=x+w/w, yref=y+h,
w2=w+2, h2=h+2)))

object stream

stream()
Class stream is the super-class of socket and process, defining the stream-
communication. It handles both synchronous and asynchronous input from the socket
or process. It is not possible to created instances of this class.

object char_array string

string()
A string represents a string of characters that may be modified. This class defines
a large number of methods to analyse the text that are inherited from char array
and a large number of methods to manipulate the text. Class regex can analyse and
modify string objects. There is no limit to the number of characters in a string. Storage
is (re)allocated dynamically and always is ‘just enough’ to hold the text. For large texts
that need many manipulations, consider the usage of text buffer that implement
more efficient manipulation.

Strings are commonly used to hold descriptions, text entered by the user, etc.

object style

style()
A style defines attributes for a text fragment as handled by a
editor/classtext buffer or a dict item as handled by a list browser/dict.
It defines the font, fore- and background colours as well as underlining, etc. The
example defines a browser that displays files using normal and directories using bold
font.

make_browser(B) :-
new(B, browser),
send(B, style, file, style(font := normal)),
send(B, style, directory, style(font := bold)),
send(B, open).

append_file(B, Name) :-
send(B, append,

dict_item(Name, style := file)).
append_dir(B, Name) :-

send(B, append,
dict_item(Name, style := directory)).

XPCE 6.6.37

263

object syntax_table

syntax table()
Syntax tables are used by class text buffer to describe the syntax of the text.
They describe the various syntactical categories of characters (word-characters, digit-
characters), the syntax for quoted text, for comments as well as a definition for the end
of a sentence and paragraph. Syntax tables are introduced to support the implementa-
tion of modes in PceEmacs. See also the emacs begin mode/5 directive as defined
in emacs extend.

object
visual graphical device dialog_group tab
layout_interface

tab()
A tab is a subclass of dialog group, rendering as a collection of dialog items
with a ‘tag’ associated. Tabs are normally displayed on a tab stack, which in turn is
displayed on a dialog. Skeleton:

new(D, dialog(settings)),
send(D, append, new(TS, tab_stack)),
send(TS, append, new(G, tab(global))),
send(TS, append, new(U, tab(user))),
...,
<fill G and U>
...,
send(D, append, button(ok)),
send(D, append, button(cancel)).

object
visual graphical device tab_stack
layout_interface

tab stack()
Defines a stack of tagged sub-dialogs (tab objects) that can be displayed on a
dialog. See tab for an example.

object layout_manager table

table()
A table defines a two-dimensional tabular layout of graphical objects on a graphical
device. The functionality of XPCE tables is modelled after HTML-3. Example:

simple_table :-
new(P, picture),
send(P, layout_manager, new(T, table)),
send(T, border, 1),
send(T, frame, box),
send(T, append, text(’row1/col1’)),
send(T, append, text(’row1/col2’)),
send(T, next_row),
send(T, append,

XPCE 6.6.37

264 APPENDIX H. CLASS SUMMARY DESCRIPTIONS

new(C, table_cell(text(spanned, font := bold)))),
send(C, col_span, 2),
send(C, halign, center),
send(P, open).

object layout_interface table_cell

table cell()

Provides the layout interface to a table. Table cells are automatically created
if a graphical is appended to a table. Explicit creation can be used to manipulate
spanning, background and other parameters of the cell.

object vector table_slice
table_column
table_row

table column()
table row()
table slice()

These classes are used for storing row- and column information in table objects.
They are normally created implicitly by the table. References to these objects can be
used to change attributes or delete rows or columns from the table. Example:

...,
get(Table, column, 2, @on, Column),
send(Column, halign, center),
...

object hbox tbox

tbox()
Add text using a defined style to a parbox. Part of the document-rendering infra-
structure. See section 11.10.

object relation_table

relation table()
A relation table defines a multi-column table data object that can have one or
more indexed key fields. They are (infrequently) used for storing complex relational
data as XPCE objects.

object
visual graphical text
layout_interface

text()
Graphical representing a string in a specified font. Class text defines various multi-
line and wrapping/scrolling options. It also implements methods for editing. Class
editable text as defined in pce editable text exploits these methods to arrive
at a flexible editable text object.

XPCE 6.6.37

265

object source_sink text_buffer

text buffer()
A text buffer provides the storage for an editor. Multiple editors may be attached
to the same text buffer, realising shared editing on the same text. A text buffer has
an associated syntax table that describes the character categories and other prop-
erties of the text contained. It can have fragment objects associated that describe
the properties of regions in the text.

See class editor for an overview of the other objects involved in editing text.

object
visual graphical text_cursor
layout_interface

text cursor()
Cursor as displayed by an editor. Not intended for public usage. The example hides
the caret from an editor.

...,
send(Editor?text_cursor, displayed, @off),
...

object
visual graphical text_image
layout_interface

text image()
A text image object is used by the classes editor and list browser to actually
display the text. It defines the tab-stops and line-wrapping properties. It also pro-
vides methods to translate coordinates into character indices and vise-versa. The user
sometimes associates recogniser objects with the text image to redefine event-
processing.

object
visual graphical dialog_item text_item
layout_interface

text item()
A text item is a controller for entering one-line textual values. Text items (text-entry-
field) can have an associated type and/or value-set. If a value-set is present or can be
extracted from the type using ‘type ← value set’, the item will perform completion,
which is by default bound to the space-bar. If a type is specified, the typed value will
be converted to the type and an error will be raised if this fails. The following text-item
is suitable for entering integers:

...,
new(T, text_item(height, 0)),
send(T, type, int),
send(T, length, 8),
...

XPCE 6.6.37

266 APPENDIX H. CLASS SUMMARY DESCRIPTIONS

object
visual graphical text_margin
layout_interface

text margin()
A text margin can be associated with an editor using
‘editor → margin width’ > 0. If the text buffer defines fragments, and
the style objects define ‘style ← icon’, the margin will show an icon near the
start of the fragment. After the introduction of multiple fonts, attributes and colour this
mechanism has become obsolete.

object tile

tile()
Tiles are used to realise the ‘tile-layout’ of windows in a frame. Section 10.6 explains
this in detail. Tiles can also be used to realise tabular layout of other re-sizable graphi-
cal objects.

object
visual

graphical device window
tile_adjuster
window_decorator

frame
layout_interface
tile

tile adjuster()
Small window displayed on top of a frame at the right/bottom of a user-adjustable
window. Dragging this window allows the user the adjust the subwindow layout.

object timer

timer()
Timers are used to initiate messages at regular intervals, schedule a single message
in the future or delay execution for a specified time. The example realises a blinking
graphical. Note that prior to destruction of the graphical, the timer must be destroyed
to avoid it sending messages to a non-existing object.

...,
new(T, timer(0.5, message(Gr, inverted,

Gr?inverted?negate))),
...

object tokeniser

tokeniser()
A tokeniser returns tokens from the input source according to the syntax specified.
It is part of the XPCE object parser and its specification is not (yet) public.

object
visual

graphical device figure tree
node

layout_interface

tree()
Trees realise hierarchical layout for graphical objects. Class tree itself is a subclass
of figure. The hierarchy is built from node objects, each of which encapsulates a

XPCE 6.6.37

267

graphical. Trees trap changes to the geometry of the displayed graphicals and will
automatically update the layout. For an example, see node.

object tuple

tuple()
Anonymous tuple of two objects. Commonly used by get-methods that have to return
two values.

object program_object type

type()
A type defines, implicitly or explicitly, a set of object that satisfy the type, as well as
optional conversion rules to translate certain other object to an object that satisfies the
type. The basic set consists of a type for each class, defining the set of all instances
of the class or any of its sub-classes, a few ‘primitive’ types (int, char and event id are
examples). Disjunctive types can be created. See also section 3.2.1 and section 7.5.1.

?- get(type(int), check, ’42’, X). X = 42

object program_object code function var

var()
A var object is a function that yields the stored value when evaluated. Vars in XPCE

have global existence (like any object), but local, dynamically scoped, binding. Scopes
are started/ended with the execution of (user-defined) methods, ‘code → forward’
and the execution of a block.

The system predefines a number of var objects providing context for messages, meth-
ods, etc: @arg1, ... @arg10 for argument forwarding, @event for the current event,
@receiver for the receiver of an event or message and @class for the class under
construction are the most popular ones. Class block and and give examples of using
these objects.

object program_object behaviour variable

variable()
A variable is a class’ instance-variable. They are, like send method and
get method, normally defined through the user-defined classes preprocessor de-
scribed in chapter 7.

object vector

vector()
Vector of arbitrary objects. Vectors can be dynamically expanded by adding objects
at arbitrary indices. Vectors are used at various places of XPCE’s programming world:
specifying the types of methods, the instance variables of a class, to pack the argu-
ments for variable-argument methods, etc. They share a lot of behaviour with chain
can sometimes be an attractive alternative.

XPCE 6.6.37

268 APPENDIX H. CLASS SUMMARY DESCRIPTIONS

object

visual
graphical

device
window

view
window_decorator

editor
text_margin

frame
layout_interface
source_sink text_buffer
tile

view()
A view is a window displaying an editor. View itself implements a reasonable pow-
erful set of built-in commands conforming the GNU-Emacs key-bindings. See also
PceEmacs and show key bindings/1.

object visual

visual()
Visual is the super-class of anything in XPCE that can ‘visualise’ things. The class
itself defines no storage. Each subclass must implement the ‘visual ← contains’
and ‘visual ← contained in’ methods that define the visual consists-of hierarchy
as shown by the Visual Hierarchy. Class visual itself plays a role in the →report
mechanism as described in section 10.7 and defines ‘visual → destroy’ to ensure
destruction of a sub-tree of the visual consists-of hierarchy.

object program_object code function when

when()
Class when realises a function version of if. It evaluates the condition and then returns
the return-value of either of the two functions. It is commonly used to define conditional
class-variable values.

editor.selection_style: \
when(@colour_display, \

style(background := yellow), \
style(highlight := @on))

object program_object code while

while()
Code statement executing body as long as condition executes successfully. Not used
frequently. Most iteration in XPCE uses the →for all, →for some, ←find and
←find all methods defines on most collection classes.

object
visual

graphical device window window_decorator

frame
layout_interface
tile

window()
The most generic XPCE window class. A window is a sub-class of device and thus
capable of displaying graphical objects. One or more windows are normally combined
in a frame as described in section 10.6. The four main specialisations of window are

XPCE 6.6.37

269

dialog for windows holding controllers, view for windows holding text, browser for
windows displaying a list of items and finally, picture for displaying graphics.

Class window can be used as a graphics window if no scrollbars are needed.

object
visual

graphical device window window_decorator
frame

layout_interface
tile

window decorator()
A window decorator is a window that displays another window and its ‘decorations’:
scrollbars and label. A picture for example is actually a window displayed on a
window-decorator displaying the scrollbars. Almost never used directly by the applica-
tion programmer.

XPCE 6.6.37

Index

’emacs/server’ library, 261
(+), 21
+ class, 47
? class, 14, 15, 78, 231
@2535252, 211
@772024, 10
@= class, 232
@Atom, 8, 228
@Integer, 214, 228
@Object, 173
@Reference, 9
@ dialog bg, 232
@ win pen, 232
@arg1, 17, 77, 78, 105, 118, 162, 227, 229,

238, 258, 267
@arg10, 78, 267
@arg2, 78, 105, 118, 227, 258
@arg3, 118
@bo, 40
@br, 173, 175
@class, 50, 51, 63, 267
@class default, 66
@classes, 248
@default, 10, 11, 19, 30, 52, 57, 59, 60, 104,

163, 212, 239, 242, 253
@demo, 9
@display, 9, 75, 88, 99, 221, 243
@display manager, 243
@dragbox recogniser, 162
@errors, 103
@event, 78, 79, 94, 99, 163, 229, 267
@event tree, 245
@fill pattern menu, 87
@finder, 127
@h, 173
@hfill, 173
@my diagram, 211
@nbsp, 173
@nil, 19, 55, 93, 153, 154, 161, 163, 168,

190, 239, 242
@off, 74, 78, 134, 139, 222, 235, 239

@on, 30, 34–36, 74, 97, 129, 134, 144, 176,
235, 239

@pce, 17, 88, 105, 221, 256
@persons, 56
@prolog, 14, 15, 17, 34, 74, 75, 78, 88, 193,

208, 209, 221, 248
@receiver, 34, 78, 79, 229, 267
@space rubber, 173
@stones bitmap, 83
@display
→dispatch, 74
→inform, 100

@pce
←home, 65
←last error, 104, 215
→exception handlers, 105
→exception, 105
→format, 99

absolute file name/[2
3], 69

Alladin GsView, 125
alt, 253
and class, 78, 235, 267
annotations, 243
append style/3, 34
application
←member, 93
→append, 93
→delete, 93

application class, 93, 94
arc class, 41, 233, 250
area
←size, 221
→set, 11

area class, 256, 261
argument

named, 11
optional, 10
type, 19

arguments
typed, 11

XPCE 6.6.37

INDEX 271

arithmetic, 79
arrow class, 41, 233, 250
ask questions, 32
ask style/3, 35
assert/1, 76
assert employee/5, 28
assoc

redefined, 105
undefined, 105

atom, 9, 254
attribute

editing, 35
attribute class, 227
auto call/1, 216
autoloading, 216
axis, 147

balloon, 131
bar
→drag message, 154
→initialise, 153
→message, 153
→range, 153
→value, 153

bar class, 153, 154
bar button group
←bar, 154
→initialise, 154

bar button group class, 154
bar chart
←→value, 153
→append, 153
→clear, 153
→delete, 153
→event, 153
→initialise, 151
→selection, 153
→select, 153

bar chart class, 151, 153
bar group
→initialise, 154

bar group class, 153
bar stack
←selection, 153
→initialise, 154

bar stack class, 153, 154
barchart, 147, 151

behaviour
←→group, 52

bezier class, 41
binary relation, 249
bitmap class, 22, 41, 114, 249
blinking, 266
block class, 235, 267
BMP

file format, 112
bool class, 235, 239
box
→colour, 12

box class, 24, 41, 60, 80, 122, 153, 172, 244
branch, 249
break, 182
breakpce/1, 258
browser class, 14, 15, 24, 29, 235, 240, 242,

251, 269
bug

reporting, 2
bullet list class, 175
button class, 14, 29, 30, 73, 77
button-bar, 133

c class, 236
C++, 2, 11
c pointer class, 49, 236
call-back, 77
call/1, 216
canonical class, 175
catch

errors, 103
catch-all, 23
cell
←→note mark, 143

CGI, 165
chain
→for all, 77, 240, 249
→initialise, 60
→sort, 258

chain class, 15, 47, 77, 80, 139, 195, 211,
234, 236, 242, 267

chain list/2, 217
chain list/2, 218, 236
char array class, 20, 237, 259, 262
chart, 147
checkpce/0, 55, 181, 218

XPCE 6.6.37

272 INDEX

chess demo, 257
circle class, 41, 60, 244
class
←class variable, 65
←instance size, 222
←instance, 212
←un answer, 222
→get method, 247
hierarchy, 17
structure, 17
undefined, 105

class class, 51, 63, 237
class variable
←→value, 65

class variable class, 65, 238
class variable/[3

4], 51
class variable
←type, 65

ClassBrowser tool, 65
click gesture class, 44, 238
clipping, 245
close/1, 215
code
→forward, 77, 78, 238, 267

code class, 46, 49, 153, 154, 190, 191, 222,
227, 238, 246, 253, 255, 258

code object, 77
code vector class, 238
colour

16-bits, 111
256, 111
images, 111
true, 111

colour class, 22, 239
colour map class, 112
combo-box, 29
completion, 21, 265
compound graphical, 241
connect gesture class, 43, 44, 239, 251
connection class, 41, 43, 44, 115, 239, 250,

251
consists-of, 18
constant class, 51, 66, 239
constraint
←relation, 240
vs. method, 58

constraint class, 58, 249, 259
constructor, 11, 22
control, 253

structure, 73
controller, 241
controllers, 27, 242

built-in, 28
controls

GUI tool for, 187
CORBA, 199
create class, 80
CUR

file format, 112
cursor, 112
cursor class, 114, 240, 249
Cursors demo, 240
curves, 255
cut-and-paste, 200

date class, 241
DDE, 199
default arguments, 10
default/3, 59
define style/1, 34
definition list class, 175, 176
delegate to/1, 51
delegate to/1, 60
delegation, 206
demo programs, 18
destructor, 22
device
←→layout manager, 142
←graphicals, 236
←member, 90, 93
←pointed, 56
←selection, 77
→append dialog item, 28
→event, 119, 143
→format, 42, 141
→geometry, 119
→initialise, 119
→layout dialog, 31, 141
→layout dialog, 31

device class, 31, 41, 42, 57, 80, 119, 120,
122, 141, 142, 149, 171, 176, 235,
241, 243, 245, 246, 250, 263, 268

diagram, 147

XPCE 6.6.37

INDEX 273

dialog
←gap, 31
→ compute desired size, 31
→append, 30, 31
→apply, 36
→gap, 30
→layout, 31
→restore, 36
layout in, 28
resizing, 32

dialog class, 14, 27, 28, 31, 99, 133, 141,
236, 241, 242, 250, 251, 263, 269

dialog/2, 187, 190, 191, 195, 198
dialog group
←label name, 157

dialog group class, 29, 141, 154, 157, 242,
250, 263

dialog item
←→label format, 30
←→label width, 30
←→reference, 30
←→value width, 30
←label name, 157
→above, 28
→alignment, 30
→apply, 36
→below, 28
→default, 36
→hor stretch, 30
→left, 28
→restore, 36
→rigth, 28

dialog item class, 14, 27, 28, 56, 114, 157,
241, 242, 263

dialog item
←alignment, 31
←label name, 157
→alignment, 32
→label, 114
→value width, 30
built-in types, 28

dict class, 14, 236, 242, 251, 262
dict item class, 14, 15, 161, 196, 236, 240,

242, 251, 262
dict item
←→object, 242
←→style, 242

←key, 196
dictionary, 242
direct-manipulation, 4
directory
←files, 195
←file, 196

directory class, 15, 138, 195, 243, 245
display
←→address, 225
←→font alias, 109
←win file name, 129
→dispatch, 75, 245
→load font aliases, 109
→report, 100

display class, 93, 99, 107, 243
display manager
→dispatch, 75

DLL, 200
doc/emit library, 172
doc/html library, 178
doc/objects library, 173
doc/vfont library, 174
doc:action/3, 174
doc mode
→colour, 174
→initialise, 174
→set font, 174
→underline, 174

doc mode class, 173, 175
doc table class, 176
doc mode
←link colour, 176
←space mode, 173

drag-and-drop, 199
drag and drop dict item gesture class, 161
drag and drop gesture
→initialise, 162

drag and drop gesture class, 161–163
dragbox, 162
→event, 162

dragdrop library, 199
dragdropdemo/0, 162
draw/canvas library, 126
drop picture, 161
→drop, 161
→preview drop, 161

XPCE 6.6.37

274 INDEX

editable text class, 264
editable graphical
→event, 62

editor
→margin width, 266
→style, 246

editor class, 20, 21, 29, 58, 114, 126, 196,
206, 236, 243, 244, 246, 250, 259,
260, 262, 265, 266, 268

editpce/1, 24
elevation class, 244, 245
ellipse class, 41, 244
emacs extend library, 263
emacs begin mode/5, 263
EMF, 126
emit/3, 172–175, 178
enum list class, 175
error
←feedback, 103
description of, 103

error class, 103, 157, 244
Error Browser tool, 244
errors

catching, 103
reporting, 133

event
←receiver, 57, 99
→is a, 245
→post, 56, 57, 244
port, 190
processing, 43

event class, 244
event-driven, 73
event node class, 245
Events demo, 245
exception, 105
exception-handling, 84
executable

object, 77
expand file name/2, 65

figure
→status, 245

figure class, 42, 241, 244, 245, 266
file
←object, 105
get name in Windows, 129

prompting for, 129
file class, 15, 69, 138, 163, 169, 196, 245,

261
file search path/2, 70
fill pattern menu/1, 89
find file library, 129
finder
←file, 129

finder class, 127, 129
finding

graphical, 10
graphicals, 90

float, 258
floating point, 9
folder, 243
font class, 11, 22, 108, 109, 142, 171, 174,

245, 252
format class, 42, 141, 142, 246
fragment class, 114, 244, 246, 262, 265
frame
←confirm centered, 35, 94
←confirm, 32, 74, 75
←name, 93
→application, 93
→delete, 97
→fit, 31, 97
→icon, 114
→label, 176
→modal, 93, 94
→open, 32
→report, 99
→return, 32, 35, 193
→status, 94
→transient for, 93
→transient for, 35
layout, 95

frame class, 14, 93, 95, 97, 99, 232, 241, 246,
250, 266, 268

free/1, 10, 15, 84, 213, 221
function, 47
function class, 19, 36, 47, 78, 238, 246, 258,

267

garbage collection, 221
gesture class, 43, 240, 246, 247, 253, 258
get

port, 189

XPCE 6.6.37

INDEX 275

get/3, 9, 10, 12, 54, 213
get/[3-13], 12, 15, 65, 206, 217, 222, 225,

228, 237
get/[4-13], 54
get chain/3, 218
get class/3, 213
get class/4, 54
get implementation/4, 62
get method class, 253, 267
get object/[3-13], 217
get super/3, 54, 213, 214
get class/3, 54
get class/4, 214
get super/3, 54
get super/[3-13], 54, 214
GIF

file format, 112
global objects, 17

with reconsult, 84
GNU-Emacs, 243
go/1, 165
goal expansion/2, 12
graph, 41
graphical
←→layout interface, 142
→ redraw area, 59, 119
→ redraw area, 119
→alert, 100
→compute, 58
→draw, 120
→drop, 162
→event, 56, 57, 84, 247
→flush, 40, 100
→geometry, 57
→preview drop, 163
→preview drop, 161
→recogniser, 84, 244
→request geometry, 58
finding, 10, 90
name, 90
window, 39

graphical class, 11, 22, 24, 43, 55, 56, 114,
125, 131, 161, 165, 169, 171, 233,
241, 242, 253, 254, 266

grbox class, 171, 247, 248
groupware, 165
gsview, 125

handle
←kind, 239

handle class, 42, 43, 53, 239, 247, 251
handle/3

4, 52
handler class, 43, 44, 247, 258, 259
handler group class, 44, 248
hash table class, 237, 242, 248
hbox class, 171–173, 248, 260
help

on manual, 18
help message library, 127, 131
hierarchy

of UI components, 182
home

web, 2
host
←messages, 74
←message, 74
→call back, 74
→catch all, 74

host class, 15, 74, 75, 236, 248
host-language, 248
http/html write library, 126, 169
http/httpd library, 168
httpd
→accepted, 168
→authorization required, 169
→forbidden, 169
→initialise, 168
→moved, 170
→not found, 170
→reply html, 169
→reply, 168
→request, 168
→server error, 170

httpd class, 127, 168, 169
hyper
→initialise, 117
→unlink from, 117
→unlink to, 117

hyper class, 58, 115, 240, 249
hyper library, 115, 237

ICO
file format, 112

icon, 112

XPCE 6.6.37

276 INDEX

icon class, 141
identity class, 240, 249, 259
if class, 78, 231, 234, 249, 268
image
←hot spot, 112
←mask, 112
→save in, 169
file formats, 112
shape, 112

image class, 11, 22, 112, 114, 122, 125, 133,
157, 235, 240, 249, 250, 252, 256

image/gif, 169
image/jpeg, 169
inheritance

multiple, 206
of classes, 206

initialisation
failed, 105

inspecting instances, 18
inspector, 184
Inspector tool, 245
int, 9, 254
int item class, 29
interpolated, 255
ispell demo, 257

joint
→arrows, 233

joint class, 233, 249
JPEG

file format, 112

key binding class, 44, 243, 247, 250, 258
keyboard-accelerators, 250

label
→report, 60, 100
→selection, 114

label class, 29, 99, 114, 133, 250
lambda, 238
lambda functions, 77
layout

in dialog, 28
manager, 142
window, 95

layout of graphicals, 246
layout interface class, 264
layout manager class, 250

lbox class, 171, 175
line class, 41, 43, 233, 250, 251
line-wrapping, 265
link class, 43, 239, 251
list browser class, 29, 114, 161, 195, 235,

236, 242, 250, 251, 259, 260, 262,
265

list browser
→members, 195

look-and-feel, 3

make dialog/2, 190
make dialog/2, 187, 190, 191, 193
make dragbox recogniser/1, 162
make picture/1, 167
make verbose dialog/0, 48
manpce/0, 187, 219
manpce/1, 24, 219
mathematical symbols, 109
memory usage, 222
menu
→kind, 252

menu class, 29, 30, 131, 252, 253
menu bar class, 29, 134, 257
menu item
←label name, 157

menu item class, 253, 257
menu item
←→accelerator, 250
→selection, 114

message
→execute, 80

message class, 14, 15, 28, 44, 74, 77, 78,
227, 236, 253

messages
reporting, 133

meta, 253
method class, 229, 233, 253, 261
mime-type, 169
MIT MAGIC COOKIE, 225
modal, 75, 93, 94

dialog, 32
modes, 263
modifier class, 22, 162, 253
Motif, 3
mouse, 240
move gesture class, 44, 253, 259

XPCE 6.6.37

INDEX 277

move outline gesture class, 44, 253
moving graphicals, 43
MS-Windows, 3
multi-segment line, 255
multiple inheritance, 206
my httpd, 165
→request, 165

name
←label name, 133

name class, 9, 11, 20, 22, 45, 51, 142, 211,
237, 242, 253, 254, 259

named argument, 11
named pipes, 199
Netscape, 112
new

failed, 105
new/2, 7–10, 15, 22, 27, 83, 104, 191, 206,

211, 212, 214, 222, 225, 237
node class, 139, 206, 266, 267
notation

in this manual, 12
notracepce/1, 182, 218
number class, 254, 258

object
←→attribute, 233
←→slot, 52
←catch all, 23
←class variable value, 65
←convert, 23, 55
←get super, 54
←hypered, 118
←lookup, 22, 56
←slot, 54
→ check, 218
→ save in file, 51
→catch all, 23
→done, 75, 222
→error, 104, 244
→free, 221
→initialise, 22, 55
→protect, 213, 221
→report, 99, 244
→save in file, 196
→send hyper, 118
→send super, 54

→slot, 54
→unlink, 22, 55
inspecting, 18, 184
management, 222
memory usage, 222
reference, 8
remove, 10, 22
removing, 221

object class, 19, 61, 99, 117, 255, 258
object/1, 214
object/2, 51, 53, 214
objects

creating, 22
obtainer, 15, 78
OLE, 199
once/1, 104
open

icon, 44
object as stream, 215

open resource/4, 69
open resource/3, 69
OpenWindows, 3
optional arguments, 10
or class, 255

paragraph, 246
parbox
←content, 174
→cdata, 172

parbox class, 171–173, 247, 255, 260, 264
path class, 41, 151, 233, 234, 250, 251, 255
pbox
←anchor, 174, 176
→event, 174
→show, 173

pbox class, 173, 176
pce
←exception handlers, 105
←window system, 200
→exception, 105

pce class, 256
pce begin class/0, 52
pce begin class/[2

3], 49
pce catch error/2, 104, 215
pce class directive/1, 51, 63
pce editable text library, 243, 264

XPCE 6.6.37

278 INDEX

pce end class/1, 52
pce global/2, 214
pce group/1, 52
pce image browser library, 141
pce open/3, 215
pce portray library, 9
pce renew library, 105
pce report library, 133
pce server library, 261
pce autoload/2, 105
pce begin class/[2

3], 49, 52, 67
pce catch error/2, 103, 104, 244
pce class directive/1, 51, 63
pce end class/0, 49, 52, 67
pce end class/1, 52
pce global/2, 83, 84, 105, 214
pce group/1, 49, 54
pce image directory/1, 65, 70
pce open/3, 215
PceEmacs tool, 251, 257, 268
percent-done, 261
picture class, 39, 256, 269
pie-chart, 232
pie-slice, 41
pixmap class, 41, 169, 235, 239, 256
plot, 147
plot/axis library, 147
plot/barchart library, 151
plot/demo library, 151
plot/plotter library, 149
plot axis
←location, 147
←value from coordinate, 147
→format, 147
→initialise, 147
→label, 147

plot axis class, 147, 149, 151
plot graph
→append, 151
→initialise, 151

plot graph class, 149, 151
plot point class, 151
plotter
←translate, 147, 149
←value from x, 151
←value from y, 151

→axis, 149
→clear, 149
→graph, 149

plotter class, 147, 149, 151
PNM

file format, 112
point class, 8, 60, 151, 261
pointer, 240
popup class, 29, 138, 252, 253, 256, 257
popup gesture class, 257
portray/1, 9
PostScript, 80, 125
printing, 125
private colourmap, 112
process class, 257, 262
progn class, 257
program

as object, 77
program object class, 258
Prolog interface, 17
prolog-term

life-time, 47
prolog term class, 46, 48, 248
prompt, 32
pulldown, 256
push-button, 29

quit/0, 75
quote function class, 258

radio-button, 29
re-usability, 89
read

text from object, 215
real class, 9, 11, 45, 258
recogniser
→event, 57

Recogniser class, 43
recogniser class, 44, 56, 238, 244, 246–248,

258, 265
recorda/2, 76
redefined

object reference, 105
reference

object, 8
regex class, 259, 262
region class, 259

XPCE 6.6.37

INDEX 279

Regular Expression, 259
relation class, 240, 249, 259, 261
relation table class, 264
remove

objects, 10
reply/2, 166, 167
report dialog class, 133
reporter class, 133
reporting, 133
require/1, 216
resize gesture class, 44, 259
resize outline gesture class, 44, 259
resource class, 69, 70, 169, 260, 261
resource/3, 69
reusability, 22
RGB, 200
rubber class, 171, 172
runtime generation, 63
runtime-system, 103

screen, 243
scroll bar class, 260
send

port, 189
send/2, 8–10, 12, 54, 212, 217
send/3, 47, 48
send/[2-12], 12, 15, 27, 51, 59, 66, 67, 206,

212, 213, 216, 222, 225, 229, 237
send/[3-12], 54
send class/3, 54, 213
send implementation/3, 62
send list/2

3, 216
send method class, 240, 253, 260, 267
send super/2, 54, 213, 214
send class/2, 54
send class/3, 54, 214
send implementation/3, 62
send list/2, 216
send super/2, 54
send super/[2-12], 54, 214
sensitive, 43
set style/2, 34
set verbose/0, 47
shared editing, 244
sheet class, 169, 260
shift, 253

shift-click, 253
show slots/1, 218
show key bindings/1, 268
show slots/1, 182
size class, 144, 256
slider class, 29
smooth, 41
socket
←peer name, 168

socket class, 127, 168, 257, 262
source code

from dialog editor, 190
source sink class, 69, 261
spatial class, 43, 234, 240, 259, 261
spy, 182
spy/1, 182
spypce/1, 182
statement

as object, 77
stdarg, 60
stream

open Object as, 215
stream class, 262
string
→format, 60, 99

string class, 11, 20, 79, 80, 169, 237, 259,
262

style
←icon, 266
→icon, 114

style class, 11, 236, 239, 246, 262, 264, 266
summary line, 18
SVG, 126
syntax table class, 265

tab class, 29, 157, 242, 263
tab-stops, 265
tab stack class, 29, 263
table
→border, 144
→cell padding, 144
→cell spacing, 144
→frame, 144
→next row, 144
→rules, 144

table class, 42, 141–143, 176, 250, 259, 263,
264

XPCE 6.6.37

280 INDEX

table cell class, 177
table column class, 143
table row class, 143, 177
table row
→end group, 177

tabular, 246
←table, 143
→append label button, 143
→append, 142
→event, 143
→initialise, 142
→sort rows, 143
→table width, 143

tabular class, 142, 143
tabular library, 141
tbox class, 171, 172, 177, 248
TCP/IP, 261
template class, 61, 229
term expansion/2, 62
text class, 41, 65, 122, 142, 236, 243, 250
text-entry field, 29
text-entry-field, 265
text buffer class, 100, 169, 243, 244, 246,

259, 261–263, 265, 266
text cursor class, 243
text image class, 58, 126, 236, 243, 265
text item class, 29, 30, 195, 249, 250, 265
text margin class, 243, 266
text buffer
←read as file, 215
←size as file, 215
→format, 215
→write as file, 215

text item
←→type, 188, 195
←selection, 190
→message, 195

tick-box, 29
tile
→hor shrink, 96
→hor stretch, 96
→ideal height, 96
→ideal width, 96
→ver shrink, 96
→ver stretch, 96

tile class, 95, 96, 246
toc file

→indicate, 139
toc file class, 138, 139
toc folder
→initialise, 139

toc folder class, 138, 139
toc window
←node, 139
←popup, 138
←selection, 139
→expand node, 138
→expand root, 139
→open node, 138
→root, 139
→select node, 138
→son, 139

toc window class, 137, 138
toc window
→son, 138

tokeniser class, 266
tool bar
→activate, 133
→append, 133
→initialise, 133

tool bar class, 133
tool button
→activate, 134
→active, 134
→initialise, 133

tool button class, 133
tool status button class, 133, 134
tool bar
←client, 133
→append, 133

toolbar library, 133
trace/0, 182
tracepce/1, 24, 181, 182, 218, 219, 258
transient

frame, 93
tree class, 127, 137, 206, 254, 266
triangle, 255
type, 11, 19
←convert, 19
←value set, 265
conversion, 11, 23

type class, 19, 59, 265, 267

UI

XPCE 6.6.37

INDEX 281

structure of, 18
undefined

class, 105
object reference, 105

undo, 243
use class template/1, 51
use class template/1, 61, 62, 229
user-defined graphics, 241
user help/0, 187

var class, 45, 63, 78, 233, 238, 267
vararg, 60
variable
→clone style, 63

variable class, 228, 233, 267
variable number of arguments, 60
variable/[3

4], 51
vector class, 238
version, 7
vfont
←font, 174

vfont class, 174, 175
view
→load, 15

view class, 15, 29, 206, 243, 268, 269
view/1, 14
view/2, 15
visual
←contained in, 268
←contains, 268
←help message, 131
→destroy, 268
→help message, 131
→report, 99

visual class, 93, 99, 131, 232, 243
Visual Hierarchy tool, 243, 268
visuals, 111

WAIS, 24
when class, 268
while class, 231, 234
win metafile class, 126
win printer class, 126
window
←height, 12
→ redraw area, 120

→above, 95
→create, 95
→open, 95
→resize message, 32
coordinates, 39
layout in frame, 95
size specification, 96

window class, 14, 27, 39, 42, 95, 137, 142,
206, 241, 250, 256, 260, 268, 269

window decorator class, 269
Windows 2000, 199
Windows 95, 3, 199
Windows NT, 3, 199
Windows XP, 199
WinSock, 199
WMF, 126
write

text to object, 215
WWW

addresses, 2
wysiwyg/1, 34

X-windows, 3
X11, 240
xauth, 225
XBM

file format, 112
xhost, 225
xpce-client, 261
XPM

file format, 112

XPCE 6.6.37

	Introduction
	Organisation of the XPCE documentation
	Other sources of information
	Language interfaces
	Portability
	Unix/X-windows
	Win32 (Windows 95 and NT)

	Look-and-feel
	A brief history of (X)PCE
	About this manual
	Acknowledgements

	Getting started
	Starting xpce/prolog
	Prolog ... and what?
	Creating objects: new
	Modifying object state: send
	Querying objects: get
	Removing objects: free

	Optional arguments
	Named arguments
	Argument conversion
	Send and get with more arguments
	Notation
	Example: show files in directory
	Summary

	Using the online manual
	Overview
	Notational conventions
	Argument types

	Guided tour
	Class browser
	Reading cards
	Search tool
	Class hierarchy

	Summary

	Dialog (controller) windows
	An example
	Built-in dialog items
	Layout in dialog windows
	Practical usage and problems

	Modal dialogs: prompting for answers
	Example: a simple editor for multiple fonts

	Editing attributes
	Example: editing attributes of a graphical

	Simple graphics
	Graphical building blocks
	Available primitive graphical objects

	Compound graphicals
	Connecting graphical objects
	Constraints
	Activating graphicals using the mouse
	Summary

	XPCE and Prolog
	XPCE is not Prolog!
	Dealing with Prolog data
	Life-time of Prolog terms in XPCE

	Defining classes
	The class definition skeleton
	Definition of the template elements

	Accessing instance variables (slots)
	Refining and redefining methods
	General redefinitions
	Redefinition in graphical classes

	Handling default arguments
	Advanced topics
	More on type declarations
	Methods with variable number of arguments
	Implementation notes

	Class Variables
	Accessing Class Variables
	Class variable and instance variables
	The `Defaults' file
	Class variables in User Defined Classes

	Program resources
	Programming techniques
	Control-structure of xpce/prolog applications
	Event-driven applications
	XPCE and existing applications

	Executable objects
	Procedures
	Functions
	Example 1: Finding objects
	Example 2: Internal behaviour of dialog window

	Defining global named objects
	Using directives
	Inline testing
	The `pce_global' directive
	Global objects for recognisers

	Using object references: ``Who's Who?''
	Global named references
	Using the prolog database
	Using object-level attributes
	Using window and graphical behaviour
	Using user defined classes
	Summary

	Relating frames
	Class application
	Transient frames
	Modal operation

	Window layout in a frame
	Windows sizes and automatic adjustment
	Manipulating an open frame

	Informing the user
	Aim of the report mechanism
	The report interface
	Redefining report handling
	Example

	Errors
	Handling errors in the application
	Raising errors
	Repairable errors

	Specifying fonts
	Physical fonts
	Logical fonts

	Using images and cursors
	Colour handling
	Supported Image Formats

	Using hyper links to relate objects
	Programming existence dependencies
	Methods for handling hyper objects

	User defined graphicals
	(Re)defining the repaint method
	Example-I: a window with a grid
	Example-II: a shape with text

	Printing from xpce applications
	Options for document generation

	Commonly used libraries
	Library ``find_file''
	Showing help-balloons
	Dialog support libraries
	Reporting errors and warnings
	Toolbar support
	Example

	Library ``pce_toc'': displaying hierarchies
	Tabular layout
	Using format
	Using table using the ``tabular'' library

	Plotting graphs and barcharts
	Painting axis
	Plotting graphs
	Drawing barcharts using ``plot/barchart''

	Multi-lingual applications
	Drag and drop interface
	Related methods

	Playing WEB (HTTP) server
	Class httpd

	Document rendering primitives
	The rendering library
	Predefined objects
	Class and method reference
	Using the ``doc/emit'' library

	Development and debugging tools
	Object-base consistency
	Tracing methods
	Breaking (spy) on methods
	Visual hierarchy tool
	Inspector tool

	The dialog editor
	Guided tour
	Creating the target dialog window
	Adding controls to the new window
	Defining the layout
	Specifying the behaviour
	Generating source code
	Linking the source code
	Summary

	Miscellaneous topics
	Specifying callback to prolog
	Advanced example of behaviour
	Specifying conditional actions
	Load and save formats

	Status and problems
	Summary and Conclusions

	Notes on XPCE for MS-Windows
	Currently unsupported features in the Win32 version
	Interprocess communication, extensions and interaction
	Accessing Windows Graphics Resources
	Accessing Windows Colours
	Accessing Windows Fonts
	Accessing Windows Cursors

	xpce/prolog architecture
	What is ``Object-Oriented''?
	xpce's objects
	Classes

	Objects and integers
	Delegation
	Prolog
	Executable objects
	Summary

	Interface predicate definition
	Basic predicates
	Portable declaration of required library predicates

	Additional interface libraries
	Library ``pce_util''
	Library ``pce_debug''
	Accessing the xpce manual

	Memory management
	Lifetime of an object
	Practical considerations
	Memory usage of objects

	Commonly encountered problems
	Glossary
	Class summary descriptions

