
SWI-Prolog Natural Language Processing Primitives

Jan Wielemaker
VU University Amsterdam

The Netherlands
E-mail: J.Wielemaker@cs.vu.nl

March 17, 2014

Abstract

This package contains some well known basic routines for natural language processing and
information retrieval. The current version of this package is very limited, which makes the name
somewhat misleading. Suggestions and contributions are welcome.

1

Contents

1 Double Metaphone – Phonetic string matching 3
1.1 Origin and Copyright . 3

2 Porter Stem – Determine stem and related routines 3
2.1 Origin and Copyright . 4

3 library(snowball): The Snowball multi-lingual stemmer library 4

4 library(isub): isub: a string similarity measure 5

2

1 Double Metaphone – Phonetic string matching

The library double metaphone implements the Double Metaphone algorithm developed by
Lawrence Philips and described in “The Double-Metaphone Search Algorithm” by L Philips, C/C++
Users Journal, 2000. Double Metaphone creates a key from a word that represents its phonetic prop-
erties. Two words with the same Double Metaphone are supposed to sound similar. The Double
Metaphone algorithm is an improved version of the Soundex algorithm.

double metaphone(+In, -MetaPhone)
Same as double metaphone/3, but only returning the primary metaphone.

double metaphone(+In, -MetaPhone, -AltMetaphone)
Create metaphone and alternative metaphone from In. The primary metaphone is based on
english, while the secondary deals with common alternative pronounciation in other languages.
In is either and atom, string object, code- or character list. The metaphones are always returned
as atoms.

1.1 Origin and Copyright

The Double Metaphone algorithm is copied from the Perl library that holds the following copyright
notice. To the best of our knowledge the Perl license is compatible to the SWI-Prolog license schema
and therefore including this module poses no additional license conditions.

Copyright 2000, Maurice Aubrey ¡maurice@hevanet.com¿. All rights reserved.

This code is based heavily on the C++ implementation by Lawrence Philips and incorpo-
rates several bug fixes courtesy of Kevin Atkinson ¡kevina@users.sourceforge.net¿.

This module is free software; you may redistribute it and/or modify it under the same
terms as Perl itself.

2 Porter Stem – Determine stem and related routines

The porter stem library implements the stemming algorithm described by Porter in Porter, 1980,
“An algorithm for suffix stripping”, Program, Vol. 14, no. 3, pp 130-137. The library comes with
some additional predicates that are commonly used in the context of stemming.

porter stem(+In, -Stem)
Determine the stem of In. In must represent ISO Latin-1 text. The porter stem/2 predicate
first maps In to lower case, then removes all accents as in unaccent atom/2 and finally
applies the Porter stem algorithm.

unaccent atom(+In, -ASCII)
If In is general ISO Latin-1 text with accents, ASCII is unified with a plain ASCII version of
the string. Note that the current version only deals with ISO Latin-1 atoms.

tokenize atom(+In, -TokenList)
Break the text In into words, numbers and punctuation characters. Tokens are created to the
following rules:

3

[-+][0-9]+(\.[0-9]+)?([eE][-+][0-9]+)? number
[:alpha:][:alnum:]+ word
[:space:]+ skipped
anything else single-character

Character classification is based on the C-library iswalnum() etc. functions.

It is likely that future versions of this library will provide tokenize atom/3 with additional
options to modify space handling as well as the definition of words.

atom to stem list(+In, -ListOfStems)
Combines the three above routines, returning a list holding an atom with the stem of each word
encountered and numbers for encountered numbers.

2.1 Origin and Copyright

The code is based on the original Public Domain implementation by Martin Porter as can be found at
http://www.tartarus.org/martin/PorterStemmer/. The code has been modified by
Jan Wielemaker. He removed all global variables to make the code thread-safe, added the unaccent
and tokenize code and created the SWI-Prolog binding.

3 library(snowball): The Snowball multi-lingual stemmer library
See also http://snowball.tartarus.org/

This module encapsulates ”The C version of the libstemmer library” from the Snowball project.
This library provides stemmers in a variety of languages. The interface to this library is very simple:

• snowball/3 stems a word with a given algorithm

• snowball current algorithm/1 enumerates the provided algorithms.

Here is an example:

?- snowball(english, walking, S).
S = walk.

snowball(+Algorithm, +Input, -Stem) [det]

Apply the Snowball Algorithm on Input and unify the result (an atom) with Stem.

The implementation maintains a cache of stemmers for each thread that accesses
snowball/3, providing high-perfomance and thread-safety without locking.

Parameters
Algorithm is the (english) name for desired algorithm or an 2 or 3 letter ISO

639 language code.
Input is the word to be stemmed. It is either an atom, string or list of

chars/codes. The library accepts Unicode characters. Input must
be lowercase. See downcase atom/2.

4

Errors
- domain error(snowball algorithm, Algorithm)
- type error(atom, Algorithm)
- type error(text, Input)

snowball current algorithm(?Algorithm) [nondet]

True if Algorithm is the official name of an algorithm suported by snowball/3. The predicate
is semidet if Algorithm is given.

4 library(isub): isub: a string similarity measure
author Giorgos Stoilos
See also A string metric for ontology alignment by Giorgos Stoilos, 2005.

The library(isub) implements a similarity measure between strings, i.e., something similar
to the Levenshtein distance. This method is based on the length of common substrings.

isub(+Text1:atomic, +Text2:atomic, +Normalize:bool, -Similarity:float) [det]

Similarity is a measure for the distance between Text1 and Text2. E.g.

?- isub(’E56.Language’, ’languange’, true, D).
D = 0.711348.

If Normalize is true, isub/4 applies string normalization as implemented by the original au-
thors: Text1 and Text2 are mapped to lowercase and the characters ”. ” are removed. Lowercase
mapping is done with the C-library function towlower(). In general, the required normalization
is domain dependent and is better left to the caller. See e.g., unaccent atom/2.

Arguments

Similarity is a float in the range [0.0..1.0], where 1.0 means most similar

5

Index
atom to stem list/2, 4

double metaphone library, 3
double metaphone/2, 3
double metaphone/3, 3

isub/4, 5

porter stem library, 3
porter stem/2, 3

snowball/3, 4
snowball current algorithm/1, 5

tokenize atom/2, 3
tokenize atom/3, 4

unaccent atom/2, 3

6

	Double Metaphone – Phonetic string matching
	Origin and Copyright

	Porter Stem – Determine stem and related routines
	Origin and Copyright

	library(snowball): The Snowball multi-lingual stemmer library
	library(isub): isub: a string similarity measure

