
SWI-Prolog ODBC Interface

Jan Wielemaker
SWI,

University of Amsterdam
The Netherlands

E-mail: jan@swi-prolog.org

September 9, 2012

Abstract

This document describes the SWI-Prolog interface to ODBC, the Microsoft standard for Open
DataBase Connectivity. These days there are ODBC managers from multiple vendors for many
platforms as well as drivers for most databases, making it an attractive target for a Prolog database
connection.

The database interface is envisioned to consist of two layers. The first layer is an encapsulation
of the core functionality of ODBC. This layer makes it possible to run SQL queries. The second
layer exploits the relation between Prolog predicates and database tables, providing —a somewhat
limited— natural Prolog view on the data. The current interface only covers the first layer.

1

Contents

1 Introduction 3

2 The ODBC layer 3
2.1 Connection management . 3
2.2 Running SQL queries . 6

2.2.1 One-time invocation . 6
2.2.2 Parameterised queries . 8
2.2.3 Fetching rows explicitely . 10

2.3 Transaction management . 11
2.4 Accessing the database dictionary . 11
2.5 Getting more information . 14
2.6 Representing SQL data in Prolog . 14
2.7 Errors and warnings . 15

2.7.1 ODBC messages: ‘Success with info’ . 15
2.7.2 ODBC errors . 15

2.8 ODBC implementations . 15
2.8.1 Using unixODBC . 15
2.8.2 Using Microsoft ODBC . 15

2.9 Remaining issues . 16

3 Installation 16
3.1 Unix systems . 16

4 Acknowledgments 16

2

1 Introduction

The value of RDMS for Prolog is often over-estimated, as Prolog itself can manage substantial
amounts of data. Nevertheless a Prolog/RDMS interface provides advantages if data is already pro-
vided in an RDMS, data must be shared with other applications, there are strong persistency require-
ments or there is too much data to fit in memory.

The popularity of ODBC makes it possible to design a single foreign-language module that pro-
vides RDMS access for a wide variety of databases on a wide variety of platforms. The SWI-Prolog
RDMS interface is closely modeled after the ODBC API. This API is rather low-level, but defaults and
dynamic typing provided by Prolog give the user quite simple access to RDMS, while the interface
provides the best possible performance given the RDMS independency constraint.

The Prolog community knows about various high-level connections between RDMS and Prolog.
We envision these layered on top of the ODBC connection described here.

2 The ODBC layer

2.1 Connection management

The ODBC interface deals with a single ODBC environment with multiple simultaneous connections.
The predicates in this section deal with connection management.

odbc connect(+DSN, -Connection, +Options)
Create a new ODBC connection to data-source DSN and return a handle to this con-
nection in Connection. The connection handle is either an opaque structure or an atom
of the alias option is used. In addition to the options below, options applicable to
odbc set connection/2 may be provided.

user(User)
Define the user-name for the connection. This option must be present if the database uses
authorization.

password(Password)
Provide a password for the connection. Normally used in combination with user(User).

alias(AliasName)
Use AliasName as Connection identifier, making the connection available as a global
resource. A good choice is to use the DSN as alias.

open(OpenMode)
If OpenMode is once (default if an alias is provided), a second call to open the same
DSN simply returns the existing connection. If multiple (default if there is no alias
name), a second connection to the same data-source is opened.

mars(+Bool)
If true, use Microsoft SQL server 2005 mars mode. This is support for multiple con-
current statements on a connection without requiring the dynamic cursor (which incurs
an astounding 20-50x slowdown of query execution!!). MARS is a new feature in
SQL2k5 apparently, and only works if you use the native driver. For the non-native driver,
specifying that it is enabled will have absolutely no effect.

3

The following example connects to the WordNet1 [1] database, using the connection alias
wordnet and opening the connection only once:

open_wordnet :-
odbc_connect(’WordNet’, _,

[user(jan),
password(xxx),
alias(wordnet),
open(once)

]).

odbc driver connect(+DriverString, -Connection, +Options)
Connects to a database using SQLDriverConnect(). This API allows for driver-specific addi-
tional options. DriverString is passed without checking. Options should not include user and
password.

Whenever possible, applications should use odbc connect/3. If you need this predi-
cate, please check the documentation for SQLDriverConnect() and the documentation of your
driver.2

odbc disconnect(+Connection)
Close the given Connection. This destroys the connection alias or, if there is no alias, makes
further use of the Connection handle illegal.

odbc current connection(?Connection, ?DSN)
Enumerate the existing ODBC connections.

odbc set connection(+Connection, +Option)
Set options on an existing connection. All options defined here may also be specified with
odbc connect/2 in the option-list. Defined options are:

access mode(Mode)
If read, tell the driver we only access the database in read mode. If update (default),
tell the driver we may execute update commands.

auto commit(bool)
If true (default), each update statement is committed immediately. If false, an update
statement starts a transaction that can be committed or rolled-back. See section 2.3 for
details on transaction management.

cursor type(CursorType)
I haven’t found a good description of what this does, but setting it to dynamic makes it
possible to have multiple active statements on the same connection with Microsoft SQL
server. Other values are static, forwards only and keyset driven.

encoding(+Encoding)
Define the encoding used to communicate to the driver. Defined values are given below.
The default on MS-Windows is unicode while on other platforms it is utf8. Below,

1An SQL version of WordNet is available from http://wordnet2sql.infocity.cjb.net/
2BUG: Facilities to deal with prompted completion of the driver options are not yet implemented.

4

the *A() functions refer to the ‘ansi’ ODBC functions that exchange bytes and the *W()
functions refer to the ‘unicode’ ODBC functions that exchange UCS-2 characters.

iso latin 1
Communicate using the *A() functions and pass bytes untranslated.

locale
Communicate using the *A() functions and translated between Prolog Unicode char-
acters and their (possibly) multibyte representation in the current locale.

utf8
Communicate using the *A() functions and translated between Prolog Unicode char-
acters and their UTF-8 encoding.

unicode
Communicate using the *W() functions.

silent(Bool)
If true (default false), statements returning SQL SUCCESS WITH INFO succeed
without printing the info. See also section 2.7.1.

null(NullSpecifier)
Defines how the SQL constant NULL is represented. Without specification, the default is
the atom $null$. NullSpecifier is an arbitrary Prolog term, though the implementation
is optimised for using an unbound variable, atom and functor with one unbound variable.
The representation null() is a commonly used alternative.
The specified default holds for all statements executed on this connection. Changing the
connection default does not affect already prepared or running statements. The null-value
can also be specified at the statement level. See the option list of odbc query/4.

wide column threshold(+Length)
If the width of a column exceeds Length, use the API SQLGetData() to get the value
incrementally rather than using a (large) buffer allocated with the statement. The default
is to use this alternate interface for columns larger than 1024 bytes. There are two cases
for using this option. In time critical applications with wide columns it may provide
better performance at the cost of a higher memory usage and to work around bugs in
SQLGetData(). The latter applies to Microsoft SQL Server fetching the definition of a
view.

odbc get connection(+Connection, ?Property)
Query for properties of the connection. Property is a term of the format Name(Value). If
Property is unbound all defined properties are enumerated on backtracking. Currently the
following properties are defined.

database name(Atom)
Name of the database associated to the connection.

dbms name(Name)
Name of the database engine. This constant can be used to identify the engine.

dbms version(Atom)
Version identifier from the database engine.

driver name(Name)
ODBC Dynamic Link Library providing the interface between ODBC and the database.

5

driver odbc version(Atom)
ODBC version supported by the driver.

driver version(Atom)
The drivers version identifier.

active statements(Integer)
Maximum number of statements that can be active at the same time on this connection.
Returns 0 (zero) if this is unlimited.3

odbc data source(?DSN, ?Description)
Query the defined data sources. It is not required to have any open connections before calling
this predicate. DSN is the name of the data source as required by odbc connect/3. De-
scription is the name of the driver. The driver name may be used to tailor the SQL statements
used on the database. Unfortunately this name depends on the local installing details and is
therefore not universally useful.

2.2 Running SQL queries

ODBC distinguishes between direct execution of literal SQL strings and parameterized execution of
SQL strings. The first is a simple practical solution for infrequent calls (such as creating a table),
while parameterized execution allows the driver and database to precompile the query and store the
optimized code, making it suitable for time-critical operations. In addition, it allows for passing
parameters without going through SQL-syntax and thus avoiding the need for quoting.

2.2.1 One-time invocation

odbc query(+Connection, +SQL, -RowOrAffected)
Same as odbc query/4 using [] for Options.

odbc query(+Connection, +SQL, -RowOrAffected, +Options)
Fire an SQL query on the database represented by Connection. SQL is any valid SQL state-
ment. SQL statements can be specified as a plain atom, string or a term of the format
Format-Arguments, which is converted using format/2.

If the statement is a SELECT statement the result-set is returned in RowOrAffected. By default
rows are returned one-by-one on backtracking as terms of the functor row/Arity, where Arity
denotes the number of columns in the result-set. The library pre-fetches the next value to be
able to close the statement and return deterministic success when returning the last row of the
result-set. Using the option findall/2 (see below) the result-set is returned as a list of user-
specified terms. For other statements this argument returns affected(Rows), where Rows
represents the number of rows affected by the statement. If you are not interested in the number
of affected rows odbc query/2 provides a simple interface for sending SQL-statements.

Below is a small example using the connection created from odbc connect/3. Please note
that the SQL-statement does not end in the ‘;’ character.

lemma(Lemma) :-
odbc_query(wordnet,

3Microsoft SQL server can have multiple active statements after setting the option cursor type to dynamic. See
odbc set connection/2.

6

’SELECT (lemma) FROM word’,
row(Lemma)).

The following example adds a name to a table with parent-relations, returning the number of
rows affected by the statement.

insert_child(Child, Mother, Father, Affected) :-
odbc_query(parents,

’INSERT INTO parents (name,mother,father) \
VALUES ("mary", "christine", "bob")’,

affected(Affected)).

Options defines the following options.

types(ListOfTypes)
Determine the Prolog type used to report the column-values. When omitted, default
conversion as described in section 2.6 is implied. A column may specify default to
use default conversion for that column. The length of the type-list must match the number
of columns in the result-set.
For example, in the table word the first column is defined with the SQL type
DECIMAL(6). Using this SQL-type, “001” is distinct from “1”, but using Prolog in-
tegers is a valid representation for Wordnet wordno identifiers. The following query
extracts rows using Prolog integers:

?- odbc_query(wordnet,
’select * from word’, X,
[types([integer,default])
]).

X = row(1, entity) ;
X = row(2, thing) ;
...

See also section 2.6 for notes on type-conversion.

null(NullSpecifier)
Specify SQL NULL representation. See odbc set connection/2 for details.

source(Bool)
If true (default false), include the source-column with each result-value. With this
option, each result in the row/N-term is of the format below. TableName or ColumnName
may be the empty atom if the information is not available.4

column(TableName, ColumnName, Value)

findall(Template, row(Column, . . .))
Instead of returning rows on backtracking this option makes odbc query/3 return all

4This is one possible interface to this information. In many cases it is more efficient and convenient to provide this
information separately as it is the same for each result-row.

7

rows in a list and close the statement. The option is named after the Prolog findall/3
predicate, as the it makes odbc query/3 behave as the commonly used findall/3
construct below.
lemmas(Lemmas) :-

findall(Lemma,
odbc_query(wordnet,

’select (lemma) from word’,
row(Lemma)),

Lemmas).

Using the findall/2 option the above can be implemented as below. The number of
argument of the row term must match the number of columns in the result-set.

lemmas(Lemmas) :-
odbc_query(wordnet,

’select (lemma) from word’,
Lemmas,
[findall(Lemma, row(Lemma))
]).

The current implementation is incomplete. It does not allow arguments of
row(. . .) to be instantiated. Plain instantiation can always be avoided using
a proper SELECT statement. Potentially useful however would be the transla-
tion of compound terms, especially to translate date/time/timestamp structures
to a format for use by the application.

wide column threshold(+Length)
Specify threshold column width for using SQLGetData(). See
odbc set connection/2 for details.

odbc query(+Connection, +SQL)
As odbc query/3, but used for SQL-statements that should not return result-rows (i.e. all
statements except for SELECT). The predicate prints a diagnostic message if the query returns
a result.

2.2.2 Parameterised queries

ODBC provides for ‘parameterized queries’. These are SQL queries with a ?-sign at places where
parameters appear. The ODBC interface and database driver may use this to precompile the SQL-
statement, giving better performance on repeated queries. This is exactly what we want if we associate
Prolog predicates to database tables. This interface is defined by the following predicates:

odbc prepare(+Connection, +SQL, +Parameters, -Statement)
As odbc prepare/5 using [] for Options.

odbc prepare(+Connection, +SQL, +Parameters, -Statement, +Options)
Create a statement from the given SQL (which may be a format specification as described with
odbc query/3) statement that normally has one or more parameter-indicators (?) and unify
Statement with a handle to the created statement. Parameters is a list of descriptions, one for
each parameter. Each parameter description is one of the following:

8

default
Uses the ODBC function SQLDescribeParam() to obtain information about the parameter
and apply default rules. See section 2.6 for details. If the interface fails to return a type
or the type is unknown to the ODBC interface a message is printed and the interface
handles the type as text, which implies the user must supply an atom. The message can
be suppressed using the silent(true) option of odbc set connection/2. An
alternative mapping can be selected using the > option of this predicate described below.

SqlType(Specifier, ...)
Declare the parameter to be of type SqlType with the given specifiers. Specifiers
are required for char, varchar, etc. to specify the field-width. When calling
odbc execute/[2-3], the user must supply the parameter values in the default
Prolog type for this SQL type. See section 2.6 for details.

PrologType > SqlType
As above, but supply values of the given PrologType, using the type-transformation de-
fined by the database driver. For example, if the parameter is specified as

atom > date

The use must supply an atom of the format YYYY-MM-DD rather than a term
date(Year,Month,Day). This construct enhances flexibility and allows for passing val-
ues that have no proper representation in Prolog.

Options defines a list of options for executing the statement. See odbc query/4 for details.
In addition, the following option is provided:

fetch(FetchType)
Determine the FetchType, which is one of auto (default) to extract the result-set on
backtracking or fetch to prepare the result-set to be fetched using odbc fetch/3.

odbc execute(+Statement, +ParameterValues, -RowOrAffected)
Execute a statement prepared with odbc prepare/4 with the given ParameterValues and
return the rows or number of affected rows as odbc query/4. This predicate may return
type error exceptions if the provided parameter values cannot be converted to the declared
types.

ODBC doesn’t appear to allow for multiple cursors on the same result-set.5 This would im-
ply there can only be one active odbc execute/3 (i.e. with a choice-point) on a prepared
statement. Suppose we have a table age (name char(25), age integer) bound to
the predicate age/2 we cannot write the code below without special precautions. The ODBC
interface therefore creates a clone of a statement if it discovers the statement is being executed,
which is discarded after the statement is finished.6

same_age(X, Y) :-
age(X, AgeX),
age(Y, AgeY),
AgeX = AgeY.

5Is this right?
6The code is prepared to maintain a cache of statements. Practice should tell us whether it is worthwhile activating this.

9

odbc execute(+Statement, +ParameterValues)
Like odbc query/2, this predicate is meant to execute simple SQL statements without
interest in the result.

odbc free statement(+Statement)
Destroy a statement prepared with odbc prepare/4. If the statement is currently executing
(i.e. odbc execute/3 left a choice-point), the destruction is delayed until the execution
terminates.

2.2.3 Fetching rows explicitely

Normally SQL queries return a result-set that is enumerated on backtracking. Using this approach a
result-set is similar to a predicate holding facts. There are some cases where fetching the rows one-
by-one, much like read/1 reads terms from a file is more appropriate and there are cases where only
part of the result-set is to be fetched. These cases can be dealt with using odbc fetch/3, which
provides an interface to SQLFetchScroll().

As a general rule of thumb, stay away from these functions if you do not really need them. Ex-
periment before deciding on the strategy and often you’ll discover the simply backtracking approach
is much easier to deal with and about as fast.

odbc fetch(+Statement, -Row, +Option)
Fetch a row from the result-set of Statement. Statement must be created with
odbc prepare/5 using the option fetch(fetch) and be executed using odbc execute/2.
Row is unified to the fetched row or the atom end of file7 after the end of the data is
reached. Calling odbc fetch/2 after all data is retrieved causes a permission-error
exception. Option is one of:

next
Fetch the next row.

prior
Fetch the result-set going backwards.

first
Fetch the first row.

last
Fetch the last row.

absolute(Offset)
Fetch absolute numbered row. Rows count from one.

relative(Offset)
Fetch relative to the current row. relative(1) is the same as next, except that the first
row extracted is row 2.

bookmark(Offset)
Reserved. Bookmarks are not yet supported in this interface.

In many cases, depending on the driver and RDBMS, the cursor-type must be changed using
odbc set connection/2 for anything different from next to work.

7This atom was selected to emphasise the similarity to read.

10

Here is example code each time skipping a row from a table ‘test’ holding a single column of
integers that represent the row-number. This test was executed using unixODBC and MySQL
on SuSE Linux.

fetch(Options) :-
odbc_set_connection(test, cursor_type(static)),
odbc_prepare(test,

’select (testval) from test’,
[],
Statement,
[fetch(fetch)
]),

odbc_execute(Statement, []),
fetch(Statement, Options).

fetch(Statement, Options) :-
odbc_fetch(Statement, Row, Options),
(Row == end_of_file
-> true
; writeln(Row),

fetch(Statement, Options)
).

odbc close statement(C)
loses the given statement (without freeing it). This must be used if not the whole result-set is
retrieved using odbc fetch/3.

2.3 Transaction management

ODBC can run in two modi. By default, all update actions are immediately committed on the server.
Using odbc set connection/2 this behaviour can be switched off, after which each SQL state-
ment that can be inside a transaction implicitly starts a new transaction. This transaction can be ended
using odbc end transaction/2.

odbc end transaction(+Connection, +Action)
End the currently open transaction if there is one. Using Action commit pending updates are
made permanent, using rollback they are discarded.

The ODBC documentation has many comments on transaction management and its interaction
with database cursors.

2.4 Accessing the database dictionary

With this interface we do not envision the use of Prolog as a database manager. Nevertheless, elemen-
tary access to the structure of a database is required, for example to validate a database satisfies the
assumptions made by the application.

11

odbc current table(+Connection, -Table)
Return on backtracking the names of all tables in the database identified by the connection.

odbc current table(+Connection, ?Table, ?Facet)
Enumerate properties of the tables. Defines facets are:

qualifier(Qualifier)

owner(Owner)

comment(Comment)
These facets are defined by SQLTables()

arity(Arity)
This facet returns the number of columns in a table.

odbc table column(+Connection, ?Table, ?Column)
On backtracking, enumerate all columns in all tables.

odbc table column(+Connection, ?Table, ?Column, ?Facet)
Provides access to the properties of the table as defined by the ODBC call SQLColumns().
Defined facets are:

table qualifier(Qualifier)

table owner(Owner)

table name(Table)
See odbc current table/3.

data type(DataType)

type name(TypeName)

precision(Precision)

length(Length)

scale(Scale)

radix(Radix)

nullable(Nullable)

remarks(Remarks)
These facets are defined by SQLColumns()

12

type(Type)
More prolog-friendly representation of the type properties. See section 2.6.

odbc type(+Connection, ?TypeSpec, ?Facet)
Query the types supported by the data source. TypeSpec is either an integer type-id, the name of
an ODBC SQL type or the constant all types to enumerate all known types. This predicate
calls SQLGetTypeInfo() and its facet names are derived from the specification of this ODBC
function:

name(Name)
Name used by the data-source. Use this in CREATE statements

data type(DataType)
Numeric identifier of the type

precision(Precision)
When available, maximum precision of the type.

literal prefix(Prefix)
When available, prefix for literal representation.

literal suffix(Suffix)
When available, suffix for literal representation.

create params(CreateParams)
When available, arguments needed to create the type.

nullable(Bool)
Whether the type can be NULL. May be unknown

case sensitive(Bool)
Whether values for this type are case-sensitive.

searchable(Searchable)
Whether the type can be searched. Values are false, true, like only or
all except like.

unsigned(Bool)
When available, whether the value is signed. Please note that SWI-Prolog does not provide
unsigned integral values.

money(Bool)
Whether the type represents money.

auto increment(Bool)
When available, whether the type can be auto-incremented.

local name(LocalName)
Name of the type in local language.

minimum scale(MinScale)
Minimum scale of the type.

maximum scale(MaxScale)
Maximum scale of the type.

13

2.5 Getting more information

odbc statistics(?Key)
Get statistical data on the ODBC interface. Currently defined keys are:

statements(Created, Freed)
Number of SQL statements that have been Created and Freed over all connections.
Statements executed with odbc query/[2-3] increment Created as the query is
created and Freed if the query is terminated due to deterministic success, failure,
cut or exception. Statements created with odbc prepare/[4-5] are freed by
odbc free statement/1 or due to a fatal error with the statement.

odbc debug(+Level)
Set the verbosity-level to Level. Default is 0. Higher levels make the system print debugging
messages.

2.6 Representing SQL data in Prolog

Databases have a poorly standardized but rich set of datatypes. Some have natural Prolog counterparts,
some not. A complete mapping requires us to define Prolog data-types for SQL types that have no
standardized Prolog counterpart (such as timestamp), the definition of a default mapping and the
possibility to define an alternative mapping for a specific column. For example, many variations of
the SQL DECIMAL type cannot be mapped to a Prolog integer. Nevertheless, mapping to an integer
may be the proper choice for a specific application.

The Prolog/ODBC interface defines the following Prolog result types with the indicated default
transformation. Different result-types can be requested using the types(TypeList) option for the
odbc query/4 and odbc prepare/5 interfaces.

atom
Used as default for the SQL types char, varchar, longvarchar, binary, varbinary,
longvarbinary, decimal and numeric. Can be used for all types.

string
SWI-Prolog extended type string. Use the type for special cases where garbage atoms must be
avoided. Can be used for all types.

codes
List of character codes. Use this type if the argument must be analysed or compatibility with
Prolog systems that cannot handle infinite-length atoms is desired. Can be used for all types.

integer
Used as default for the SQL types bit, tinyint, smallint and integer. Please note
that SWI-Prolog integers are signed 32-bit values, where SQL allows for unsigned values
as well. Can be used for the integral, and decimal types as well as the types date and
timestamp, which are represented as POSIX time-stamps (seconds after Jan 1, 1970).

double
Used as default for the SQL types real, float and double. Can be used for the integral,
float and decimal types as well as the types date and timestamp, which are represented

14

as POSIX time-stamps (seconds after Jan 1, 1970). Representing time this way is compatible
to SWI-Prologs time-stamp handling.

date
A Prolog term of the form date(Year,Month,Day) used as default for the SQL type date.

time
A Prolog term of the form time(Hour,Minute,Second) used as default for the SQL type time.

timestamp
A Prolog term of the form timestamp(Year,Month,Day,Hour,Minute,Second,Fraction) used
as default for the SQL type timestamp.

2.7 Errors and warnings

ODBC operations return success, error or ‘success with info’. This section explains how results from
the ODBC layer are reported to Prolog.

2.7.1 ODBC messages: ‘Success with info’

If an ODBC operation returns ‘with info’, the info is extracted from the interface and handled to the
Prolog message dispatcher print message/2. The level of the message is informational and
the term is of the form:

odbc(State, Native, Message)
Here, State is the SQL-state as defined in the ODBC API, Native is the (integer) error code of
the underlying data source and Message is a human readable explanation of the message.

2.7.2 ODBC errors

If an ODBC operation signals an error, it throws the exception error(odbc(State, Native, Message),
). The arguments of the odbc/3 term are explained in section 2.7.1.

In addition, the Prolog layer performs the normal tests for proper arguments and state, signaling
the conventional instantiation, type, domain and resource exceptions.

2.8 ODBC implementations

There is a wealth on ODBC implementations that are completely or almost compatible to this inter-
face. In addition, a number of databases are delivered with an ODBC compatible interface. This
implies you get the portability benefits of ODBC without paying the configuration and performance
price. Currently this interface is, according to the PHP documentation on this subject, provided by
Adabas D, IBM DB2, Solid, and Sybase SQL Anywhere.

2.8.1 Using unixODBC

The SWI-Prolog ODBC interface was developed using unixODBC and MySQL on SuSE Linux.

2.8.2 Using Microsoft ODBC

On MS-Windows, the ODBC interface is a standard package, linked against odbc32.lib.

15

2.9 Remaining issues

The following issues are identified and waiting for concrete problems and suggestions.

Transaction management This certainly requires a high-level interface. Possibly in combination
with call cleanup/3, providing automatic rollback on failure or exception and commit on
success.

High-level interface Attaching tables to predicates, partial DataLog implementation, etc.

3 Installation

3.1 Unix systems

Installation on Unix system uses the commonly found configure, make and make install sequence.
SWI-Prolog should be installed before building this package. If SWI-Prolog is not installed as pl, the
environment variable PL must be set to the name of the SWI-Prolog executable. Installation is now
accomplished using:

% ./configure
% make
% make install

This installs the foreign libraries in $PLBASE/lib/$PLARCH and the Prolog library files in
$PLBASE/library, where $PLBASE refers to the SWI-Prolog ‘home-directory’.

4 Acknowledgments

The SWI-Prolog ODBC interface started from a partial interface by Stefano De Giorgi. Mike Elston
suggested programmable null-representation with many other suggestions while doing the first field-
tests with this package.

References

[1] George Miller. Wordnet: An on-line lexical database. International Journal of Lexicography,
3(4), 1990. (Special Issue).

16

Index
call cleanup/3, 16

findall/3, 8
format/2, 6

odbc close statement/+Statement, 11
odbc connect/3, 3
odbc current connection/2, 4
odbc current table/2, 12
odbc current table/3, 12
odbc data source/2, 6
odbc debug/1, 14
odbc disconnect/1, 4
odbc driver connect/3, 4
odbc end transaction/2, 11
odbc execute/2, 10
odbc execute/3, 9
odbc fetch/3, 10
odbc free statement/1, 10
odbc get connection/2, 5
odbc prepare/4, 8
odbc prepare/5, 8
odbc query/2, 8
odbc query/3, 6
odbc query/4, 6
odbc set connection/2, 4, 6
odbc statistics/1, 14
odbc table column/3, 12
odbc type/3, 13
odbc connect/2, 4
odbc connect/3, 4, 6
odbc current table/3, 12
odbc end transaction/2, 11
odbc execute/2, 10
odbc execute/3, 9, 10
odbc execute/[2-3], 9
odbc fetch/2, 10
odbc fetch/3, 9–11
odbc free statement/1, 14
odbc prepare/4, 9, 10
odbc prepare/5, 8, 10, 14
odbc prepare/[4-5], 14
odbc query/2, 6, 10
odbc query/3, 7, 8

odbc query/4, 5, 6, 9, 14
odbc query/[2-3], 14
odbc set connection/2, 3, 7–11

print message/2, 15

read/1, 10

17

	Introduction
	The ODBC layer
	Connection management
	Running SQL queries
	One-time invocation
	Parameterised queries
	Fetching rows explicitely

	Transaction management
	Accessing the database dictionary
	Getting more information
	Representing SQL data in Prolog
	Errors and warnings
	ODBC messages: `Success with info'
	ODBC errors

	ODBC implementations
	Using unixODBC
	Using Microsoft ODBC

	Remaining issues

	Installation
	Unix systems

	Acknowledgments

