
Transparent Inter-Process Communications (TIPC) libraries

Jeffrey Rosenwald
E-mail: JeffRose@acm.org

February 29, 2012

Abstract

TIPC provides a framework for cooperation between federations of trusted peers that are op-
erating as a unit. It was developed by Ericsson AB, as a means to provide for communications
between Common Control Systems processes and Network Elements in telephone switching sys-
tems, sometimes operating at arm’s length on different line cards or mainframes. Delegation of
responsibility in this way is one of the fundamental precepts of the Erlang programming system,
also developed at Ericsson. TIPC represents a more generalized version of the same behavioral
design pattern.

1

Contents

1 Transparent Inter-Process Communications (TIPC) 3
1.1 Overview . 3
1.2 TIPC Address Structures . 4

2 The TIPC libraries: tipc/... 5
2.1 tipc.pl: TIPC Sockets . 5
2.2 tipc broadcast.pl: A TIPC Broadcast Bridge . 10

2.2.1 Caveats: . 12
2.3 tipc paxos.pl: A Replicated Data Store . 14
2.4 tipc linda.pl: A Process Communication Interface 16

2.4.1 Servers . 19
2.4.2 Clients . 19

2

1 Transparent Inter-Process Communications (TIPC)

These pages are not intended as a comprehensive tutorial in the use of TIPC services. The TIPC
Programmer’s Guide, http://tipc.sf.net/doc/Programmers Guide.txt, provides as-
sistance to developers who are creating applications that utilize TIPC services. The TIPC User’s
Guide, http://tipc.sf.net/doc/Users Guide.txt, provides an administrator of a TIPC
cluster with the information needed to operate one. A TIPC server loadable module, that may be used
to make a host available as a TIPC enabled node, has been a part of the Linux kernel since 2.6.16.
Please see: http://tipc.sf.net

1.1 Overview

In a TIPC network, a Node is comprised of a collection of lightweight threads of execution operating in
the same process, or heavyweight processes operating on the same machine. A Cluster is a collection
of Nodes operating on different machines, and operating indirectly by way of a local Ethernet or other
networking medium. Clusters may be further aggregated into Zones, and Zones into Networks. The
address space of two TIPC networks is completely disjoint. Zones on different networks may coexist
on the same LAN but they may not communicate directly with one another.

TIPC provides connectionless, connection-oriented, reliable, and unreliable forwarding strategies
for both stream and message oriented applications. But not all strategies can be used in every appli-
cation. For example, there is no such thing as a multicast byte stream. The strategy is selected by the
user for the application when the socket is instantiated.

TIPC is not TCP/IP based. Consequently, it cannot signal beyond a local network span without
some kind of tunneling mechanism. TIPC is designed to facilitate deployment of distributed applica-
tions, where certain aspects of the application may be segregated, and then delegated and/or duplicated
over several machines on the same LAN. The application is unaware of the topology of the network
on which it is running. It could be a few threads operating in the same process, several processes
operating on the same machine, or it could be dozens or even hundreds of machines operating on
the same LAN, all operating as a unit. TIPC manages all of this complexity so that the programmer
doesn’t have to.

Unlike TCP/IP, TIPC does not assign network addresses to network interfaces; it assigns addresses
(e.g. port-ids) to sockets when they are instantiated. The address is unique and persists only as long
as the socket persists. A single Node therefore, may typically have many TIPC addresses active at any
one time, each assigned to an active socket. TIPC also provides a means that a process can use to bind
a socket to a well-known address (e.g. a service). Several peers may bind to the same well-known
address, thereby enabling multi-server topologies. And server members may exist anywhere in the
Zone. TIPC manages the distribution of client requests among the membership of the server group. A
server instance responds to two addresses: its public well-known address that it is bound to, and that
a client may use to establish a communication with a service, and its private address that the server
instance may use to directly interact with a client instance.

TIPC also enables multicast and ”publish and subscribe” regimes that applications may use to
facilitate asynchronous exchange of datagrams with a number of anonymous sources that may come
and go over time. One such regime is implemented as a naming service managed by a distributed
topology server. The topology server provides surveillance on the comings and goings of publishers,
with advice to interested subscribers in the form of event notifications, emitted when a publisher’s
status changes. For example, when a server application binds to a TIPC address , that address is
automatically associated with that server instance in topology server’s name table. This has the side

3

effect of causing a ”published” event to be emitted to all interested subscribers. Conversely, when
the server’s socket is closed or when one of its addresses is released using the ”no-scope” option of
tipc bind/3, a ”withdrawn” event is emitted. See tipc service port monitor/2.

A client application may connect to the topology server in order to interrogate the name ta-
ble to determine whether or not a service is present before actually committing to access it. See
tipc service exists/2 and tipc service probe/2. Another way that the topology
server can be applied is exemplified in Erlang’s ”worker/supervisor” behavioral pattern. A super-
visor thread has no other purpose than to monitor a collection of worker threads in order to ensure
that a service is available and able to serve a common goal. When a worker under the supervisor’s
care dies, the supervisor receives the worker’s ”withdrawn” event, and takes some action to instan-
tiate a replacement. The predicate, tipc service port monitor/2, is provided specifically
for this purpose. Using the service is optional. It has applications in distributed, high-availability,
fault-tolerant, and non-stop systems.

Adding capacity to a cluster becomes an administrative function whereby new server hardware is
added to a TIPC network, then the desired application is launched on the new server. The application
binds to its well-known address, thereby joining in the Cluster. TIPC will automatically begin send-
ing work to it. An administrator has tools for gracefully removing a server from a Cluster, without
effecting the traffic moving on the Cluster.

An administrator may configure a Node to have two or more network interfaces. Provided that
each interface is invisible to the other, TIPC will manage them as a redundant group, thus enabling
high-reliability network features such as automatic link fail-over and hot-swap.

1.2 TIPC Address Structures

name(+Type, +Instance, +Domain)
A TIPC name address is used by servers to advertise themselves as services in unicast appli-
cations, and is used by clients to connect to unicast services. Type, Instance, and Domain are
positive integers that are unique to a service.

name seq(+Type, +Lower, +Upper)
A TIPC name-sequence address is used by servers to advertise themselves as services in mul-
ticast and ”publish and subscribe” applications. Lower and Upper represent a range of
instance addresses. Each server will receive exactly one datagram from a client that sends
a name-sequence address that matches the server’s Type, and where its Lower and Upper
instance range intersects the Lower and Upper instance range bound to the server. Clients may
send a datagram to any and all interested servers by providing an appropriate name-sequence
address to tipc send/4.

port id(+Ref, +Node)
A TIPC port-id is the socket’s private address. It is ephemeral in nature. It persists only as
long as the socket instance persists. Port ids are generally provided to applications via
tipc receive/4. An application may discover its own port id for a socket using
tipc get name/2. Generally, others cannot discover the port-id of a socket, except by
receiving messages originated from it. A server responds to a client by providing the received
port-id as the sender address in a reply message. The client will receive the server’s port-id
via his own tipc receive/4. The client can then interact with a specific server instance
without having to perform any additional address resolution. The client simply sends all

4

subsequent messages related to a specific transaction to the server instance using the port-id
received from the server in its replies.

Sometimes the socket’s port-id alone is enough to establish an ad-hoc session anonymously
between parent and child processes. The parent instantiates a socket, then forks into two pro-
cesses. The child retrieves the port-id of the parent from the socket inherited from the parent
using tipc get name/2, then closes the socket and instantiates a socket of its own. The
child sends a message to the parent, on its own socket, using the parent’s port-id as the des-
tination address. The port-id received by the parent is unique to a specific instance of child.
The handshake is complete; each side knows who the other is, and two-way communication
may now proceed. A one-way communication (e.g. a message oriented pipe or mailbox) is
also possible using only the socket inherited from the parent, provided that there is exactly one
sender and one receiver on the socket. Both parent and child use the socket’s own port-id, one
side adopts the role of sender, and the other of receiver.

2 The TIPC libraries: tipc/...

2.1 tipc.pl: TIPC Sockets
author Jeffrey Rosenwald (JeffRose@acm.org)
See also http://tipc.sf.net, http://www.erlang.org
Compatibility Linux only
license LGPL

Transparent Inter-Process Communication (TIPC) provides a flexible, reliable, fault-tolerant,
high-speed, and low-overhead framework for inter-process communication between federations of
trusted peers, operating as a unit. It was developed by Ericsson AB, as a means to provide for com-
munications between Common Control Systems processes and Network Element peers in telephone
switching systems, sometimes operating at arm’s length on different line cards or mainframes. Del-
egation of responsibility in this way is one of the fundamental precepts of the Erlang programming
system, also developed at Ericsson. TIPC represents a more generalized version of the same behav-
ioral design pattern. For an overview, please see: tipc_overview.txt.

tipc socket(-SocketId, +SocketType) [det]

Creates a TIPC-domain socket of the type specified by SocketType, and unifies it to an identifier,
SocketId.

Parameters
SocketType is one of the following atoms:

• rdm - unnumbered, reliable datagram service,

• dgram - unnumbered, unreliable datagram service,

• seqpacket - numbered, reliable datagram service, and

• stream - reliable, connection-oriented byte-stream service

Errors socket error(’Address family not supported by protocol’) is thrown if a TIPC server is not
available on the current host.

5

tipc close socket(+SocketId) [det]

Closes the indicated socket, making SocketId invalid. In stream applications, sockets are closed
by closing both stream handles returned by tipc open socket/3. There are two cases
where tipc close socket/1 is used because there are no stream-handles:

• After tipc accept/3, the server does a fork/1 to handle the client in a sub-process.
In this case the accepted socket is not longer needed from the main server and must be
discarded using tipc close socket/1.

• If, after discovering the connecting client with tipc accept/3, the server does not
want to accept the connection, it should discard the accepted socket immediately using
tipc close socket/1.

Parameters
SocketId the socket identifier returned by tipc socket/2 or

tipc accept/3.

Errors socket error(’Invalid argument) is thrown if an attempt is made to close a socket identifier that
has already been closed.

tipc open socket(+SocketId, -InStream, -OutStream) [det]

Opens two SWI-Prolog I/O-streams, one to deal with input from the socket and one with output
to the socket. If tipc bind/3 has been called on the socket, OutStream is useless and will
not be created. After closing both InStream and OutStream, the socket itself is discarded.

tipc bind(+Socket, +Address, +ScopingOption) [det]

Associates/disassociates a socket with the name/3 or name seq/3 address specified in Ad-
dress. It also registers/unregisters it in the topology server name table. This makes the address
visible/invisible to the rest of the network according to the scope specified in ScopingOption.
ScopingOption is a grounded term that is one of:

scope(Scope) where Scope is one of: zone, cluster, or node. Servers may bind to more
than one address by making successive calls to tipc bind/3, one for each address that
it wishes to advertise. The server will receive traffic for all of them. A server may, for
example, register one address with node scope, another with cluster scope, and a third
with zone scope. A client may then limit the scope of its transmission by specifying the
appropriate address.

no scope(Scope) where Scope is as defined above. An application may target a specific ad-
dress for removal from its collection of addresses by specifying the address and its scope.
The scoping option, no_scope(all), may be used to unbind the socket from all of
its registered addresses. This feature allows an application to gracefully exit from ser-
vice. Because the socket remains open, the application may continue to service current
transactions to completion. TIPC however, will not schedule any new work for the server
instance. If no other servers are available, the work will be rejected or dropped according
to the socket options specified by the client.

Connection-oriented, byte-stream services are implemented with this predicate combined with
tipc listen/2 and tipc accept/3. Connectionless, datagram services may be imple-
mented using tipc receive/4.

6

Note that clients do not need to bind to any address. Its port-id is sufficient for this role. And
server sockets (e.g. those that are bound to name/3 or name seq/3, addresses) may not act as
clients. That is, they may not originate connections from the socket using tipc connect/2.
Servers however, may originate datagrams from bound sockets using tipc send/4. Please
see the TIPC programmers’s guide for other restrictions.

tipc listen(+Socket, +Backlog) [det]

Listens for incoming requests for connections. Backlog indicates how many pending connec-
tion requests are allowed. Pending requests are requests that are not yet acknowledged using
tipc accept/3. If the indicated number is exceeded, the requesting client will be signalled
that the service is currently not available. A suggested default value is 5.

tipc accept(+Socket, -Slave, -Peer) [det]

Blocks on a server socket and waits for connection requests from clients. On success, it creates
a new socket for the client and binds the identifier to Slave. Peer is bound to the TIPC address,
port id/2, of the client.

tipc connect(+Socket, +TIPC address) [det]

Provides a connection-oriented, client-interface to connect a socket to a given TIPC address.
After successful completion, tipc open socket/3 may be used to create I/O-Streams to
the remote socket.

throws
- socket error(’Connection refused’), if there are no servers bound to the specified address.
- socket error(’Connection timed out’), if no server that is bound to the specified address accepts
the connect request within the specified time limit. See also tipc setopt/2.

tipc get name(+Socket, -TIPC address) [det]

Unifies TIPC address with the port-id assigned to the socket.

tipc get peer name(+Socket, -TIPC address) [det]

Unifies TIPC address with the port-id assigned to the socket that this socket is connected to.

throws socket error(’Transport endpoint is not connected’), if an attempt is made to obtain a peer’s
name of an unconnected socket.

tipc setopt(+Socket, +Option) [det]

Sets options on the socket. Defined options are:

importance(+Priority) Allow sockets to assign a priority to their traffic. Priority is one of :
low (default), medium, high, or critical.

src droppable(+Boolean) Allow TIPC to silently discard packets in congested situations,
rather than queuing them for later transmission.

dest droppable(+Boolean) Allow TIPC to silently discard packets in congested situations,
rather than returning them to the sender as undeliverable.

conn timeout(+Seconds) Specifies the time interval that tipc connect/2 will use before
abandoning a connection attempt. Default: 8.000 sec.

7

tipc receive(+Socket, -Data, -From, +OptionList) [det]

Waits for, and returns the next datagram. Like its UDP counterpart, the data are returned as
a Prolog string object (see string to list/2). From is an address structure of the form
port id/2, indicating the sender of the message.

Defined options are:

as(+Type)
Defines the returned term-type. Type is one of atom, codes or string (default).

nonblock
Poll the socket and return immediately. If a message is present, it is returned. If not,
then an exception, error(socket error(’Resource temporarily unavailable’),), will be
thrown. Users are cautioned not to ”spin” unnecessarily on non-blocking receives as they
may prevent the system from servicing other background activities such as XPCE event
dispatching.

The typical sequence to receive a connectionless TIPC datagram is:

receive :-
tipc_socket(S, dgram),
tipc_bind(S, name(18888, 10, 0), scope(zone)),
repeat,

tipc_receive(Socket, Data, From, [as(atom)]),
format(’Got ˜q from ˜q˜n’, [Data, From]),
Data == quit,

!, tipc_close_socket(S).

tipc send(+Socket, +Data, +To, +Options) [det]

sends a TIPC datagram to one or more destinations. Like its UDP counterpart, Data is a
string, atom or code-list providing the data to be sent. To is a name/3, name seq/3, or
port id/2 address structure. See tipc_overview.txt, for more information on TIPC
Address Structures. Options is currently unused.

A simple example to send a connectionless TIPC datagram is:

send(Message) :-
tipc_socket(S, dgram),
tipc_send(S, Message, name(18888, 10,0), []),
tipc_close_socket(S).

Messages are delivered silently unless some form of congestion was encountered and the
dest_droppable(false) option was issued on the sender’s socket. In this case, the send
succeeds but a notification in the form of an empty message is returned to the sender from the
receiver, indicating some kind of delivery failure. The port-id of the receiver is returned in
congestion conditions. A port_id(0,0), is returned if the destination address was invalid.
Senders and receivers should beware of this possibility.

8

tipc canonical address(-CanonicalAddress, +PortId) [det]

Translates a port id/2 address into canonical TIPC form:

tipc address(Zone, Cluster, Node, Reference)
It is provided for debugging an printing purposes only. The canonical address is not used
for any other purpose.

tipc service exists(+Address, +Timeout) [semidet]

tipc service exists(+Address) [semidet]

Interrogates the TIPC topology server to see if a service is available at an advertised Address.

Parameters
Address is one of: name(Type, Instance, Domain) or

name_seq(Type, Lower, Upper). A name/3, ad-
dress is translated to a name seq/3, following, where Lower
and Upper are assigned the value of Instance. Domain is unused
and must be zero. A name_seq(Type, Lower, Upper) is
a multi-cast address. This predicate succeeds if there is at least
one service that would answer according to multi-cast addressing
rules.

Timeout is optional. It is a non-negative real number that specifies the
amount of time in seconds to block and wait for a service to be-
come available. Fractions of a second are also permissible.

tipc service probe(?Address) [nondet]

tipc service probe(?Address, ?PortId) [nondet]

Allows a user to discover the instance ranges and/or port-ids for a particular service.

Parameters
Address is a name seq/3 address. The address type must be grounded.
PortId is unified with the port-id for a specific name sequence address.

tipc service port monitor(+Addresses, :Goal) [det]

tipc service port monitor(+Addresses, :Goal, ?Timeout) [det]

Monitors a collection of worker threads that are bound to a list of Addresses. A single port
monitor may be used to provide surveillance over workers that are providing a number of
different services. For a given address type, discontiguous port ranges may be specified, but
overlapping port ranges may not. Goal for example, may simply choose to broadcast the
notification, thus delegating the notification event handling to others.

Parameters

9

Addresses is a list of name/3 or name seq/3 addresses for the services to
be monitored.

Goal is a predicate that will be called when a worker’s publication status
changes. The Goal is called exactly once per event with its the last
argument unified with the structure:

published(-NameSeq, -PortId) when the worker binds its socket
to the address.

withdrawn(-NameSeq, -PortId) when the worker unbinds its
socket from the address.

Timeout is optional. It is one of:

Timeout a non-negative real number that specifies the number of
seconds that surveillance is to be continued.

infinite causes the monitor to run forever in the current thread (e.g.
never returns).

detached(-ThreadId) causes the monitor to run forever as a sep-
arate thread. ThreadId is unified with the thread identifier of
the monitor thread. This is useful when the monitor is re-
quired to provide continuous surveillance, while operating in
the background.

tipc initialize [semidet]

causes the TIPC service and the TIPC stack to be initialized and made ready for service. An
application must call this predicate as part of its initialization prior to any use of TIPC
predicates. Please note the change of the API.

throws socket error(’Address family not supported by protocol’) if a TIPC server is not available on
the current host.

2.2 tipc broadcast.pl: A TIPC Broadcast Bridge
author Jeffrey Rosenwald (JeffRose@acm.org)
See also tipc.pl

Compatibility Linux only
license LGPL

SWI-Prolog’s broadcast library provides a means that may be used to facilitate publish and sub-
scribe communication regimes between anonymous members of a community of interest. The mem-
bers of the community are however, necessarily limited to a single instance of Prolog. The TIPC
broadcast library removes that restriction. With this library loaded, any member of a TIPC network
that also has this library loaded may hear and respond to your broadcasts. Using TIPC Broadcast, it
becomes a nearly trivial matter to build an instance of supercomputer that researchers within the High
Performance Computer community refer to as ”Beowulf Class Cluster Computers.”

This module has no public predicates. When this module is initialized, it does three things:

• It starts a listener daemon thread that listens for broadcasts from others, received as TIPC data-
grams, and

10

• It registers three listeners: tipc node/1, tipc cluster/1, and tipc zone/1, and

• It registers three listeners: tipc node/2, tipc cluster/2, and tipc zone/2.

A broadcast/1 or broadcast request/1 that is not directed to one of the six lis-
teners above, behaves as usual and is confined to the instance of Prolog that originated it. But
when so directed, the broadcast will be sent to all participating systems, including itself, by way
of TIPC’s multicast addressing facility. A TIPC broadcast or broadcast request takes the typical
form: broadcast(tipc_node(+Term, +Timeout)). The principal functors tipc_node,
tipc_cluster, and tipc_zone, specify the scope of the broadcast. The functor tipc_node,
specifies that the broadcast is to be confined to members of a present TIPC node. Likewise,
tipc_cluster and tipc_zone, specify that the traffic should be confined to members of a
present TIPC cluster and zone, respectively. To prevent the potential for feedback loops, the scope
qualifier is stripped from the message before transmission. The timeout is optional. It specifies the
amount to time to wait for replies to arrive in response to a broadcast request. The default period is
0.250 seconds. The timeout is ignored for broadcasts.

An example of three separate processes cooperating on the same Node:

Process A:

?- listen(number(X), between(1, 5, X)).
true.

?-

Process B:

?- listen(number(X), between(7, 9, X)).
true.

?-

Process C:

?- findall(X, broadcast_request(tipc_node(number(X))), Xs).
Xs = [1, 2, 3, 4, 5, 7, 8, 9].

?-

It is also possible to carry on a private dialog with a single responder. To do this, you supply a com-
pound of the form, Term:PortId, to a TIPC scoped broadcast/1 or broadcast request/1,
where PortId is the port-id of the intended listener. If you supply an unbound variable, PortId, to
broadcast request, it will be unified with the address of the listener that responds to Term. You may
send a directed broadcast to a specific member by simply providing this address in a similarly struc-
tured compound to a TIPC scoped broadcast/1. The message is sent via unicast to that member
only by way of the member’s broadcast listener. It is received by the listener just as any other broadcast
would be. The listener does not know the difference.

11

Although this capability is needed under some circumstances, it has a tendency to compromise the
resilience of the broadcast model. You should not rely on it too heavily, or fault tolerance will suffer.

For example, in order to discover who responded with a particular value:

Process A:

?- listen(number(X), between(1, 3, X)).
true.

?-

Process B:

?- listen(number(X), between(7, 9, X)).
true.

?-

Process C:

?- broadcast_request(tipc_node(number(X):From)).
X = 7,
From = port_id(’<1.1.1:3971170279>’) ;
X = 8,
From = port_id(’<1.1.1:3971170279>’) ;
X = 9,
From = port_id(’<1.1.1:3971170279>’) ;
X = 1,
From = port_id(’<1.1.1:3971170280>’) ;
X = 2,
From = port_id(’<1.1.1:3971170280>’) ;
X = 3,
From = port_id(’<1.1.1:3971170280>’) ;
false.

?-

2.2.1 Caveats:

While the implementation is mostly transparent, there are some important and subtle differences that
must be taken into consideration:

• TIPC broadcast now requires an initialization step in order to launch the broadcast listener
daemon. See tipc initialize/0.

• Prolog’s broadcast request/1 is nondet. It sends the request, then evaluates the replies
synchronously, backtracking as needed until a satisfactory reply is received. The remaining
potential replies are not evaluated. This is not so when TIPC is involved.

12

• A TIPC broadcast/1 is completely asynchronous.

• A TIPC broadcast request/1 is partially synchronous. A broadcast request/1 is
sent, then the sender balks for a period of time (default: 250 ms) while the replies are collected.
Any reply that is received after this period is silently discarded. An optional second argument
is provided so that a sender may specify more (or less) time for replies.

• Replies are no longer collected using findall/3. Replies are presented to the user as a
choice point on arrival, until the broadcast request timer finally expires. This change allows
traffic to propagate through the system faster and provides the requestor with the opportunity to
terminate a broadcast request early if desired, by simply cutting choice points.

• Please beware that broadcast request transactions will now remain active and resources con-
sumed until broadcast request finally fails on backtracking, an uncaught exception occurs, or
until choice points are cut. Failure to properly manage this will likely result in chronic exhaus-
tion of TIPC sockets.

• If a listener is connected to a generator that always succeeds (e.g. a random number generator),
then the broadcast request will never terminate and trouble is bound to ensue.

• broadcast request/1 with TIPC scope is not reentrant (at least, not now anyway). If
a listener performs a broadcast request/1 with TIPC scope recursively, then disaster
looms certain. This caveat does not apply to a TIPC scoped broadcast/1, which can safely
be performed from a listener context.

• TIPC’s capacity is not infinite. While TIPC can tolerate substantial bursts of activity, it is de-
signed for short bursts of small messages. It can tolerate several thousand replies in response
to a broadcast request/1 without trouble, but it will begin to encounter congestion be-
yond that. And in congested conditions, things will start to become unreliable as TIPC begins
prioritizing and/or discarding traffic.

• A TIPC broadcast request/1 term that is grounded is considered to be a broadcast only.
No replies are collected unless the there is at least one unbound variable to unify.

• A TIPC broadcast/1 always succeeds, even if there are no listeners.

• A TIPC broadcast request/1 that receives no replies will fail.

• Replies may be coming from many different places in the network (or none at all). No ordering
of replies is implied.

• Prolog terms are sent to others after first converting them to atoms using term to atom/2.
Passing real numbers this way may result in a substantial truncation of precision. See prolog
flag option, ’float format’, of current prolog flag/2.

tipc host to address(?Service, ?Address) [nondet]

locates a TIPC service by name. Service is an atom or grounded term representing the common
name of the service. Address is a TIPC address structure. A server may advertise its services

13

by name by including the fact, tipc:host to address(+Service, +Address), somewhere in its
source. This predicate can also be used to perform reverse searches. That is it will also resolve
an Address to a Service name. The search is zone-wide. Locating a service however, does not
imply that the service is actually reachable from any particular node within the zone.

tipc initialize [semidet]

See tipc:tipc initialize/0

2.3 tipc paxos.pl: A Replicated Data Store
author Jeffrey Rosenwald (JeffRose@acm.org)
See also tipc_broadcast.pl

Compatibility Linux only, tipc broadcast
license LGPL

This module provides a replicated data store that is coordinated using a variation on Lamport’s
Paxos concensus protocol. The original method is described in his paper entitled, ”The Part-time
Parliament”, which was published in 1998. The algorithm is tolerant of non-Byzantine failure. That is
late or lost delivery or reply, but not senseless delivery or reply. The present algorithm takes advantage
of the convenience offered by multicast to the quorum’s membership, who can remain anonymous and
who can come and go as they please without effecting Liveness or Safety properties.

Paxos’ quorum is a set of one or more attentive members, whose processes respond to queries
within some known time limit (< 20ms), which includes roundtrip delivery delay. This property is
easy to satisfy given that every coordinator is necessarily a member of the quorum as well, and a
quorum of one is permitted. An inattentive member (e.g. one whose actions are late or lost) is deemed
to be ”not-present” for the purposes of the present transaction and consistency cannot be assured for
that member. As long as there is at least one attentive member of the quorum, then persistence of the
database is assured.

Each member maintains a ledger of terms along with information about when they were originally
recorded. The member’s ledger is deterministic. That is to say that there can only be one entry per
functor/arity combination. No member will accept a new term proposal that has a line number that is
equal-to or lower-than the one that is already recorded in the ledger.

Paxos is a three-phase protocol:

1: A coordinator first prepares the quorum for a new proposal by broadcasting a proposed
term. The quorum responds by returning the last known line number for that functor/arity
combination that is recorded in their respective ledgers.

2: The coordinator selects the highest line number it receives, increments it by one, and
then asks the quorum to finally accept the new term with the new line number. The
quorum checks their respective ledgers once again and if there is still no other ledger entry
for that functor/arity combination that is equal-to or higher than the specified line, then
each member records the term in the ledger at the specified line. The member indicates
consent by returning the specified line number back to the coordinator. If consent is
withheld by a member, then the member returns a nack instead. The coordinator requires
unanimous consent. If it isn’t achieved then the proposal fails and the coordinator must
start over from the beginning.

14

3: Finally, the coordinator concludes the successful negotiation by broadcasting the
agreement to the quorum in the form of a paxos_changed(Term) event. This is
the only event that should be of interest to user programs.

For practical reasons, we rely on the partially synchronous behavior (e.g. limited upper time
bound for replies) of broadcast request/1 over TIPC to ensure Progress. Perhaps more impor-
tantly, we rely on the fact that the TIPC broadcast listener state machine guarantees the atomicity of
broadcast request/1 at the process level, thus obviating the need for external mutual exclusion
mechanisms.

Note that this algorithm does not guarantee the rightness of the value proposed. It only guarantees
that if successful, the value proposed is identical for all attentive members of the quorum.

Note also that tipc paxos now requires an initialization step. See tipc initialize/0.

tipc paxos set(?Term) [semidet]

tipc paxos set(?Term, +Retries) [semidet]

negotiates to have Term recorded in the ledger for each of the quorum’s members. This
predicate succeeds if the quorum unanimously accepts the proposed term. If no such entry
exists in the Paxon’s ledger, then one is silently created. tipc paxos set/1 will retry the
transaction several times (default: 20) before failing. Failure is rare and is usually the result
of a collision of two or more writers writing to the same term at precisely the same time. On
failure, it may be useful to wait some random period of time, and then retry the transaction.
By specifying a retry count of zero, tipc paxos set/2 will succeed iff the first ballot
succeeds.

On success, tipc paxos set/1 will also broadcast the term paxos_changed(Term),
to the quorum.

Parameters
Term is a compound that may have unbound variables.
Retries (optional) is a non-negative integer specifying the number of retries

that will be performed before a set is abandoned.

tipc paxos get(?Term) [semidet]

unifies Term with the entry retrieved from the Paxon’s ledger. If no such entry exists in the
member’s local cache, then the quorum is asked to provide a value, which is verified for
consistency. An implied tipc paxos set/1 follows. This predicate succeeds if a term with
the same functor and arity exists in the Paxon’s ledger, and fails otherwise.

Parameters
Term is a compound. Any unbound variables are unified with those pro-

vided in the ledger entry.

tipc paxos replicate(?Term) [det]

declares that Term is to be automatically replicated to the quorum each time it becomes
grounded. It uses the behavior afforded by when/2.

Parameters

Term is an ungrounded Term

15

tipc paxos on change(?Term, :Goal) [det]

executes the specified Goal when Term changes. tipc paxos on change/2 listens for
paxos changed/1 notifications for Term, which are emitted as the result of successful
tipc paxos set/1 transactions. When one is received for Term, then Goal is executed in a
separate thread of execution.

Parameters
Term is a compound, identical to that used for tipc paxos get/1.
Goal is one of:

• a callable atom or term, or

• the atom ignore, which causes monitoring for Term to be
discontinued.

tipc initialize [semidet]

See tipc:tipc initialize/0.

2.4 tipc linda.pl: A Process Communication Interface
author Jeffrey A. Rosenwald
See also Nicholas Carriero and David Gelernter. How to Write Parallel Programs: A First Course. The

MIT Press, Cambridge, MA, 1990.
Compatibility

- SWI-Prolog for Linux only
- tipc broadcast library

Linda is a framework for building systems that are composed of programs that cooperate among
themselves in order to realize a larger goal. A Linda application is composed of two or more processes
acting in concert. One process acts as a server and the others act as clients. Fine-grained communi-
cations between client and server is provided by way of message passing over sockets and support
networks, TIPC sockets in this case. Clients interact indirectly by way of the server. The server is
in principle an eraseable blackboard that clients can use to write (out/1), read (rd/1) and remove
(in/1) messages called tuples. Some predicates will fail if a requested tuple is not present on the
blackboard. Others will block until a tuple instance becomes available. Tuple instances are made
available to clients by writing them on the blackboard using out/1.

In TIPC Linda, there is a subtle difference between the in and the rd predicates that is worth
noting. The in predicates succeed exactly once for each tuple placed in the tuple space. The tuple
is provided to exactly one requesting client. Clients can contend for tuples in this way, thus enabling
multi-server operations. The rd predicates succeed nondeterministically, providing all matching tu-
ples in the tuple space at a given time to the requesting client as a choice point without disturbing
them.

TIPC Linda is inspired by and adapted from the SICStus Prolog API. But unlike SICStus TCP
Linda, TIPC Linda is connectionless. There is no specific session between client and server. The
server receives and responds to datagrams originated by clients in an epiperiodic manner.

Example: A simple producer-consumer.
In client 1:

init_producer :-
linda_client(global),

16

producer.

producer :-
produce(X),
out(p(X)),
producer.

produce(X) :-

In client 2:

init_consumer :-
linda_client(global),
consumer.

consumer :-
in(p(A)),
consume(A),
consumer.

consume(A) :-

Example: Synchronization

...,
in(ready), %Waits here until someone does out(ready)
...,

Example: A critical region

...,
in(region_free), % wait for region to be free
critical_part,
out(region_free), % let next one in
...,

Example: Reading global data

...,
rd(data(Data)),
...,

or, without blocking:

17

...,
(rd_noblock(data(Data)) ->

do_something(Data)
; write(’Data not available!’),nl
),
...,

Example: Waiting for any one of several events

...,
in([e(1),e(2),...,e(n)], E),

% Here is E instantiated to the first tuple that became available
...,

Example: Producers and Consumers in the same process using linda_eval threads and/or
tuple predicates

consumer1 :-
repeat,
in([p(_), quit], Y),
(Y = p(Z) -> writeln(consuming(Z)); !),
fail.

producer1 :-
forall(between(1,40, X), out(p(X))).

producer_consumer1 :-
linda_eval(consumer1),
call_cleanup(producer1, out(quit)), !.

%
%
consumer2 :-

between(1,4,_),
in_noblock(p(X)), !,
writeln(consuming(X)),
consumer2.

producer2 :-
linda_eval(p(X), between(1,40, X)).

producer_consumer2 :-
producer2,
linda_eval(consumer2), !.

%
%

18

consumer3 :-
forall(rd_noblock(p(X)), writeln(consuming(X))).

producer3 :-
tuple(p(X), between(1,40, X)).

producer_consumer3 :-
producer3,
linda_eval(done, consumer3),
in(done), !.

2.4.1 Servers

The server is the process running the ”blackboard process”. It is part of TIPC Linda.
It is a collection of predicates that are registered as tipc broadcast listeners. The server
process can be run on a separate machine if necessary.

To load the package, enter the query:

?- use_module(library(tipc/tipc_linda)).

?- linda.
TIPC Linda server now listening at: port_id(’<1.1.1:3200515722>’)
true.

2.4.2 Clients

The clients are one or more Prolog processes that have connection(s) to the server.

To load the package, enter the query:

?- use_module(library(tipc/tipc_linda)).

?- linda_client(global).
TIPC Linda server listening at: port_id(’<1.1.1:3200515722>’)
true.

linda [det]

linda(:Goal) [det]

Starts a Linda-server in this process. The network address is written to current output stream as
a TIPC port id/2 reference (e.g. port id(’<1.1.1:3200515722>’)). This predicates looks
to see if a server is already listening on the cluster. If so, it reports the address of the existing
server. Otherwise, it registers a new server and reports its address.

19

?- linda.
TIPC Linda server now listening at: port_id(’<1.1.1:3200515722>’)
true.

?- linda.
TIPC Linda server still listening at: port_id(’<1.1.1:3200515722>’)
true.

The following will call my init/0 in the current module after the server is successfully started
or is found already listening. my init/0 could start client-processes, initialize the tuple space,
etc.

?- linda(my_init).

linda client(+Domain) [semidet]

Establishes a connection to a Linda-server providing a named tuple space. Domain is an atom
specifying a particular tuple-space, selected from a universe of tuple-spaces. At present
however, only one tuple-space, global, is supported. A client may interact with any server
reachable on the TIPC cluster. This predicate will fail if no server is reachable for that tuple
space.

close client [det]

Closes the connection to the Linda-server. Causes the server to release resources associated
with this client.

linda timeout(?OldTime, ?NewTime) [semidet]

Controls Linda’s message-passing timeout. It specifies the time window where clients will
accept server replies in response to in and rd requests. Replies arriving outside of this
window are silently ignored. OldTime is unified with the old timeout and then timeout is set
to NewTime. NewTime is of the form Seconds:Milliseconds. A non-negative real number,
seconds, is also recognized. The default is 0.250 seconds. This timeout is thread local and is
not inherited from its parent. New threads are initialized to the default.

Note: The synchronous behavior afforded by in/1 and rd/1 is implemented by periodically
polling the server. The poll rate is set according to this timeout. Setting the timeout too small
may result in substantial network traffic that is of little value.

throws error(feature not supported). SICStus Linda can disable the timeout by specifying off as
NewTime. This feature does not exist for safety reasons.

linda timeout(+NewTime) [semidet]

Temporarily sets Linda’s timeout. Internally, the original timeout is saved and then the timeout
is set to NewTime. NewTime is as described in linda timeout/2. The original timeout is
restored automatically on cut of choice points, failure on backtracking, or uncaught exception.

out(+Tuple) [det]

Places a Tuple in Linda’s tuple-space.

20

in(?Tuple) [det]

Atomically removes the tuple Tuple from Linda’s tuple-space if it is there. The tuple will
be returned to exactly one requestor. If no tuple is available, the predicate blocks until it is
available (that is, someone performs an out/1).

in noblock(?Tuple) [semidet]

Atomically removes the tuple Tuple from Linda’s tuple-space if it is there. If not, the predicate
fails. This predicate can fail due to a timeout.

in(+TupleList, -Tuple) [det]

As in/1 but succeeds when any one of the tuples in TupleList is available. Tuple is unified
with the fetched tuple.

rd(?Tuple) [nondet]

Succeeds nondeterministically if Tuple is available in the tuple-space, suspends otherwise until
it is available. Compare this with in/1: the tuple is not removed.

rd noblock(?Tuple) [nondet]

Succeeds nondeterministically if Tuple is available in the tuple-space, fails otherwise. This
predicate can fail due to a timeout.

rd(?TupleList, -Tuple) [nondet]

As in/2 but provides a choice point that does not remove any tuples.

bagof in noblock(?Template, ?Tuple, -Bag) [nondet]

bagof rd noblock(?Template, ?Tuple, -Bag) [nondet]

Bag is the list of all instances of Template such that Tuple exists in the tuple-space. The
behavior of variables in Tuple and Template is as in bagof/3. The variables could be
existentially quantified with ˆ/2 as in bagof/3. The operation is performed as an atomic
operation. This predicate can fail due to a timeout. Example: Assume that only one client is
connected to the server and that the tuple-space initially is empty.

?- out(x(a,3)), out(x(a,4)), out(x(b,3)), out(x(c,3)).

true.
?- bagof_rd_noblock(C-N, x(C,N), L).

L = [a-3,a-4,b-3,c-3] .

true.
?- bagof_rd_noblock(C, Nˆx(C,N), L).

L = [a,a,b,c] .

true.

linda eval(:Goal) [det]

linda eval(?Head, :Goal) [det]

21

linda eval detached(:Goal) [det]

linda eval detached(?Head, :Goal) [det]

Causes Goal to be evaluated in parallel with a parent predicate. The child thread is a full-
fledged client, possessing the same capabilities as the parent. Upon successful completion of
Goal, unbound variables are unified and the result is sent to the Linda server via out/1, where
it is made available to others. linda eval/2 evaluates Goal, then unifies the result with
Head, providing a means of customizing the resulting output structure. In linda eval/1,
Head, and Goal are identical, except that the module name for Head is stripped before output.
If the child fails or receives an uncaught exception, no such output occurs.

Joining Threads: Threads created using linda eval/(1-2) are not allowed to linger. They are
joined (blocking the parent, if necessary) under three conditions: backtracking on failure into an
linda eval/(1-2), receipt of an uncaught exception, and cut of choice-points. Goals are evaluated
using forall/2. They are expected to provide nondeterministic behavior. That is they may
succeed zero or more times on backtracking. They must however, eventually fail or succeed
deterministically. Otherwise, the thread will hang, which will eventually hang the parent thread.
Cutting choice points in the parent’s body has the effect of joining all children created by the
parent. This provides a barrier that guarantees that all child instances of Goal have run to
completion before the parent proceeds. Detached threads behave as above, except that they
operate independently and cannot be joined. They will continue to run while the host process
continues to run.

Here is an example of a parallel quicksort:

qksort([], []).

qksort([X | List], Sorted) :-
partition(@>(X), List, Less, More),
linda_eval(qksort(More, SortedMore)),
qksort(Less, SortedLess), !,
in_noblock(qksort(More, SortedMore)),
append(SortedLess, [X | SortedMore], Sorted).

tuple(:Goal) [det]

tuple(?Head, :Goal) [det]

registers Head as a virtual tuple in TIPC Linda’s tuple space. On success, any client on the
cluster may reference the tuple, Head, using rd/1 or rd noblock/1. On reference, Goal
is executed by a separate thread of execution in the host client’s Prolog process. The result
is unified with Head, which is then returned to the guest client. As in linda eval/(1-2) above,
Goal is evaluated using forall/2. The virtual tuple is unregistered on backtracking into a
tuple/(1-2), receipt of uncaught exception, or cut of choice-points. In tuple/1, Head and
Goal are identical, except that the module name is stripped from Head.

Note: A virtual tuple is an extension of the server. Even though it is operating in the client’s
Prolog environment, it is restricted in the server operations that it may perform. It is generally
safe for tuple predicates to perform out/1 operations, but it is unsafe for them to perform
any variant of in or rd, either directly or indirectly. This restriction is however, relaxed if the
server and client are operating in separate heavyweight processes (not threads) on the node or

22

cluster. This is most easily achieved by starting a stand-alone Linda server somewhere on the
cluster. See tipc linda server/0, below.

tipc linda server [nondet]

Acts as a stand-alone Linda server. This predicate initializes the TIPC stack and then starts a
Linda server in the current thread. If a client performs an out(server_quit), the server’s
Prolog process will exit via halt/1. It is intended for use in scripting as follows:

swipl -q -g ’use_module(library(tipc/tipc_linda)),
tipc_linda_server’ -t ’halt(1)’

See also manual section 2.10.2.1 Using PrologScript.

Note: Prolog will return a non-zero exit status if this predicate is executed on a cluster that
already has an active server. An exit status of zero is returned on graceful shutdown.

throws error(permission error(halt,thread,2),context(halt/1,Only from thread ’main’)), if this
predicate is executed in a thread other than main.

tipc initialize [semidet]

See tipc:tipc initialize/0.

23

Index
bagof in noblock/3, 21
bagof rd noblock/3, 21

close client/0, 20

in/1, 21
in/2, 21
in noblock/1, 21

linda/0, 19
linda/1, 19
linda client/1, 20
linda eval/1, 21
linda eval/2, 22
linda eval detached/1, 22
linda eval detached/2, 22
linda timeout/1, 20
linda timeout/2, 20

out/1, 20

rd/1, 21
rd/2, 21
rd noblock/1, 21

tipc/... library, 5
tipc accept/3, 7
tipc bind/3, 6
tipc canonical address/2, 9
tipc close socket/1, 6
tipc connect/2, 7
tipc get name/2, 7
tipc get peer name/2, 7
tipc host to address/2, 13
tipc initialize/0, 10, 14, 16, 23
tipc linda server/0, 23
tipc listen/2, 7
tipc open socket/3, 6
tipc paxos get/1, 15
tipc paxos on change/2, 16
tipc paxos replicate/1, 15
tipc paxos set/1, 15
tipc paxos set/2, 15
tipc receive/4, 8
tipc send/4, 8
tipc service exists/1, 9

tipc service exists/2, 9
tipc service port monitor/2, 9
tipc service port monitor/3, 9
tipc service probe/1, 9
tipc service probe/2, 9
tipc setopt/2, 7
tipc socket/2, 5
tuple/1, 22
tuple/2, 22

24

	Transparent Inter-Process Communications (TIPC)
	Overview
	TIPC Address Structures

	 The TIPC libraries: tipc/...
	tipc.pl: TIPC Sockets
	tipc_broadcast.pl: A TIPC Broadcast Bridge
	Caveats:

	tipc_paxos.pl: A Replicated Data Store
	tipc_linda.pl: A Process Communication Interface
	Servers
	Clients

