
An Overview of the SWI-Prolog Programming
Environment

Jan Wielemaker

Social Science Informatics (SWI),
University of Amsterdam,

Roetersstraat 15, 1018 WB Amsterdam, The Netherlands,
jan@swi.psy.uva.nl

Abstract. The Prolog programmer’s needs have always been the focus
for guiding the development of the SWI-Prolog system. This article ac-
companies an invited talk about how the SWI-Prolog environment helps
the Prolog programmer solve common problems. It describes the central
parts of the graphical development environment as well as the command
line tools which we see as vital to the success of the system. We hope
this comprehensive overview of particularly useful features will both in-
spire other Prolog developers, and help SWI-Prolog users to make more
productive use of the system.

1 Introduction

SWI-Prolog has become a popular Free Software implementation of the Prolog
language. Distributed freely through the internet, it is difficult to get a clear
picture about its users, how these users use the system and which aspects of
the system have contributed most to its popularity. Part of the users claim the
programmer’s environment described in this article is an important factor.

The majority of the SWI-Prolog users are students using it for their assign-
ments. The community of developers, however, expend effort on large portable
Prolog applications where scalability, (user-) interfaces, networking are often im-
portant characteristics. Compared to the students, who are mostly short-term
novice users, we find many expert software developers in the research and devel-
opment community.

The material described in this paper is the result of about 18 years experience
as a Prolog programmer and developer of the SWI-Prolog system. Many of the
described tools are features not unique to SWI-Prolog and can be found in other
Prolog implementations or other programming language environments. Experi-
ments are yet to be performed to evaluate the usefulness of features and therefore
the opinions presented are strictly based on our own experiences, observations
of users, and E-mail reactions.

After describing the SWI-Prolog user community in Sect. 2 we describe some
problems Prolog programmers frequently encounter in Sect. 3. In Sect. 4 we
describe the command line tools, and in Sect. 5 the graphical tools written in
SWI-Prolog’s XPCE GUI toolkit [10].

2 Wielemaker

2 User profiles

Students having to complete assignments for a Prolog course have very differ-
ent needs from professionals developing large systems. They want easy access
to common tasks as closely as possible to the conventions they are used to.
Scalability of supporting tools is not an important issue as the programs do
not require many resources. Visualization of terms and program state can con-
centrate their contribution to explanation and disregard, for example, the issue
that most graphical representations scale poorly. The SWI-Prolog-Editor1 shell
for MS-Windows by Gerhard Röhner makes SWI-Prolog much more natural to
a student who is first of all familar with MS-Windows.

SWI-Prolog comes from the Unix and Emacs tradition and targets the profes-
sional programmer who uses it frequently to develop large Prolog-based applica-
tions. As many users in this category have their existing habits, and a preferred
set of tools to support these, SWI-Prolog avoids presenting a single comprehen-
sive IDE (Integrated Development Environment), but instead provides individual
components that can be combined and customised at will.

3 Problems

Many problems that apply to programming in Prolog also relate the program-
ming in other languages. Some, however, are Prolog specific. Prolog environments
can normally be used interactively and changed dynamically.

3.1 Problem areas

– Managing sources
Besides the normal problems such as locating functions and files, Prolog
requires a tool that manages consistency between the sources and running
executable during the interactive test-edit cycle. Section 4.1 and Sect. 5.1
describe the SWI-Prolog support to manage sources.

– Entering and reusing queries
Interaction through the Prolog top level is vital for managing the program
and testing individual predicates. Command line editing, command comple-
tion, do what I mean (DWIM) correction, history, and storing the values of
top level variables reduces typing and speed up the development cycle.

– Program completeness and consistency
SWI-Prolog has no tradition in rigid static analysis. It does provide a quick
completeness test as described in Sect. 4.6 which runs automatically during
the test-edit cycle. A cross-referencer is integrated into the built-in editor
(Sect. 5.1) and provides immediate feedback to the programmer about com-
mon mistakes while editing a program.

1 http://www.bildung.hessen.de/abereich/inform/skii/material/swing/indexe.htm

The SWI-Prolog environment 3

– Error context
If an error occurs, it is extremely important to provide as much context as
possible. The SWI-Prolog exception handling differs slightly from the ISO
standard to improve such support. See Sect. 4.10.

– Failure/wrong answer
A very common and time consuming problem are programs producing the
wrong (unexpected) answer without producing an error. Although research
has been carried out to attribute failure and wrong answers to specific pro-
cedures [3, 9], none of this is realised in SWI-Prolog.

– Determinism
Although experience and discipline help, controlling determinism in Prolog
programs to get all intended solutions quickly is a very common problem.
The source-level debugger (Sect. 5.3) displays choicepoints and provides im-
mediate graphical feedback on the effects of the cut, greatly simplifying this
task and improving understanding for novices.

– Performance bottlenecks
Being a high level language, the relation between Prolog code and required
resources to execute it is not trivial. Profiling tools cannot fix poor overall
design, but do provide invaluable insight to programmer. See Sect. 5.4.

– Porting programs from other systems
Porting Prolog programs has been simplified since more Prolog systems have
adopted part I of the ISO standard. Different extensions and libraries cause
many of the remaining problems. Compiler warnings and static analysis form
the most important tools to locate the problem areas quickly. A good de-
bugger providing context on errors together with support for the test-edit
cycle improve productivity.

4 Command line Tools

4.1 Supporting the edit cycle

Prolog systems offer the possibility to interactively edit and reload a program
even while the program is running. There are two simple but very frequent tasks
involved in the edit-reload cycle: finding the proper source, and reloading the
modified source files. SWI-Prolog supports these tasks with two predicates:

make
SWI-Prolog maintains a database of all loaded files with the file last-modified
time stamp when it was loaded and —for the sake of modules— the context
module(s) from which the file was loaded. The make/0 predicate checks
whether the modification time of any of the loaded files has changed and
reload these file into the proper module context. This predicate has proven
to be very useful.

edit(+Specifier)
Find all entities with the given specifier. If there are multiple entities re-
lated to different source-files ask the user for the desired one and call the

4 Wielemaker

user-defined editor on the given location. All entities implies (loaded) files,
predicates and modules. Both locating named entities and what is required
to call the editor on a specific file and line can be hooked to accomodate ex-
tensions (e.g. XPCE classes) and different editors. Furthermore, SWI-Prolog
maintains file and line-number information for modules and clauses. Below
is an example:

?- edit(rdf_tree).
Please select item to edit:

1 class(rdf_tree) ’rdf_tree.pl’:27
2 module(rdf_tree) ’rules.pl’:460

Your choice? 2

SWI-Prolog’s completion and DWIM described in Sect. 4.4 and Sect. 4.3
improve the usefulness of these primitives.

4.2 Autoloading and auto import

Programmers tend to be better at remembering the names of library predicates
than the exact library they belong to. Similar, programmers of large modular
applications often have a set of personal favourites and application specific good-
ies. SWI-Prolog supports this style of programming with two mechanisms, both
of which require a module system. The SWI-Prolog module system is very close
to the Quintus and SICStus Prolog module systems [2].

Auto import tries to import undefined predicates from the module’s import
module. The module system contains all built-in predicates, user all global pred-
icates and all other modules import from user as illustrated in Fig. 1. This setup
allows programmers to define or import commonly used predicates into user and
have them available without further actions from the interactive top level and
all modules.

Library auto loading avoids the need for explicit use module/[1,2] decla-
rations. Whenever the system encounters an unknown predicate it examines the
library index. If the predicate appears in the index the library is loaded using
use module/2, only importing the missing predicate.

The combination of auto import, auto loading and a structuring module
system has proven to support both sloppy programming for rapid prototyp-
ing and the use of more maintainable explicit module relations. The predicate
list autoload/0 as described in Sect. 4.6 supports a smooth transition.

4.3 DWIM: Do What I Mean

DWIM (Do What I Mean) is implemented at the top level to quickly fix mistakes
and allow for underspecified queries. It corrects the following errors:

The SWI-Prolog environment 5

System

User

System
Module 1

System
Module 2

System
Module-N

User
Module 1

User
Module 2

User
Module-N

Fig. 1. Modules and their auto-import relations

– Simple spelling errors
DWIM checks for missing, extra and transposed characters that result from
typing errors.

– Word breaks and order
DWIM checks for multi-word identifiers using different conventions (e.g. file-
Exists vs. file exists) as well as different order (e.g. exists file vs. file exists)

– Arity mismatch
Of course such errors cannot be corrected.

– Wrong module
DWIM adds a module specification to predicate references that lack one or
replaces a wrong module specification.

DWIM is used in three areas. Queries typed at the top level are checked
and if there is a unique correction the system prompts whether to execute the
corrected rather than the typed query. Especially adding the module specifier
improves interaction from the top level when using modules. If there is no unique
correction the system reports the missing predicates and all close candidates.
Queries of the development system such as edit/1 and spy/1 provide alternative
matches one-by-one. Spy/1 and trace/1 act on the specified predicate in any
module if the module is omitted. Finally, if a predicate existence error reaches
the top level the DWIM system is activated to report likely candidates.

4.4 Command line editing

Developers spend a lot of time entering commands for the development sys-
tem and (test-)queries for (parts of) their application under development. SWI-
Prolog provides the following features to support this:

– Using (GNU-)readline
Emacs-style editing is supported in the Unix version based on the GNU
readline library and in Windows using our own code. This facilitates quick
and natural command reuse and editing. In addition, completion is extended

6 Wielemaker

with completion on alphanumerical atoms which allow for fast typing of long
predicate identifiers and atom arguments as well as inspect the possible alter-
native (using Alt-?). The completion algorithm uses the builtin completion
of files if no atom matches, which ensures that quoted atoms representing a
file path is completed as expected.

– Command line history
SWI-Prolog provides a history facility that resembles the Unix csh and bash
shells. Especially viewing the list of executed commands is a valuable feature.

– Top level bindings
When working at the Prolog top level, bindings returned by previous queries
are normally lost while they are often required for further analysis of the
current Prolog state or to test further queries. For this reason SWI-Prolog
stores the resulting bindings from top level queries, provided they are not
too large (default ≤ 1000 tokens) in the database under the name of the
used variable. Top level query expansion replaces terms of the form $Var
($ is a prefix operator) into the last recorded binding for this variable. New
bindings do to backtracking or new queries overwrite the old value.
This feature is particularly useful to query the state of data stored in related
dynamic predicates and deal with handles provided by external stores. Here
is a typical example using XPCE that avoids typing or copy/paste of the
object reference.

?- new(X, picture).

X = @12946012
?- send($X, open).

4.5 Compiler

An important aspect of the SWI-Prolog compiler is its performance. Loading
the 21 Mb sources of WordNet [7] requires 6.6 seconds from the source and
1.4 seconds from precompiled virtual machine code (Multi-threaded SWI-Prolog
5.2.9, SuSE Linux on dual AMD 1600+ using one thread). Fast compilation is
very important during the interactive development of large applications.

SWI-Prolog supports the commonly found set of compiler warnings: syn-
tax errors, singleton variables, predicate redefinition, system predicate redefi-
nition and discontiguous predicates. Messages are processed by the hookable
print message/2 predicate and where possible associated with a file and line
number. The graphics system contains a tool that exploits the message hooks to
create a window with error messages and warnings that can be selected to open
the associated source location.

4.6 Quick consistency check

The library check provides quick tests on the completeness of the loaded pro-
gram. The predicate list undefined/0 searches the internal database for pred-
icate structures that are undefined (i.e. have no clauses and are not defined as

The SWI-Prolog environment 7

dynamic or multifile). Such structures are created by the compiler for a call to
a predicate that is not yet defined. In addition the system provides a primitive
that returns the predicates referenced from a clause by examining the compiled
code. Figure 2 provides partial output running list undefined/0 on the chat
80 [8] program:

1 ?- [library(chat)].

% ...

% library(’chat/chat’) compiled into chat 0.18 sec, 493,688 bytes

% library(chat) compiled into chat 0.18 sec, 494,756 bytes

Yes

2 ?- list_undefined.

% Scanning references for 9 possibly undefined predicates

Warning: The predicates below are not defined. If these are defined

Warning: at runtime using assert/1, use :- dynamic Name/Arity.

Warning:

Warning: chat:ditrans/12, which is referenced by

Warning: 5-th clause of chat:verb_kind/6

Fig. 2. Using list undefined/0 on chat 80 wrapped into the module chat. To save
space only the first of the 9 reported warnings is included. The processing requires
0.25 sec. on a 733 Mhz PIII.

The list autoload/0 predicate lists undefined predicates that can be au-
toloaded from one of the libraries. It is illustrated in Fig. 3.

3 ?- list_autoload.

% Into module chat (library(’chat.pl’))

% display/1 from library(edinburgh)

% last/2 from library(lists)

% time/1 from library(statistics)

% Into module user

% prolog_ide/1 from library(swi_ide)

Fig. 3. Using list autoload/0 on chat 80

4.7 Help and explain facility

The help facility uses outdated but still effective technology. The LATEX main-
tained source is translated to plain text. A generated Prolog index file provides
character ranges for predicate descriptions and sections in the manual. Each

8 Wielemaker

predicate has, besides the full documentation, a ± 40 character summary de-
scription used for apropos search as well as to provide a summary string in the
editor as illustrated in Fig. 4.

The explain facility examines the database to gather all information known
about an identifier (atom). Information displayed includes predicates with that
name and references to the atoms, compound terms and predicates with the
given name. Here is an example:

explain(setof).
"setof" is an atom

Referenced from 1-th clause of chat:decomp/3
system:setof/3 is a built-in meta predicate imported from module

$bags defined in
/staff/jan/lib/pl-5.2.9/boot/bags.pl:59
Summary: ‘‘Find all unique solutions to a goal’’
Referenced from 6-th clause of chat:satisfy/1
Referenced from 7-th clause of chat:satisfy/1
Referenced from 1-th clause of chat:seto/3

The graphical front end is described in Sect. 5.5.

4.8 File commands

Almost too trivial to name, but the predicates ls/0, cd/1 and pwd/0 are used
very frequently.

4.9 Debugging from the terminal

SWI-Prolog comes with two tracers, a traditional 4-port debugger [1] to be used
from the terminal and a graphical source level debugger which is described in
Sect. 5.3. Less frequently seen features of the trace are:

– Single keystroke operation
If the terminal supports it, commands are entered without waiting for re-
turn.

– List choicepoints
The tracer can provide a list of active choicepoints, similar to the goal stack,
to facilitate choicepoint tuning and debugging.

– The ‘up’ command
The ‘up’ command is like the traditional ‘skip’ command, but skips to the
exit or failure of the parent goal rather than the current goal. It is very useful
to stop tracing the details of failure driven control structures.

– Search
The system can search for a specific port and goal that unifies with an entered
term. The command /f foo(_, bar) will go into interactive debugging if
foo/2 where the second argument unifies with bar reaches the fail (f) port.

The SWI-Prolog environment 9

In addition to interactive debugging two types of non-interactive debugging
are provided. Using trace(Predicate, Ports), the system prints all passes to the
indicated ports of Predicate.

The library debug is a lightweight infrastructure to handle printing debugging
messages (logging) and assertions. The library exploits goal-expansion to avoid
runtime overhead when compiled with optimisation turned on. Debug messages
are associated to a Topic, an arbitrary Prolog term used to group debug mes-
sages. Normally the Topic is an atom denoting some function or module of the
application. Using Prolog unification of the active topics and the topic registered
with the message provides opportunity for creativity.

debug(+Topic, +Format, +Arguments)
Prints a message through the system’s print message/2 message dispatch-
ing mechanism if debugging is enabled on Topic.

debug/nodebug(+Topic)
Enable/disable messages for which Topic unifies. Note that topics are arbi-
trary Prolog terms, so debug() enables all debugging messages.

list debug topics
List all registered topics and their current enable/disable setting. All known
topics are collected during compilation using goal-expansion.

assume(:Goal)
Assume that Goal can be proven. Trap the debugger if Goal fails. This fa-
cility is derived from the C-language assert() macro defined in <assert.h>,
renamed for obvious reasons. More formal assertion languages are described
in [6, 5].

4.10 Exception context

On exception handling, the ISO standard dictates ‘undo’ back to the state at
entry of a catch/3 before unifying the ball with the catcher. SWI-Prolog however
uses a different technique. It walks the stack searching for a matching catcher
without undoing changes. If it finds a matching catch/3 call or when reaching
a call from foreign code that indicates it is prepared to handle exceptions it
performs the required ‘undo’ and executes the handler. The advantage is that if
there is no handler for the exception the entire program state is still intact. The
debugger is started immediately and can be used to examine the full context of
the exception.2

5 Graphical Tools

5.1 Editor

PceEmacs is an Emacs clone written in XPCE/Prolog. It has two features that
make it of special interest. It can be programmed in Prolog and therefore has
2 These issues have been discussed on the comp.lang.prolog newsgroup, April 15-18

2002, subject “ISO catch/throw question”.

10 Wielemaker

transparent access to the environment of the application being developed, and
the editor’s buffer can be opened as a Prolog I/O stream. Based on these fea-
tures, the level of support for Prolog development is far beyond what can be
achieved in a stand-alone editor. Whenever the user pauses for two seconds the
system performs a full cross-reference of the editing buffer, categorising and
colouring predicates, goals and general Prolog terms. Predicates are categorised
as exported, called and not called. Goals are categorised as builtin, imported, auto-
imported, locally defined, dynamic, (direct-)recursive and undefined. Goals have
a menu that allows jumps to the source, documentation (builtin), and listing of
clauses (dynamic). Singleton variables are highlighted. If the cursor appears in-
side a variable all other occurrences of this variable in the clause are underlined.
Figure 4 shows a typical screenshot.

Fig. 4. PceEmacs in action

5.2 Prolog Navigator

The Prolog Navigator provides a hierarchical overview of a project directory and
its Prolog files. Prolog files are categorised as one of loaded or not loaded and
are expanded to the predicates defined in them. The defined predicates are cate-
gorised as one of exported, normal, fact and unreferenced. Expanding predicates
expands the call tree. The Navigator menus provide loading and editing files and
predicates as well as the setting of trace- and spy-points. See Fig. 5.

The SWI-Prolog environment 11

Fig. 5. The Prolog Navigator

5.3 Source-level Debugger

The SWI-Prolog debugger calls a hook (prolog trace interception/4) be-
fore reverting to the built-in command line debugger. The built in pro-
log frame attribute/3 provides the infrastructure to analyse the Prolog
stacks, providing information on the goal-stack, variable bindings and choice-
points. These hooks are used to realise more advanced debuggers such as the
source-level debugger described in this section. The source-level debugger pro-
vides three views (Fig. 6):

– The source
An embedded PceEmacs (see Sect. 5.1) running in read-only mode shows
the current location, indicating the current port using colour and icons.
PceEmacs also allows the setting of breakpoints at a specific call in spe-
cific clause. Breakpoints provide finer and more intuitive control where to
start the debugger than traditional spy-points. Breakpoints are realised by
replacing a virtual machine instruction with a break instruction which traps
the debugger, finds the instruction it replaces in a table and executes this
instruction.

– Variables
The debugger displays a list of variables appearing in the current frame with
their name and current binding in the top-left window. The representation of
values can be changed using the familiar portray/1 hook. Double-clicking
a variable-value opens a separate window showing the variable binding. This
window uses indentation to make the structure of the term more explicit and
has a menu to control the layout.

– The stack
The top-right window shows the stack as well as the recent active choi-

12 Wielemaker

cepoints. Any node can be selected to examine the context of that node.
The stack view allows one to quickly examine choicepoints left after a goal
succeeded. Besides showing the location of the choicepoint itself, the ‘up’
command can be used to examine the parent frame context of a choicepoint.

Fig. 6. The Source-level Debugger

5.4 Execution Profiler

The Execution Profiler builds a call-tree at runtime and ticks the number of
calls and redos to each node in this call-tree. The time spent in each node is
established using stochastic sampling.3 Recording the call-tree is complicated
by three factors.

– Last call optimisation
Due to last call optimisation exit ports are missing from the execution model.
This problem is solved by storing the call-tree node associated with a goal in
the environment stack, providing the exit with a reference to the node exited.
Recording an exit can now exit all nodes until it reaches the referenced node.

– Redo
Having a reference from each environment frame to the call-tree node also
greatly simplifies finding the proper location in the call-tree on a redo.

– Recursion
To avoid the uncontrolled expanding of the call-tree the system must record
recursive calls. The problem lies in the definition of recursion. The most näıve

3 Using SIGPROF on Unix and using a separate thread and a multi-media timer in
MS-Windows.

The SWI-Prolog environment 13

definition is that recursion happens if there is a parent node running the
same predicate. In this view meta predicates will often appear as unwanted
‘recursive predicates’ as will predicates called in a totally different context.
The system provides noprofile/1 to indicate some predicates do not create
a new node and their time is included with their parent node. Examples are
call/1, catch/3 and call cleanup/2. Calls are now regarded recursive if
the parent node runs the same predicate (direct recursion) or somewhere
in the parent nodes of the call-tree we can find a node running the same
predicate with the same immediate parent.

Prolog primitives are provided to extract all information from the recorded
call-tree. A graphical Prolog profiling tool presents the information interactively
similar to the GNU gprof [4] tool (see Fig. 7).

Fig. 7. The Profiler

5.5 Help System

The GUI front end to the help functionality described in Sect. 4.7 adds hyperlinks
and hierarchical context to the command line version as illustrated in Fig. 8.

Fig. 8. Graphical front end to the help system

14 Wielemaker

6 Conclusions

In this paper we have described commonly encountered tasks which Prolog pro-
grammers spend much of their time on, which tools can help solving them as well
as an overview of the programming environment tools provided by SWI-Prolog.
Few of these tools are unique to SWI-Prolog or very advanced. The popularity
of the environment can possibly be explained by being complete, open, portable,
scalable and free.

Acknowledgements

XPCE/SWI-Prolog is a Free Software project which, by its nature, profits heavily
from user feedback and participation. We would like to thank Steve Moyle and
Anjo Anjewierden for their comments on draft versions of this paper.

References

1. Lawrence Byrd. Understanding the control flow of Prolog programs. In S.-A.
Tarnlund, editor, Proceedings of the Logic Programming Workshop, pages 127–138,
1980.

2. M. Carlsson, J. Widén, J. Andersson, S. Anderson, K. Boortz, H. Nilson, and
T. Sjöland. SICStus Prolog (v3) Users’s Manual. SICS, PO Box 1263, S-164 28
Kista, Sweden, 1995.

3. Mireille Ducassé. Analysis of failing Prolog executions. In Workshop on Logic
Programming Environments, pages 2–9, 1991.

4. Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick. gprof: a call graph
execution profiler. In SIGPLAN Symposium on Compiler Construction, pages 120–
126, 1982.

5. M. Hermenegildo, G. Puebla, and F. Bueno. Using global analysis, partial speci-
fications, and an extensible assertion language for program validation and debug-
ging. In The Logic Programming Paradigm: a 25-Year Perspective, pages 161–192.
Springer-Verlag, 1999.

6. Marija Kulas. Debugging Prolog using annotations. In Mireille Ducassé, Anthony
Kusalik, and German Puebla, editors, Electronic Notes in Theoretical Computer
Science, volume 30. Elsevier, 2000.

7. G. Miller. WordNet: A lexical database for English. Comm. ACM, 38(11), Novem-
ber 1995.

8. Fernando C. N. Pereira and Stuart M. Shieber. Prolog and Natural-Language
Analysis. Number 10 in CSLI Lecture Notes. Center for the Study of Language
and Information, Stanford, California, 1987. Distributed by Chicago University
Press.

9. E. Y. Shapiro. Algorithmic Program Debugging. MIT Press, Cambridge, MA, 1983.
10. Jan Wielemaker and Anjo Anjewierden. An architecture for making object-oriented

systems available from Prolog. In Alexandre Tessier, editor, Computer Science,
abstract, 2002. http://lanl.arxiv.org/abs/cs.SE/0207053.

