
PlDoc: Wiki style Literate Programming for
Prolog

Jan Wielemaker1 and Anjo Anjewierden2

1 Human-Computer Studies Laboratory, University of Amsterdam,
Kruislaan 419, 1098 VA Amsterdam, The Netherlands,

wielemak@science.uva.nl
2 Department of Instructional Technology, Faculty of Behavourial Sciences,

University of Twente,
PO Box 217, 7500 AE Enschede, The Netherlands

a.a.anjewierden@utwente.nl

Abstract. This document introduces PlDoc, a literate programming
system for Prolog. Starting point for PlDoc was minimal distraction from
the programming task and maximal immediate reward, attempting to se-
duce the programmer to use the system. Minimal distraction is achieved
using structured comments that are as closely as possible related to com-
mon Prolog documentation practices. Immediate reward is provided by a
web interface powered from the Prolog development environment that in-
tegrates searching and browsing application and system documentation.
When accessed from localhost, it is possible to go from documentation
shown in a browser to the source code displayed in the user’s editor of
choice.

1 Introduction

Combining source and documentation in the same file, generally named literate
programming, is an old idea. Classical examples are the TEX source [7] and the
self documenting editor GNU-Emacs [15]. Where the aim of the TEX source is
first of all documenting the program, for GNU-Emacs the aim is to support
primarily the end user. A more recent success story is JavaDoc3.

There is an overwhelming amount of articles on literate programming, most
of which describe an implementation or qualitative experience using a literate
programming system [12]. Shum and Cook [14] describe a controlled experiment
on the effect of literate programming in education. Using literate programming
produces more comments in general. More convincingly, it produced ‘how doc-
umentation’ and examples where, without literate programming, no examples
were produced at all. Nevertheless, subjects using literate programming (in this
case AOPS, [13]) was considered confusing and harmed debugging the program.

Recent developments in programming environments and methodologies make
a case for re-introducing literate programming [11]. The success of systems such

3 http://java.sun.com/j2se/javadoc/

2 Wielemaker and Anjewierden

as Doxygen [16] based on some form of structured comments in the source code,
making the literate programming document a valid document for the program-
ming language is evident. Using a source document that is valid for the program-
ming language ensures smooth integration with tools designed for the language.

Note that these developments are different from what Knuth intended: “The
literate programmer can be regarded as an essayist that explains the solution
to a human by crisply defining the components and delicately weaving them
together into a complete artistic creation” [7]. Embedding documentation source
code comments merely produces an API Reference Manual.

In the Prolog world we see lpdoc [5], documentation support in the Logtalk [9]
language and the ECLiPSe Document Generation Tools4 system. All these ap-
proaches use Prolog directives making additional statements about the code that
feed the documentation system. In 2006 a commercial user in the UK whose prod-
ucts are developed using a range of technologies (including C++ using Doxygen
for documentation) approached us to come up with an alternative literate pro-
gramming system for Prolog, aiming at a documentation system as non-intrusive
as possible to their programmers’ current practice.

This document is structured as follows. First we outline the different options
available to a literate programming environment and motivate our choices. Next
we introduce PlDoc using and example, followed by a more detailed overview of
the system. Section 5 tells the story of introducing PlDoc in a large open source
program, while we compare our work to related projects in Sect. 6.

2 An attractive literate programming environment

Most programmers do not like documenting code and Prolog programmers are
definitely no exception to this rule. Most can only be ‘persuaded’ by the organi-
sation they work for, using a documentation biased grading system in education
[14] or by the desire to produce code that is accepted in the Open Source commu-
nity. In our view we must seduce the programmer to produce API documentation
and internal documentation by creating a rewarding environment. In this sec-
tion we present the available choicepoints and motivate our primary choices from
these starting points.

For the design of a literate programming system we must make decisions
on the input: the language in which we write the documentation and how this
language is merged with the programming language (Prolog) into a single source
file. Traditionally the documentation language was TEX based (including Tex-
info). Recent systems (e.g. JavaDoc) also use HTML. In Prolog, we have two
options for merging documentation in the Prolog text such that the combined
text is a valid Prolog document. The first is using Prolog comments and the
second is to write the documentation in directives and define (possibly dummy)
predicates that handle these directives.

In addition we have to make a decision on the output format. In backend
systems we see a shift from TEX (paper) and plain-text (online) formats to-
4 http://eclipse.crosscoreop.com/doc/userman/umsroot088.html

PlDoc 3

Fig. 1. Documentation of library base64.pl. Accessed from ‘localhost’, PlDoc provides
edit and reload buttons.

wards HTML, XML+XSLT and (X)HTML+CSS which are widely supported
in todays development environments. Web documents provide both comfortable
online browsing and reasonable quality printing.

In this search space we aim at a system with little overhead for the pro-
gramer and a short learning curve that immediately rewards the programmer
with a better overview and integrated web-based search over both the applica-
tion documentation and the Prolog manual.

Minimal impact Minimising the impact on the task of the programmer is very
important. Programming itself is a demanding task and it is important to reduce
the mental load to the minimum, only keeping that what is essential for the
result. Whereas object oriented languages can extract some basics from the class
hierarchy and type system, there is little API information that can be extracted
automatically from a Prolog program, especially if it does not use modules. Most
information for an API reference must be provided explicitly and additionally
to the program.

4 Wielemaker and Anjewierden

Fig. 2. Searching for “base64”

Minimising impact as well as maximising portability made us decide against
the approach of lpdoc, ECLiPSe and Logtalk which provide the documentation
in language extensions by means of directives and in favour of using structured
comments based on layout and structuring conventions around in the Prolog
community. Structured comments start with %% (similar to PostScript document
structuring comments) and use Wiki [8] structuring conventions extended with
Prolog conventions such as referencing a predicate using 〈name〉/〈arity〉. Wiki
is a simple plain-text format designed for collaborative interactive management
of web pages. Wikis differ in the details on the text format. We are particularly
interested in wiki formats based on common practice simulating font and struc-
turing conventions in plain text such as traditional email, usenet and comments
in source code.

Maximal reward to the programmer A system is more easily accepted if it not
only provides reward for the users of the software module, but also to the pro-
grammer him/herself. We achieve this by merging the documentation of the
loaded Prolog code with the Prolog manuals in a consistent view presented from
a web server embedded in the development environment. This relieves the pro-
grammer from making separate searches in the manuals and other parts of system
under development.

Immediate reward to the programmer Humans love to be rewarded immediately.
This implies the results must be accessible directly. This has been achieved by
adding the documentation system as an optional library to the Prolog develop-
ment environment. With PlDoc loaded into Prolog, the compiler processes the

PlDoc 5

structured comments, maintaining a Prolog database as described in Sect. 4.2.
This database is made available to the developer through a web server running
in a separate thread (Sect. 4.3). The SWI-Prolog make/0 comment updates the
running Prolog system to the latest version of the loaded sources and updates
the web site at the same time.

3 An example

Before going into detail we show the documentation process and access for the
SWI-Prolog library base64.pl, providing a DCG rule for base64 encoding and
decoding as well as a conversion predicate for atoms. Part of the library code
relevant for the documentation is in Fig. 3. We see a number of special constructs:

– The /** <module> Title comment introduces overall documentation of the
module. Inside, the == delimited lines start a source code block. The @keyword
section provides JavaDoc inspired keywords from a fixed and well defined set
(see end of Sect. 4.1).

– The %% comments start with one or more %% lines that contain the predicate
name, argument names with optional mode, type and determinism informa-
tion. Multiple modes and predicates can be covered by the same comment
block. This is followed by wiki text, processed using the same rules that
apply to the module comment. Like JavaDoc, the first sentence of the com-
ment body is considered a summary. Keyword search processes both the
formal description and the summary. Keyword search on format aspects and
a summary line have a long history, for example in the Unix man command.

4 Description of PlDoc

4.1 The PlDoc syntax

PlDoc processes structured comments. Structured comments are Prolog com-
ments starting with %% or /**. The former is more in line with the Prolog
tradition for commenting predicates while the second is typically used for com-
menting the overall module structure. The system does not enforce this. Java
programmers may prefer using the second form for predicate comments as well.

Comments consist of a formal header, a wiki body and JavaDoc inspired
keywords. When using %% style comments, the formal header ends with the first
line with a single %. Using /** style comments the header is ended by a blank line.
The header is either “〈module〉 Title” or one or more predicate head declarations.
The 〈module〉 syntax can be extended easily.

The type and mode declaration header consists of one or more Prolog terms.
Each term describes a mode of a predicate. The syntax is described in Fig. 4.

The optional //-postfix indicate 〈head〉 is a DCG rule. The determinism val-
ues originate from Mercury [6]. Predicates marked as det must succeed exactly
once and not leave any choice points. The semidet indicator is used for pred-
icates that either fail or succeed deterministically. The nondet indicator is the

6 Wielemaker and Anjewierden

/** <module> Base64 encoding and decoding

Prolog-based base64 encoding using DCG rules. Encoding according to

rfc2045. For example:

==

1 ?- base64(’Hello World’, X).

X = ’SGVsbG8gV29ybGQ=’

2 ?- base64(H, ’SGVsbG8gV29ybGQ=’).

H = ’Hello World’

==

@tbd Stream I/O

@tbd White-space introduction and parsing

@author Jan Wielemaker

*/

%% base64(+Plain, -Encoded) is det.

%% base64(-Plain, +Encoded) is det.

%

% Translates between plaintext and base64 encoded atom or string.

% See also base64//1.

base64(Plain, Encoded) :- ...

%% base64(+PlainText)// is det.

%% base64(-PlainText)// is det.

%

% Encode/decode list of character codes using _base64_. See also

% base64/2.

base64(Input) --> ...

Fig. 3. Commented source code of library base64.pl

〈modedef〉 ::= 〈head〉[’//’] [’is’ 〈determinism〉]
〈determinism〉 ::= ’det’

| ’semidet’
| ’nondet’
| ’multi’

〈head〉 ::= 〈functor〉’(’〈argspec〉 {’,’ 〈argspec〉}’)’
| 〈atom〉

〈argspec〉 ::= [〈mode〉]〈argname〉[’:’〈type〉]
〈mode〉 ::= ’+’ | ’-’ | ’?’ | ’:’ | ’@’ | ’ !’
〈type〉 ::= 〈term〉

Fig. 4. BNF for predicate header

PlDoc 7

most general one and implies there are no constraints on the number of times the
predicate succeeds and whether or not it leaves choice points on the last success.
Finally, multi is as nondet, but demands the predicate to succeed at least one
time. Informally, det is used for deterministic transformations (e.g. arithmetic),
semidet for tests, nondet and multi for generators.

The mode patterns are given in Fig. 5. Originating from DEC-10 Prolog were
the mode indicators (+,-,?) had a formal meaning. The ISO standard [4] adds
‘@’, meaning “the argument shall remain unaltered”. Quintus added ‘:’, meaning
the argument is module sensitive. Richard O’Keefe proposes5 ‘=’ for “remains
unaltered” and adds ‘*’ (ground) and ‘>’ “thought of as output but might be
nonvar”.

+ Argument must be fully instantiated to a term that satisfies the type.
- Argument must be unbound on entry.
? Argument must be bound to a partial term of the indicated type.

Note that a variable is a partial term for any type.
: Argument is a meta argument. Implies +.
@ Argument is not further instantiated.
! Argument contains a mutable structure that may be modified using

setarg/3 or nb setarg/3.

Fig. 5. Defined modes

The body of a description is given to a Prolog defined wiki parser based on
Twiki6 using extensions from the Prolog community. In addition we made the
following changes.

– List indentation is not fixed, the only requirement is that all items are in-
dented to the same column.

– Font changing commands such as *bold* only work if the content is a single
word. In other cases we demand *|bold text|*. This proved necessary due
to frequent use of punctuation characters in comments that make single font
switching punctuation characters too ambiguous.

– We added == around code blocks (see Fig. 3) as such blocks are frequent and
not easily supported by Twiki.

– We added automatic links for 〈name〉/〈arity〉, 〈name〉//〈arity〉, 〈file〉.pl,
〈file〉.txt (interpreted as wiki text) and image files using image extensions.
Using [[file.png]], inline images can be produced.

– Capitalised words appearing in the running text that match exactly one of
the arguments are typeset in italics.

– We do not process embedded HTML. One of the reasons is that we want the
option for other target languages. Opening up the path to unlimited use of

5 http://gollem.science.uva.nl/SWI-Prolog/mailinglist/archive/2006/q1/0267.html
6 http://www.twiki.org

8 Wielemaker and Anjewierden

HTML complicates this. In addition, passing <, > and & unmodified to the
target HTML easily produces invalid HTML.

The ‘@’ keyword section of a comment block is heavily based on JavaDoc.
We give a summary of the changes and additions below.

– @return is dropped for obvious reasons.
– @error is added as a shorthand for @throws error(Error, Context)
– @since and @serial are not (yet) supported
– @compat is added to describe compatibility of libraries
– @copyright and @license are added
– @bug and @tbd are added for issue tracking

A full definition of the Wiki notation and keywords is in the PlDoc manual.7.

4.2 Processing the comments

We claimed immediate reward as an important asset. This implies the documen-
tation must be an integral part of the development environment. SWI-Prolog
aims at providing IDE modules while allowing the user to use an editor or IDE
of choice. An obvious choice is to make the compiler collect comments and present
these to the user through a web interface. This is achieved using a hook in the
compiler called as:

prolog:comment hook(+Comments, +TermPos, +Term).

Here, Comments is a list of Pos-Comment terms representing comments en-
countered from where read term/3 started reading upto the end of Term that
started at TermPos. The calling pattern allows for processing any comment and
distinguishes comments outside Prolog terms from comments inside the term.

The hook installed by the documentation server extracts structured com-
ments by checking for %% or /**. For structured comments it extracts the for-
mal comment header and the first line of the comment body which serves, like
JavaDoc, as a summary. The formal part is processed and the entire structured
comment is stored unparsed, but is associated with the parsed formal header
and summary which are used for linking the comment with a predicate as well
as keyword search. The stored information is available through the public Prolog
API of PlDoc and can be used, together with the cross referencer Prolog API,
as the basis for additional development tools.

4.3 Publishing the documentation

PlDoc realises a web application using the SWI-Prolog HTTP infrastructure
[17]. Running in a separate thread, the normal interactive Prolog toplevel is not
affected. The documentation server can also be used from an embedded Prolog
7 http://www.swi-prolog.org/packages/pldoc.html

PlDoc 9

system. By default access is granted to ‘localhost’ only. Using additional options
to doc server(+Port, +Options), access can be granted to a wider public. A
scenario for exploiting this is to have a central Prolog process with all resources
available to a team loaded. Regularly running update from a central repository
and make/0 inside Prolog, it can serve as an up-to-date and searchable central
documentation source. Since September 15 2006, we host such a server running
the latest SWI-Prolog release with all standard libraries and packages loaded
from http://gollem.science.uva.nl/SWI-Prolog/pldoc/. Currently (June 2007),
the server handles approximately 100 search requests (1,000 page views) per
day.

Fig. 6. PlDoc displaying a directory index with files and their public predicates ac-
cessed from ‘localhost’. Each predicate has an ‘edit’ button and each file a pretty print
button (blue circle, see Sect. 4.5)

4.4 IDE integration and documentation maintenance cycle

When accessed from ‘localhost’, PlDoc by default provides an option to edit a
documented predicate. Clicking this option activates an HTTP request through
Javascript similar to AJAX [10], calling edit(+PredicateIndicator) on the de-
velopment system. This hookable predicate locates the predicate and runs the

10 Wielemaker and Anjewierden

user’s editor of choice on the given location. In addition the browser interface
shows a ‘reload’ button to run make/0 and refreshes the current page, reflecting
the edited documentation.

Initially, PlDoc is targeted to the working directory. In the directory view it
displays the README file (if any) and all Prolog files with a summary listing
of the public predicates as illustrated in Fig. 6.

As a simple quality control measure PlDoc lists predicates that are exported
from a module but not documented in red at the bottom of the page. See Fig. 7.

We used the above to provide elementary support through PlDoc for most
of the SWI-Prolog library and package sources (approx. 80,000 lines). First we
used a simple sed script to change the first line of a % comment that comments a
predicate to use the %% notation. Next we fixed syntax errors in the formal part
of the documentation header. Some of these where caused by comments that
should not have been turned into structured comments. PlDoc’s enforcement
that argument names are proper variable names and types are proper Prolog
terms formed the biggest source of errors. Finally, directory indices and part of
the individual files were reviewed, documentation was completed and fixed at
some points. The enterprise is certainly not complete, but an effort of three days
made a big difference in the accessibility of the libraries.

4.5 Presentation options

By default, PlDoc only shows public predicates when displaying a file or directory
index. This can be changed using the ‘zoom’ button displayed with every page.
Showing documentation on internal predicates proves helpful for better under-
standing of a module and helps finding opportunities for code reuse. Searching
shows hits from both public and private predicates, where private predicates are
presented in grey using a yellowish background.

Every file entry has a ‘source’ button that shows the source file. Structured
comments are converted into HTML using the Wiki parser. The actual code is
coloured based on information from the SWI-Prolog cross referencer using code
shared with PceEmacs8. The colouring engine uses read term/3 with options
‘subterm positions’ to get the term layout compatible to Quintus Prolog [1] and
‘comments’ to get comments and their positions in the source file.

5 User experiences

tOKo [2] is an open source tool for text analysis, ontology development and
social science research (e.g. analysis of Web 2.0 documents). tOKo is written
in SWI-Prolog. The user base is very diverse and ranges from semantic web
researchers who need direct access to the underlying code for their experiments,
system developers who use an HTTP interface to integrate a specific set of tOKo
functionality into their systems, to social scientists who only use the interactive
user interface.
8 http://www.swi-prolog.org/emacs.html

PlDoc 11

Fig. 7. Undocumented public predicates are added at the bottom. When accessed from
‘localhost’, the developer can click the edit icon, add or fix documentation and click
the reload icon at the top of the page to view the updated documentation.

The source code of tOKo, 135,000 lines (excluding dictionaries) distributed
over 321 modules provides access to dictionaries, the internal representation of
the text corpus, natural language processing and statistical NLP algorithms,
(pattern) search algorithms, conversion predicates and the XPCE9 code for the
user interface.

Before the introduction of the PlDoc package only part of the user interface
was documented on the tOKo homepage. Researchers and system developers who
needed access to the predicates had to rely on the source code proper which, given
the sheer size, is far from trivial. In practice, most researchers simply contacted
the development team to get a handle on “where to start”. This example shows
that when open source software has non-trivial or very large interfaces it is
necessary to complement the source code with proper documentation of at least
the primary API predicates.

9 http://www.swi-prolog.org/packages/xpce/

12 Wielemaker and Anjewierden

After the introduction of PlDoc all new tOKo functionality is being docu-
mented using the PlDoc style of literate programming. The main advantages
have already been mentioned, in particular the immediate reward for the pro-
grammer. The intuitive notation of PlDoc also makes it relatively easy to add the
documentation. The Emacs Prolog mode developed for SWI-Prolog10 automat-
ically reformats the documentation, such that mixing code and documentation
becomes natural after a very short learning curve.

One of the biggest advantages of writing documentation at all is that it
reinforces a programmer to think about the names and arguments of predicates.
For many of the predicates in tOKo the form is operation(Output, Options)
or operation(Input, Output, Options). Using an option list, also common in
the ISO standard predicates and the SWI-Prolog libraries, avoids an explosion
of predicates. For example, misspellings corpus/2, which finds misspellings
in a corpus of documents, has options for the algorithm to use, the minimum
word length and so forth: misspellings corpus(Output, [minimum length(5),
edit distance(1), dictionary(known)]). Without documentation, once the right
predicate is found, the programmer still has to check and understand the source
code to determine which options are to be used. Writing documentation forces
the developer to think about determining a consistent set of names of predicates
and names of option type arguments.

A problem that the PlDoc approach only solves indirectly is when complex
data types are used. In tOKo this for example happens for the representation
of the corpus as a list of tokens. In a predicate one can state that its first
argument is a list of tokens, but a list of tokens itself has no predicate and the
documentation of what a token list looks like is non-trivial to create a link to.
Partial solutions are to point to a predicate where the type is defined, possibly
from a @see keyword or point to a txt file where the type is defined.

Completing the PlDoc style documentation for tOKo is still a daunting task.
The benefits for the developer are, however, too attractive not to do it.

6 Related work

The lpdoc system [5] is the most widely known literate programming system in
the Logic Programming world. It uses a rich annotation format represented as
Prolog directives and converts these into Texinfo [3]. Texinfo has a long history,
but in our view it is less equipped for supporting interactive literate program-
ming for Logic Programming in a portable environment. The language lacks the
primitives and notational conventions in the Logic Programming domain and is
not easily expanded. The required TEX based infrastructure and way of thinking
no longer is a given.

In Logtalk [9], documentation supporting declarations are part of the lan-
guage. The intermediate format is XML, relying on XML translation tools and
style sheets for rendering in browsers and on paper. At the same time the struc-

10 http://turing.ubishops.ca/home/bruda/emacs-prolog

PlDoc 13

ture information embedded in the XML can be used by other tools to reason
about Logtalk programs.

The ECLiPSe11 documentation tools use a single comment/1 directive con-
taining an attribute-value list of information for the documentation system. The
Prolog based tools render this as HTML or plain text.

PrologDoc12 is a Prolog version of JavaDoc. It stays close to JavaDoc, heavily
relying on ‘@’-keywords and using HTML for additional markup. Figure 8 gives
an example.

/**

@form member(Value,List)

@constraints

@ground Value

@unrestricted List

@constraints

@unrestricted Value

@ground List

@descr True if Value is a member of List

*/

Fig. 8. An example using PrologDoc

Outside the Logic Programming domain there is a large set of literate pro-
gramming tools. A good example, the website of which contains a lot of infor-
mation on related systems, is Doxygen [16]. Most of the referenced systems use
structured comments.

7 Extending and porting PlDoc

Although to us the embedded HTTP server backend is the primary target, PlDoc
will be extended with backends for static HTML files (partially realised). PlDoc
is primarily an API documentation system. It is currently not very suitable for
generating a book. Such functionality is highly desirable for dealing with the
SWI-Prolog system documentation, maintained in LATEX. We will investigate
the possibility to introduce a LATEX macro that will extract the documentation
of a file or single predicate and insert it into the LATEX text. For example:

\begin{description}
\pldoc{member}{2}
\pldoc{length}{2}

\end{description}

11 http://eclipse.crosscoreop.com/doc/userman/umsroot088.html
12 http://prologdoc.sourceforge.net/

14 Wielemaker and Anjewierden

PlDoc is Open Source and can be used as the basis for other Prolog imple-
mentations. The required comment processing hooks can be implemented easily
in any Prolog system. The comment gathering and processing code requires a
Quintus style module system. The current implementation uses SWI-Prolog’s
nonstandard (but not uncommon) packed string datatype for representing com-
ments. Avoiding packed strings is possible, but increases memory usage on most
systems.

The web server relies on the SWI-Prolog HTTP package, which in turn relies
on the socket library and multi-threading support. Given the standardisation
effort on thread support in Prolog13, portability may become feasible. In many
situations it may be acceptable and feasible to use the SWI-Prolog hosted PlDoc
system while actual development is done in another Prolog implementation.

8 Conclusions

In literate programming systems there are choices on the integration between
documentation and language, the language used for the documentation and the
backend format(s). Getting programmers to document their code is already hard
enough, which provided us with the motivation to go for minimal work and maxi-
mal and immediate reward for the programmer. PlDoc uses structured comments
using Wiki-style documentation syntax extended with plain-text conventions
from the Prolog community. The primary backend is HTML+CSS, served from
an HTTP server embedded in Prolog. The web application provides a unified
search and view for the application code, Prolog libraries and Prolog reference
manual.

Acknowledgements

Although the development of PlDoc was on our radar for a long time, finan-
cial help from a commercial user in the UK finally made it happen. Comments
from the SWI-Prolog user community have helped fixing bugs and identifying
omissions in the functionality.

References

1. AI International ltd., Berkhamsted, UK. Quintus Prolog, User Guide and Reference
Manual, 1997.

2. Anjo Anjewierden, Bob Wielinga, and Robert de Hoog. Task and domain ontolo-
gies for knowledge mapping in operational processes. Metis Deliverable 4.2/2003,
University of Amsterdam, 2004. tOKo home: http://www.toko-sigmund.org/.

3. Robert J. Chassell and Richard M. Stallman. Texinfo: The GNU Documentation
Format. Reiters.com, 1999.

4. P. Deransart, A. Ed-Dbali, and L. Cervoni. Prolog: The Standard. Springer-Verlag,
New York, 1996.

13 http://www.sju.edu/ jhodgson/wg17/projects.html

PlDoc 15

5. Manuel V. Hermenegildo. A documentation generator for (c)lp systems. In John W.
Lloyd, Verónica Dahl, Ulrich Furbach, Manfred Kerber, Kung-Kiu Lau, Catuscia
Palamidessi, Lúıs Moniz Pereira, Yehoshua Sagiv, and Peter J. Stuckey, editors,
Computational Logic, volume 1861 of Lecture Notes in Computer Science, pages
1345–1361. Springer, 2000.

6. David Jeffery, Fergus Henderson, and Zoltan Somogyi. Type classes in mercury.
In ACSC, pages 128–135. IEEE Computer Society, 2000.

7. Donald E. Knuth. Literate programming. Comput. J., 27(2):97–111, 1984.
8. B. Leuf and W. Cunningham. The Wiki Way: Collaboration and Sharing on the

Internet. Addison-Wesley, 2001.
9. Paulo Moura. Logtalk - Design of an Object-Oriented Logic Programming Language.

PhD thesis, Department of Informatics, University of Beira Interior, Portugal,
September 2003.

10. Linda Dailey Paulson. Building Rich Web Applications with Ajax. IEEE Com-
puter, 38(10):14–17, 2005.

11. Vreda Pieterse, Derrick G. Kourie, and Andrew Boake. A case for contemporary
literate programming. In SAICSIT ’04: Proceedings of the 2004 annual research
conference of the South African institute of computer scientists and information
technologists on IT research in developing countries, pages 2–9, , Republic of South
Africa, 2004. South African Institute for Computer Scientists and Information
Technologists.

12. Norman Ramsey and Carla Marceau. Literate programming on a team project.
Software - Practice and Experience, 21(7):677–683, 1991.

13. A. Shum and C. Cook. Aops: an abstraction-oriented programming system for
literateprogramming. Software Engineering Journal, 8(3):113–120, 1993.

14. Stephen Shum and Curtis Cook. Using literate programming to teach good pro-
gramming practices. In SIGCSE ’94: Proceedings of the twenty-fifth SIGCSE sym-
posium on Computer science education, pages 66–70, New York, NY, USA, 1994.
ACM Press.

15. Richard M. Stallman. Emacs the extensible, customizable self-documenting display
editor. SIGPLAN Not., 16(6):147–156, 1981.

16. D van Heesch. Doxygen, a documentation system for C++, 2007.
http://www.stack.nl/ dimitri/doxygen/.

17. Jan Wielemaker, Zhisheng Huang, and Lourens van der Mey. SWI-Prolog and the
Web. Paper submitted to tplp, HCS, University of Amsterdam, 2006.

