
An optimised Semantic Web query language
implementation in Prolog

Jan Wielemaker

Human Computer Studies (HCS),
University of Amsterdam,

Kruislaan 419, 1098 VA Amsterdam, The Netherlands,
wielemak@science.uva.nl

Abstract. The Semantic Web is a rapidly growing research area aiming
at the exchange of semantic information over the World Wide Web. The
Semantic Web is built on top of RDF, an XML-based exchange language
representing a triple-based data model. Higher languages such as the
description logic based OWL language family are defined on top of RDF.
Making inferences over triple collections is a promising application area
for Prolog.

In this article we study query translation and optimization in the con-
text of the SeRQL RDF query language. Queries are translated to Prolog
goals, which are optimised by reordering literals. We study the domain
specific issues of this general problem. Conjunctions are often large, but
the danger of poor performance of the optimiser can be avoided by ex-
ploiting the nature of the triple store. We discuss the optimisation al-
gorithms as well as the information required from the low level storage
engine.

1 Introduction

The Semantic Web [1] initiative provides a common focus for Ontology Engi-
neering and Artificial Intelligence based on a simple uniform triple based data
model. Prolog is an obvious candidate language for managing graphs of triples.

Semantic Web languages, such as RDF [2] RDFS and OWL, [4] define which
new triples can be deduced from the current triple set (i.e. are entailed by the
triples under the language). In this paper we study our implementation of the
SeRQL [3] query language in Prolog. SeRQL provides a declarative search spec-
ification for a sub-graph in the deductive closure under a specified Semantic
Web language of an RDF triple set. The specification can be augmented with
conditions to match literal text, do numerical comparison, etc.

The original implementation of the SeRQL language is provided by Sesame
[3], a Java based client/server system. Sesame realises entailment reasoning by
computing the complete deductive closure under the currently activated Seman-
tic Web language and storing this either in memory or in an external database.
I.e. Sesame uses pure forward reasoning.

2 Wielemaker

We identified several problems using the Sesame implementation. Sesame
stores both the explicitely provided triples and the triples that can be derived
from them given de semantics of a specified Semantic Web language (e.g. ‘RDFS’)
in one database. This implies that changing the language to (for example) ‘OWL-
DL’ requires deleting the derived triples and computing the deductive closure for
the new language. Also, where the full deductive closure for RDFS is still fairly
small, it explodes for more expressive languages like OWL. Sesame is sensitive
to the order in which path expressions are formulated in the query, which is con-
sidered undesirable for a declarative query language. Finally, Sesame is written
in Java an we feel much more comfortable using Prolog for manipulating RDF
graphs to prototype new inferencing strategies.

To overcome the above mentioned problems we realised a server hosting mul-
tiple reasoning engines realised as Prolog modules. Queries can be formulated
in the SeRQL language and both queries and results are exchanged through the
language independent Sesame HTTP based client/server protocol. We extend
the basic storage and query system described in [18] with SeRQL over HTTP
and a query optimiser.

Naive translation of a SeRQL query to a Prolog program is straightforward.
Being a declarative query language however, authors of SeRQL queries should
and do not pay attention to efficient ordering of the path expressions in the
query and therefore naive translations often produces inefficient programs. This
problem as well as our solution is very similar to what is described by Struyf
and Blockeel in [16] for Prolog programs generated by an ILP [11] system. We
compare our work in detail with Struyf in Sect. 11.

In Sect. 2 and Sect. 3 we describe the already available software components
and introduce RDF. Section 4 to Sect. 9 discuss native translation of SeRQL to
Prolog and optimizing the naive translation through reordering of literals.

2 Available components and targets

Sesame1 and its query language SeRQL is one of the leading implementations
of semantic web RDF storage and query systems [9]. Sesame consists of two
Java based components. The server is a Java servlet providing HTTP access to
manage the RDF store and run queries on it. The client provides a Java API to
the HTTP server.

The SWI-Prolog2 SemWeb package [18] is a library for loading and saving
triples using the W3C RDF/XML standard format and making them avail-
able for querying through the Prolog predicate rdf/3. After several cycles
we realised the memory-based triple-store as a foreign language extension to
SWI-Prolog. Using foreign language (C) we optimised the data representation
and indexing for RDF triples, dealing with upto 40 million triples on 32-bit
hardware or virtually unlimited on 64-bit hardware. The SWI-Prolog HTTP

1 http://www.openrdf.org
2 http://www.swi-prolog.org

Optimising SeRQL path expressions 3

client/server packagehttp://www.swi-prolog.org/packages/http.html provides a
multi-threaded [17] HTTP server and client library.

By reimplementing the Sesame architecture in Prolog we make our high per-
formance triple-store available to the Java world. The options are illustrated
in Fig. 1. In our project we needed access from Java applications to the Pro-
log server. Other people are interested in fetching sub-graphs from huge Sesame
hosted triple sets stored in an external database to Prolog for further processing.

Prolog
Client

Java
Client

Prolog
Server

Java
Server

Prolog SeRQL

Sesame

HTTP

Fig. 1. With two client/server systems sharing the same HTTP API we have created
four options for cooperation.

3 RDF graphs and SeRQL queries graphs

In this section we briefly introduce RDF graphs and SeRQL queries. The RDF
data model is a set of triples of the format <Subject Predicate Object>. The
model knows about two data types:3 resources and literals. Resources are Uni-
versal Resource Identifiers (URI), in our toolkit represented by Prolog atoms.
Representing resources using atoms exploits the common representation of atoms
in Prolog implementations as a unique handle to a string. This representa-
tion avoids duplication of the string and allows for efficient equality testing,
the only operation defined on resources. Literals are represented by the term
literal(atom), where atom represents the textual literal.

A triple informally states Subject has an attribute named Predicate with value
Object. Both Subject and Predicate are resources, Object is either a resource or
a literal. As a resource appearing as Object can also appear as Subject or even
Predicate, a set of triples form a graph. A simple RDF graph is shown in Fig. 2.

RDF triples are naturally expressed using the predicate rdf/3 with the obvi-
ous arguments rdf(Subject, Predicate, Object). Finding a subgraph with certain
properties is now easily expressed as a Prolog conjunction, for example

3 Actually literals can be typed using a subset of the XML Schema primitive type
hierarchy

4 Wielemaker

http://www.w3.org/TR/rdf-syntax-grammar

http://purl.org/net/dajobe Dave Beckett

RDF/XML Syntax Specification (Revised)

http://www.example.org/terms/editor

http://www.example.org/terms/homePage http://www.example.org/terms/fullName

http://purl.org/dc/elements/1.1/title

Fig. 2. A simple RDF graph. Ellipses are resources. Rectangles are literal values. Ar-
rows point from Subject to Object and are labeled with the Predicate.

reports_by_person(Report, Name) :-

rdf(Author, ’http://www.example.org/terms/fullName’, literal(Name)),

rdf(Report, ’http://www.example.org/terms/author’, Author).

SeRQL is a language with a syntax inspired in SQL, useful to represent target
subgraphs as a set of edges, possibly augmented with conditions. An example is
given in Fig. 3.

4 Compiling SeRQL queries

The SWI-Prolog SeRQL implementation translates a SeRQL query into a Prolog
goal, where edges on the target subgraph are represented as calls to rdf(Subject,
Predicate, Object) and the WHERE clause is represented using natural Prolog
conjunction and disjunction of predicates provided in the SeRQL runtime sup-
port module. The compiler is realised by a DCG parser, followed by a second
pass resolving SeRQL namespace declarations and introducing variables. We il-
lustrate this translation using an example from the SeRQL examples.4 First we
present the query in Fig. 3.

SELECT Painter, FName

FROM {Painter} <rdf:type> {<cult:Painter>};

<cult:first_name> {FName}

WHERE FName like "P*"

USING NAMESPACE

cult = <!http://www.icom.com/schema.rdf#>

Fig. 3. Example SeRQL query asking for all resources of type cult:Painter whose
name starts with P.

Below is the naive translation represented as a Prolog clause and modified
for better readability using the variable names from the SeRQL query. To solve
4 http://www.openrdf.org/sesame/serql/serql-examples.html

Optimising SeRQL path expressions 5

the query, this clause is executed in the context of an entailment module as
illustrated in Fig. 4. An entailment module is a Prolog module providing a pure
implementation of the predicate rdf/3 that can generate as well as test all
triples that can be derived from the actual triple store using the Semantic Web
language the module defines. This implies the predicate can be called with any
instantiation pattern, will bind all arguments and produce all alternatives that
follow from the entailment rules on backtracking. If rdf/3 satisfies these criteria,
any naive translation of the SeRQL query is a valid Prolog program to solve the
query. Primitive conditions from the WHERE clause are mapped to predicates
defined in the SeRQL runtime module which is imported into the entailment
module. As the translation of the WHERE clause always follows the translation
of the path expression all variables have been instantiated.

HTTP Server SeRQL Parser Optimiser

RDF Entailment RDFS Entailment

Triple store

rdf/3

rdf/3

rdf/3

rdf/3

SeRQL Goal

Fig. 4. Architecture, illustrating the role of entailment modules. These modules provide
a pure implementation of rdf/3 for the given Semantic Web language.

q(row(Painter, FName)) :-

rdf(Painter,

’http://www.w3.org/1999/02/22-rdf-syntax-ns#type’,

’http://www.icom.com/schema.rdf#Painter’),

rdf(Painter,

’http://www.icom.com/schema.rdf#first_name’,

FName),

serql_compare(like, FName, ’P*’).

SeRQL path expressions between square brackets ([. . .]) are optional. They bind
variables if they can be matched, but they do not change the core of the matched
graph. Such path expressions are translated using the SWI-Prolog soft-cut con-
trol structure represented by *->,5 for example, the SeRQL statement

SELECT Artist, FName

FROM {Artist} <rdf:type> {<cult:Artist>};

[<cult:first_name> {FName}]

USING NAMESPACE

cult = <!http://www.icom.com/schema.rdf#>

is translated into the code below. Note that this prolog code generates all avail-
able first names, leaving FName unbound if no first name can be found. The
final true is the translation of the omitted WHERE clause.
5 Some Prolog dialects (e.g. SICStus) call this construct if/3.

6 Wielemaker

q(row(Artist, FName)) :-

rdf(Artist,

’http://www.w3.org/1999/02/22-rdf-syntax-ns#type’,

’http://www.icom.com/schema.rdf#Artist’),

(rdf(Artist, ’http://www.icom.com/schema.rdf#first_name’, FName)

*-> true

; true

),

true.

5 The ordering problem

Given the purely logical definition of rdf/3, conjunctions of these goals can be
placed in any order without influencing the result-set. Literals resulting from the
WHERE clause are side-effect free boolean tests that can be executed as soon
as the arguments have been instantiated. Note that Gooley [8] distinguishes 4
types of equivalence under optimization: reflexive, set, tree and inequivalence.
We demand set equivalence, returning the same set of results where we do not
care about ordering or duplicates.

To study the ordering problem in more detail we will consider the follow-
ing example query on WordNet [10]. The query looks for words that can be
interpreted in at least two different lexical categories.

SELECT DISTINCT L

FROM {S1} <wns:wordForm> {L},

{S2} <wns:wordForm> {L},

{S1} <rdf:type> {C1},

{S2} <rdf:type> {C2},

{C1} <serql:directSubClassOf> {<wns:LexicalConcept>},

{C2} <serql:directSubClassOf> {<wns:LexicalConcept>}

WHERE not C1 = C2

USING NAMESPACE

wns = <!http://www.cogsci.princeton.edu/~wn/schema/>

WordNet is organised in synsets, an abstract entity roughly described by the
associated wordForms. Synsets are RDFS instances of one of the subclasses of
LexicalConcept. We are looking for a wordForm belonging to two synsets of a
different subtype of LexicalConcept. Figure 5 illustrates a query result and gives
some relevant metrics on WordNet.

To illustrate the need for optimisation as well as to provide material for fur-
ther discussion we give two translations of this query. Figure 6 shows the direct
translation, which requires 3.58 seconds CPU time on an AMD 1600+ processor
as well as an alternative which requires 8,305 CPU seconds to execute, a slow-
down of 2,320 times. Note that this translation could be the direct translation
of another SeRQL query with the same semantics.

Optimising SeRQL path expressions 7

LexicalConcept

Noun Verb

Synset 23 Synset 42

"sneeze"

WordNet metrics

Distinct wordForms 123,497
Distinct synsets 99,642
wordForm triples 174,002
Subclasses of LexicalConcept 4

Fig. 5. According to WordNet, the word “sneeze” can be interpreted as a noun as well
as a verb. The tabel to the right gives some metrics of WordNet.

s1(L) :-

rdf(S1, wns:wordForm, L), rdf(S2, wns:wordForm, L),

rdf(S1, rdf:type, C1), rdf(S2, rdf:type, C2),

rdf(C1, rdfs:subClassOf, wns:’LexicalConcept’),

rdf(C2, rdfs:subClassOf, wns:’LexicalConcept’),

C1 \== C2.

s2(L) :-

rdf(C1, rdfs:subClassOf, wns:’LexicalConcept’),

rdf(C2, rdfs:subClassOf, wns:’LexicalConcept’),

C1 \== C2,

rdf(S1, rdf:type, C1), rdf(S2, rdf:type, C2),

rdf(S1, wns:wordForm, L), rdf(S2, wns:wordForm, L).

Fig. 6. Two translations for our query on WordNet. The first executes in 3.58 seconds,
the second in 8,305.

Before we start discussing the alternatives for optimising the execution we
explain why the execution times of these equivalent programs differs. Suppose
we have a conjunction of completely independent literals A,B,C, where inde-
pendent means no variables are shared between the members of the conjunction.
If b() denotes the number of solutions for a literal, the total solution space is
b(A) × b(B) × b(C) and therefore independent from the order. If we take the
number of visited states rather than the solution space as a measure the formula
becomes

b(A) + b(A)× b(B) + b(A)× b(B)× b(C)

This measure is proportional to the number of logical inferences executed
by Prolog and a good measure for the expected execution time [6]. It suggests
to place literals with the smallest number of alternatives first, but as the last
component is normally dominant the difference is not large and certainly cannot
explain the difference between the two translations shown in Fig. 6. In fact the
second is ordered on the branching factor without considering dependencies.

8 Wielemaker

To understand this difference we must look at the dependencies, expressed
by shared variables. Executing an rdf/3 literal causes all its arguments to be
grounded, restricting the number of alternatives for rdf/3 literals sharing the
grounded variables. What is really important is how much the set of alternatives
of a literal is reduced by executing another literal before it. The order of s1/1
in Fig. 6 executes the most unbound literal first (174,002 solutions), but wins
because after the execution of this literal not much further branching is left.

6 Estimating the complexity

The first step towards optimising is having an estimate of the complexity of a
particular translation. We use the number of visited nodes in the search-tree
as an estimate for the execution time, ignoring the (small) differences in time
required to execute the different rdf/3 literals. Our estimate is based on two
pieces of information extracted from the low-level database we have realised in
the C language.

Estimated number of solutions for an rdf/3 call For each rdf/3 goal for
which zero or more of the arguments have a known value and the remaining
arguments are known to be unbound we can easily estimate the complexity.
If no arguments are known this estimate is the total number of triples in the
database, a number that is easily incrementally maintained by the database
manipulation routines. If all arguments are known the literal is a boolean
test, whose solution set we estimate as 0.5 (see Boolean tests below). In all
other cases we compute the indexing and return the length of the hash-chain
for the computed index. Assuming a well distributed hash-function this is a
reasonable estimate for the number of solutions the goal will provide, while
the information can be maintained incrementally by the database primitives.

Estimating the branching factor of predicates Execution of literals binds
variables, but unfortunately we do not know with what value(s). Observing
queries however we see that for many literals we do know the predicate (2nd
argument of rdf/3) at query time, leaving two interesting cases: subject
bound to unknown value and object unbound and the other way around. We
deal with those by defining subject branch factor (sbf) resp. object branch
factor (obf):

sbf(P) =
triples(P)

distinctSubjects(P)

This figure is not cheaply maintained on incremental basis and therefore
computed. The result is cached with the predicate and only recomputed if
the number of triples on the predicate has changed considerably.

Boolean tests Boolean tests resulting from the WHERE clause cannot cause
branching. They can succeed or fail and their branching factor is estimated
as 0.5, giving preference to locations early in the conjunction. This number
may be wrong but, as we explained in Sect. 5, reordering of independent

Optimising SeRQL path expressions 9

members of the conjunction only has marginal impact on the execution time
of the query. If not all arguments to the test are sufficiently instantiated com-
putation of the branching factor fails, causing the conjunction permutation
generator to generate a new alternative.

The total complexity of a conjunction is now easily expressed as the summed
sizes of the search spaces after executing 1, 2, . . . n steps of the conjunction.
The branching factor for each step is deduced using symbolic execution of the
conjunction, replacing each variable in a literal with a Skolem instance. Skolem
instantiation is performed using SWI-Prolog attributed variables [5].

7 Optimising the conjunction

With a good and quick to compute metric for the complexity of a particular
order, the optimisation problem is reduced to a generate-and-test problem. A
conjunction of N members can be ordered in N ! different ways. As we have seen
actual examples of N nearing 40, naive permutation is not an option. We do not
have to search the entire space however as the order of sub-conjunctions that do
not share any variables can be established independently, after which they can
be ordered on the estimated number of solutions.

Initially, for most conjunctions all literals are related. After having executed a
few literals, the grounded variables often break the remaining literals in multiple
independent groups that can be optimised separately. The algorithm is show in
Fig. 7.

order(conj)

{ make_subgraphs(conj, subconjs);

if (count(subconjs) > 1)

{ maplist(order, subconjs, ordered_subs);

sort_by_complexity(ordered_subs, sorted);

return join_subgraphs(sorted);

} else

{ first = select(conj, rest); (*)

skolem_bind(first);

make_subgraphs(rest, subconjs);

maplist(order, subconjs, ordered_subs);

sort_by_complexity(ordered_subs, sorted);

return first + join_subgraphs(sorted);

}

}

Fig. 7. Generating permutations of a conjunction. Note that select(), marked (*), is
non-deterministic.

10 Wielemaker

Combining this generator with the complexity estimate of Sect. 6 and select-
ing the best completes the order selection process. As the permutation algorithm
only returns results from reordering independent subgraphs and it selects the
best one by sorting the independent subgraphs on their branching, the returned
order is guaranteed to be optimal if the complexity estimate is perfect. In other
words, the maximum performance difference between the optimal order and the
computed order is the error of our estimation function.

8 Optional path expressions and control structures

As explained in Sect. 4, SeRQL optional path expressions are compiled into
(Goal *-> true ; true), where Goal is the result of compiling the path expres-
sion. We must handle Goal as well as other goals appearing in Prolog control
structures resulting from compiling the WHERE clause as a unit. If such units
are conjunctions they are subject to recursive invocation of our ordering algo-
rithm. Please do note that the ordering and complexity of a conjunction depends
on the variables that are already instantiated when the conjunction is entered.
Conjunctions in control structures must therefore be ordered and have their com-
plexity determined as part of estimating the complexity of the outer conjunction,
as illustrated by the following simplified Prolog code fragment:

complexity((Goal0 *-> true ; true),

(Goal *-> true ; true), Complexity) :-

optimise(Goal0, Goal),

complexity(Goal, Complexity).

Optional path expressions do not change the result set of the obligatory part of
the query. It can only produce more variable bindings. Therefore we can simplify
the optimisation process of a conjunction by first splitting it into its obligatory
and optional part and then optimise the obligatory part followed by the optional
part:

optimise(Goal0, Goal) :-

split_optional(Goal0, Obligatory0, Optional0),

optimise(Obligatory0, Obligatory),

skolem_bind(Obligatory),

optimise(Optional0, Optional),

Goal = (Obligatory, Optional).

9 Solving independent path expressions

As we have seen in Sect. 7, the number of distinctive permutations is much
smaller than the number of possible permutations of a goal due to the fact that
after executing a few literals the remainder of the query breaks down into inde-
pendent subgraphs. Independent subgraphs can be solved independently and the
total result is simply the Cartesian product of all partial results. This approach
has several advantages:

Optimising SeRQL path expressions 11

– The complexity of solving two independent goals A and B separately is
b(A) + b(B) rather than b(A) + b(A)× b(B).

– If any of the independent goals has no solutions we can abort the whole
query and report it has no solutions.

– The subgoals can be solved in parallel.
– The result-set can be expressed as the Cartesian product of partial results,

requiring much less communication between server and client.
– It eliminates the need for the ‘sort by complexity’ step in Fig. 7.

This optimisation can be performed after the reordering. It simply does
symbolic evaluation and Skolem instantiation of the conjunction statement-by-
statement and splits the remainder into subgraphs. If conjunction is represented
as a list, the simplified Prolog code fragment below suffices.

cartesian(Conjunction, Carhesian) :-

append(Before, After, Conjunction),

skolem_bind(Before),

make_subgraphs(After, SubGraphs),

SubGraphs = [_,_|_], !, % demand at least two

append(Before, serql_carthesian(SubGraphs), Carhesian).

cartesian(Conjunction, Conjunction).

This optimisation can be performed recursively on the created independent sub-
graphs as well as on conjunctions inside control structures.

10 Results

The total code size of the server is approximately 6,700 lines (including com-
ments, but excluding the 25-line GPL file headers). Major categories are show
in Tab. 1. We think it is not realistic to compare this to the 86,000 lines of Java
code spread over 439 files that make up Sesame. Although both systems share
considerable functionality, they differ too much in functionality and what parts
are reused from the respective libraries to make a detailed comparison feasible.

Category lines

HTTP server actions 2,521
Entailment modules (3) 281
Result I/O (HTML, RDF/XML, Turtle) 1,307
SeRQL runtime library 192
SeRQL parser and naive compiler 874
Optimiser 878
Miscellaneous 647

Table 1. Size of the various components, counted in lines. RDF/XML I/O is only a
wrapper around the SWI-Prolog RDF library.

12 Wielemaker

We have evaluated our optimiser on two domains, the already mentioned
WordNet and an RDF database about cultural relations in Spain with real-life
queries on this database. Measurements have been executed on a dual AMD
2600+ machine running SuSE Linux and SWI-Prolog 5.5.15.

We have tested our optimiser on artificial as well as real-life SeRQL queries.
In all observed cases the optimisation time is only a modest fraction of the
execution time of the optimal order as well as generally shorter than the time
required to parse the query.

First we study the example of Fig. 6. Our optimiser converts either translation
into the goal shown in Fig. 8. The code for s1/1 was handcrafted by us and can
be considered an educated guess for best performance. The result of the optimiser
came as a surprise, but actual testing proved the code of Fig. 8 is 1.7 times faster
than the code of s1/1 and indeed the fastest possible. The optimiser requires
only 90ms, or just 4.3% of the execution time for the optimal solution.

q(L) :-

rdf(S1, rdf:type, C1),

rdf(S1, wns:wordForm, L),

rdf(C2, rdfs:subClassOf, wns:’LexicalConcept’),

rdf(S2, rdf:type, C2),

rdf(S2, wns:wordForm, L),

C1 \== C2,

rdf(C1, rdfs:subClassOf, wns:LexicalConcept))

Fig. 8. Optimised WordNet query

The second test-set consisted of three queries on a database of 97,431 triples
coming from a real project carried out at Isoco6 These queries were selected
because Sesame [3] could not answer them (2 out of 3) or performed poorly. Later
examination revealed these queries consisted of multiple largely independent
sub-queries, turning the result in a huge Cartesian product. Splitting them into
multiple queries turned them into manageable queries for Sesame. Exploiting the
analysis of independent path expressions described in Sect. 9, our server does
not need this rewrite. The results are shown in Tab. 2. We could only verify the
result of the 2nd query against Sesame, which returns the same 3,826 solutions
in 132.72 seconds.

11 Related Work

Using logic for Semantic Web processing has been explored by various research
groups. See for example [12] which exploits Denotational Semantics to provide
a structured mapping from language to semantics. Most of these approaches

6 www.isoco.com

Optimising SeRQL path expressions 13

time (ms) complexity time (s)
Id Edges optimise initial final speedup total solutions

1 38 10ms 1.4e16 1.4e10 1e6 2.48s 79,778,496
2 30 10ms 2e13 1.3e5 1.7e8 0.51s 3,826
3 29 10ms 1.4315 5.1e7 2.7e7 11.7s 266,251,076

Table 2. Results on complex queries. The engine has been modified slightly to return
the Cartesian product as a description instead of expanding it as the expansion does
not fit in memory.

concentrate on correctness, while we concentrate on engineering issues and per-
formance.

Much work has been done on optimising Prolog queries as well as database
joins by reordering. We specifically refer to the work of Struyf and Blockeel [16]
because it is recent and both the problem and solution are closely related. They
describe the generation of programs through ILP [11]. The ILP system itself
does not consider ordering for optimal execution performance, which is similar
to compiling declarative SeRQL statements not producing optimal programs. In
ILP, the generated program must be used to test a large number of positive and
negative examples. Optimising the program before running is often worthwhile.

The described ILP problem differs in some places. First of all, for ILP one
only has to prove that a certain program, given a certain input succeeds or fails,
i.e. goals are ground. This implies they can use the cut to separate independent
parts of the conjunction (section 4.2 of [16]). As we have non-ground goals and
are interested in all distinct results we cannot use cuts but instead use the Carte-
sian product approach described in Sect. 9. Second, Struyf and Blockeel claim
complexity of generate-and-test (order N !) is not a problem with the observed
conjunctions with a maximum length of 6. We have seen conjunctions with 40 lit-
erals. We introduce breaking the conjunctions dynamically in independent parts
(Sect. 7) can deal with this issue. Finally, the uniform nature of our data gave
us the opportunity to build the required estimates for non-determinism into the
low-level data structures and maintain them at low cost (Sect. 6).

12 Discussion

Sofar, we have been using Prolog in the Semantic Web domain for reasoning
for annotation [13]. This reasoning was not based on formal Semantic Web lan-
guages, but using ad-hoc defined schemas. With our SeRQL implementation
we have proven that we can deal completely and efficiently with RDFS. We
have proven that SWI-Prolog, supporting threading, attributed variables and
equipped with extensive libraries for graphics, XML, RDF triple store and HTTP
is a suitable tool for building a variety of Semantic Web applications, covering
both interactive and network server applications.

14 Wielemaker

As the Semantic Web evolves with more powerful formal languages such as
OWL and SWRL7, it becomes unlikely we can compile these easily to efficient
Prolog programs. TRIPLE [15] is an example of an F-logic based RDF query
language realised in XSB Prolog [7]. We believe extensions to Prolog that facil-
itate more declarative behaviour will prove necessary to deal with the Semantic
Web. Both XSB’s tabling and constraint logic programming, notably CHR [14]
are promising extensions.

13 Conclusions

We have employed Prolog for storing and querying Semantic Web data. In [18] we
have demonstrated the performance and scalability of the storage module for use
in Prolog. In this paper we have demonstrated the feasibility realising an efficient
implementation of the declarative SeRQL RDF query language in Prolog. The
resulting system can easily be expanded with new entailment reasoners and can
be accessed from both Prolog and Java through the common HTTP interface.

The provided algorithm for optimising the matching process of SeRQL
queries reaches optimal results if the complexity estimate is perfect. The worse
case complexity of ordering a conjunction is poor, but for tested artificial and
real-life queries the optimisation time is shorter than the time needed to execute
the optimised query. For trivial queries this is not the case, but here the response
time is dictated by the HTTP protocol overhead and parsing the SeRQL query.

The SeRQL server is available under the SWI-Prolog LGPL/GPL license
from http://www.swi-prolog.org/packages/SeRQL.

Acknowledgements

We would like to thank Oscar Corcho for providing real-life data and queries.
This research has been carried out as part of the HOPS project8, IST-2002-
507967. Jeen Broekstra provided useful explanations on SeRQL.

References

1. Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic Web. Scientific
American, 284(5):34–43, May 2001.

2. D. Brickley and R. V. Guha (Eds). Resource description framework
(RDF) schema specification 1.0. W3C Recommendation, March 2000.
http://www.w3.org/TR/2000/CR-rdf-schema-20000327/.

3. Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen. Sesame: A generic
architecture for storing and querying rdf and rdf schema. In I. Horrocks and
J. Hendler, editors, Proceedings of the First Internation Semantic Web Conference,
number 2342 in Lecture Notes in Computer Science, pages 54–68. Springer Verlag,
July 2002.

7 http://www.daml.org/2003/11/swrl
8 http://www.hops-fp6.org

Optimising SeRQL path expressions 15

4. Mike Dean, Guus Schreiber, Frank van Harmelen, Jim Hendler, Ian Horrocks,
Deborah L. McGuinness, Peter F. Patel-Schneider, and Lynn Andrea Stein. OWL
web ontology language reference. Working draft, W3C, March 2003.

5. Bart Demoen. Dynamic attributes, their hProlog implementation,
and a first evaluation. Report CW 350, Department of Com-
puter Science, K.U.Leuven, Leuven, Belgium, oct 2002. URL =
http://www.cs.kuleuven.ac.be/publicaties/rapporten/cw/CW350.abs.html.

6. Carlos Escalante. A simple model of prolog’s performance: extensional predicates.
In CASCON ’93: Proceedings of the 1993 conference of the Centre for Advanced
Studies on Collaborative research, pages 1119–1132. IBM Press, 1993.

7. Juliana Freire, David S. Warren, Konstantinos Sagonas, Prasad Rao, and Terrance
Swift. XSB: A system for efficiently computing well-founded semantics. In Proceed-
ings of LPNMR 97, pages 430–440, Berlin, Germany, jan 1997. Springer Verlag.
LNCS 1265.

8. Markian M. Googley and Benjamin W. WAH. Efficient reordering of PROLOG
programs. IEEE Transactions on Knowledge and Data Engineering, pages 470–482,
1989.

9. Peter Haase, Jeen Broekstra, Andreas Eberhart, and Raphael Volz. A comparison
of rdf query languages. In Proceedings of the Third International Semantic Web
Conference, Hi roshima, Japan, 2004., NOV 2004.

10. G. Miller. WordNet: A lexical database for english. Comm. ACM, 38(11), Novem-
ber 1995.

11. S. Muggleton and L. De Raedt. Inductive Logic Programming: Theory and Method.
Journal of Logic Programming, 19-20:629–679, 1994.

12. Kunal Patel and Gopal Gupta. Semantic processing of the semantic web. Lecture
Notes in Computer Science, 2870:80–95, January 2003.

13. Guus Schreiber, Barbara Dubbeldam, Jan Wielemaker, and Bob Wielinga.
Ontology-based photo annotation. IEEE Intelligent Systems, may/june 2001.

14. Tom Schrijvers and Bart Demoen. The K.U. Leuven CHR system: implementation
and application. In Thom Frühwirth and Marc Meister, editors, First Workshop
on Constraint Handling Rules: Selected Contributions, pages 430–440, 2004. ISSN
0939-5091.

15. Michael Sintek and Stefan Decker. TRIPLE — A query, inference, and trans-
formation language for the Semantic Web. Lecture Notes in Computer Science,
2342:364–, 2002.

16. J. Struyf and H. Blockeel. Query optimization in inductive logic programming by
reordering literals. In T. Horváth and A. Yamamoto, editors, Proceedings of the
13th International Conference on Inductive Logic Programming, volume 2835 of
Lecture Notes in Artificial Intelligence, pages 329–346. Springer-Verlag, 2003.

17. Jan Wielemaker. Native preemptive threads in SWI-Prolog. In Catuscia
Palamidessi, editor, Practical Aspects of Declarative Languages, pages 331–345,
Berlin, Germany, december 2003. Springer Verlag. LNCS 2916.

18. Jan Wielemaker, Guus Schreiber, and Bob Wielinga. Prolog-based infrastructure
for RDF: performance and scalability. In D. Fensel, K. Sycara, and J. Mylopoulos,
editors, The Semantic Web - Proceedings ISWC’03, Sanibel Island, Florida, pages
644–658, Berlin, Germany, october 2003. Springer Verlag. LNCS 2870.

