SWI-Prolog External Database

Jan Wielemaker
SWI,
University of Amsterdam

The Netherlands
E-mail: jan@swi.psy.uva.nl

June 26, 2000

Abstract

This package realised external storage of Prolog terms based on the Berkeley DB
library from Sleepycat Software. The DB library implements modular support for the
bottom layers of a database. The database itself maps unconstrained keys onto values.
Both key and value are binary blobs.

The SWI-Prolog interface for DB allows for fast storage of general Prolog terms in the
database.

Contents
1 Introduction

2 The DB interface
2.1 Opening a database L
2.2 Accessing adatabase
2.3 Transactions Lo e e
2.4 Notes on signals and other interrupts

3

2.5 Initialisation

Installation
3.1 DB version
3.2 Unix systems

ok W w NN

(S

1 Introduction

The native Prolog database is not very well suited for either very large data-sets or dynamically
changing large data-sets that need to be communicated between Prolog instances or need to
be safely guarded against system failure. These cases ask for an external database that can
be attached quickly and provides protection against system failure.

The Berkeley DB package by SleepyCat software is a GPL’ed library realising the bottom-
layers of a database. It is a modular system, which in it’s simplest deals with resource
management on a mapped file and in its most complex form deals with network transparency,
transaction management, locking, recovery, life-backup, etc.

The DB library maps keys to values. Optionally multiple values can be associated with a
key. Both key and value are arbitrary-length binary objects.

This package stores arbitrary Prolog terms, using PL_record_external() introduced in
SWI-Prolog 3.3.7, in the database. It provides an interface similar to the recorded-database
(recorda/3). In the future we plan to link this interface transparently to a predicate.

2 The DB interface

2.1 Opening a database

db_open(+File, +Mode, -DB, +Options)
Open a file holding a database. Mode is one of read, providing read-only access or
update, providing read/write access. Options is a list of options. Currently supported
options are:

duplicates(bool)
Do/do not allow for duplicate values on the same key. Default is not to allow for
duplicates.

database(Name)
If File contains multiple databases, address the named database in the file. A DB
file can only consist of multiple databases if the db_open/4 call that created it
specified this argument. Each database in the file has its own characteristics.

key (Type)

Specify the type of the key. Allowed values are:

term
Key is a Prolog term (default). This type allows for representing arbitrary
Prolog data in both keys and value. The representation is space-efficient, but
Prolog specific. See PL_record_external() in the SWI-Prolog Reference Manual
for details on the representation. The other representations are more neutral.
This implies they are more stable and sharing the DB with other languages is
feasible.

atom
Key is an atom. The text is represented using the character data and its
length.

c_string
Key is an atom. The text is represented as a C 0-terminated string.

c_long
Key is an integer. The value is represented as a native C long in the machines
byte-order.

value(Type)
Specify the type of the value. See key for details.

2.2 Accessing a database

db_put(+DB, +Key, + Value)
Add a new key-value pair to the database. If the database allows for duplicates this
will always succeed, unless a system error occurs.

db_del(+DB, +Key)
Delete all key-value pairs with the named Key from the database. Note that this is
equivalent to db_delall(DB, Key, _).

db_del(+DB, ?Key, ?Value)
Delete the first matching key-value pair from the database. If the database allows
for duplicates, this predicate is non-deterministic. The enumeration performed by this
predicate is the same as for db_get/3.

db_delall(+DB, +Key, ?Value)
Delete all matching key-value pairs from the database. With unbound key this calls
db_del/2.

db_get(+DB, ?Key, -Value)
Query the database. If the database allows for duplicates this predicate is non-deterministic.
If Key is unbound, all keys are enumerated. This mode is especially useful to enumer-
ating the entire content of a database.

db_getall(+DB, +Key, - Value)
Get all values associated with Key. Fails if the key does not exist (as bagof/3).

2.3 Transactions

Using the DB transaction protocol, security against system failure, atomicy of multiple
changes and accessing a database from multiple writers is provided.

Accessing a DB under transactions from Prolog is very simple. First of all, the option
transactions(¢rue) needs to be provided to db_init/1 to initialise the transaction subsys-
tem. Next, the predicate db_transaction/1 may be used to execute multiple updates inside
a transaction.

db_transaction(:Goal)
Start a transaction, execute Goal and terminate the transaction. Only if Goal succeeds,
the transaction is commited. If Goalfails or raises an exception, the transaction is aborted
and db_transaction/1 either fails or rethrows the exception.

Of special interest is the exception

error(package (db, deadlock),)

This exception indicates a deadlock was raised by one of the DB predicates. Deadlocks
may arise if multiple processes or threads access the same keys in a different order. The
DB infra-structure causes one of the processes involved in the deadlock to abort its
transaction. This process may choose to restart the transaction.

For example, a DB application may define {}/1 to realise transactions and restart these
automatically is a deadlock is raised:

{}(Goal) :-
catch(db_transaction(Goal), E, true),
(var(E)
-> true
; E = error(package(db, deadlock), _)
-> { Goal }
; throw (E)
).

2.4 Notes on signals and other interrupts

The Berkeley DB routines are not signal-safe. Without precaution, this implies it is not
possible to interrupt Prolog programs using the DB routines in a safe manner. To im-
prove convinience, interrupt signals are blocked during the execution of the DB calls. As
db_transaction/1 handles aborts gracefully, PrologDB applications can be interrupted and
aborted safely.

Signals other than SIGINT caught during the execution of one of the DB interaction
predicates may leave the DB in an inconsistent state. Fatal signals thrown by other Prolog
or foreign language facilities are handled gracefully.

2.5 Initialisation

db_init(+Options)
Initialise the DB package. This must be done before the first call to db_open/4 and at
maximum once. If db_open/4 is called without calling db_init/1, default initialisation
is used, which is generally suitable for handling small databases without support for
advanced features.

Options is a list of options. The currently supported are listed below. For details, please
refer to the DB manual.

home(Home)
Specify the DB home directory, the directory holding the database files.

config(+ListOfConfig)
Specify a list of configuration options, each option is of the form Name(Value).

mp_size(+Integer)

Size of the memory-pool used for caching.
mp_mmapsize(+Integer)

Maximum size of a DB file mapped entirely into memory.

create(+Bool)
If true, create any underlying file as required. By default, no new files are created.
This option should be set for prograns that create new databases.

logging(+Bool)
Enable logging the DB modifications. Logging enables recovery of databases in case of
system failure. Normally it is used in combination with transactions.

transactions(+Bool)
Enable transactions, providing atomicy of changes and security. Implies logging and
locking. See section 2.3.

3 Installation

3.1 DB version

This package was developed for DB version 3.1. The interface of DB 3.x is fundamentally
different from previous releases and db4pl relies on functionality provided by DB 3.x. Unfor-
tunately many distributions of DB are still based on DB 2.x. Please make sure to install DB
3.1 or later before building db4pl.

3.2 Unix systems

Installation on Unix system uses the commonly found configure, make and make install se-
quence. SWI-Prolog should be installed before building this package. If SWI-Prolog is not
installed as pl, the environment variable PL must be set to the name of the SWI-Prolog
executable. Installation is now accomplished using:

% ./configure
% make
% make install

This installs the foreign libraries in $PLBASE/1ib/$PLARCH and the Prolog library files in
$PLBASE/library, where $PLBASE refers to the SWI-Prolog ‘home-directory’.

Configure recognises the following options in addition to the default GNU configure op-
tions.

--enable-mt
Enable thread-support for the multi-threaded version of SWI-Prolog. Currently not
supported.

--with-db=DIR
Point to the installation-directory of DB 3.x for finding include files and the DB libraries.
For example:

./configure --with-db=/usr/local/BerkeleyDB.3.1

	Introduction
	The DB interface
	Opening a database
	Accessing a database
	Transactions
	Notes on signals and other interrupts
	Initialisation

	Installation
	DB version
	Unix systems

