
SWI-Prolog Spatial Indexing

Willem Robert van Hage
VU University Amsterdam

The Netherlands
E-mail: W.R.van.Hage@vu.nl

September 12, 2017

Abstract

SWI-Prolog interface to Spatial Index and GEOS libraries, providing spatial indexing of
URI’s. Supports import and export to GML, KML, and RDF with GeoRSS Simple, GeoRSS
GML, and W3C WGS84 vocabulary properties.

Nota bene that the spatialindex and GEOS C++ libraries have to be installed separately
for this module to work.

1

Contents

1 Introduction 3

2 Shapes as Prolog Terms 3

3 Adding, Removing, and Bulkloading Shapes 3

4 Query types 4

5 Importing and Exporting Shapes 5

6 Integration of Space and Semantics 5

7 Architecture 6
7.1 Incremental Search and Non-determinism . 6

8 Documentation 7
8.1 library(space/space): Core spatial database . 7
8.2 library(space/georss) . 9
8.3 library(space/wgs84) . 9
8.4 library(space/freebase) . 10
8.5 library(space/dbpedia) . 10
8.6 library(space/wkt) . 10
8.7 library(space/kml) . 10
8.8 library(space/gml) . 12
8.9 library(space/space web loader) . 12

2

1 Introduction

The Space package [1] provides spatial indexing for SWI-Prolog. It is based on Geometry Engine
Open Source and the Spatial Index Library.

2 Shapes as Prolog Terms

The central objects of the Space package are pairs, 〈u, s〉 of a URI, u, and its associated shape, s. The
URIs are linked to the shapes with the uri shape/2 predicate. We will support all OpenGIS Simple
Features, points, linestrings, polygons (with ≥ 0 holes), multi-points, multi-polygons, and geometry
collections; and some utility shapes like box and circle regions.1

Both the URIs and the shapes are represented as Prolog terms. This makes them first-class Prolog
citizens, which allows the construction and transformation of shapes using regular Prolog clauses,
or Definite Clause Grammars (DCGs). We support input from locations encoded in RDF with the
W3C WGS84 vocabulary and with the GeoRSS Simple properties and the GeoRSS where property
leading to an XML literal consisting of a GML element. The uri shape/2 predicate searches for
URI-Shape pairs in SWI-Prolog’s RDF triple store. It matches URIs to Shapes by using WGS84 and
GeoRSS properties. For example, a URI u is associated with the shape s =point(lat, long) if the
triple store contains the triples: 〈u, wgs84 pos:lat , lat〉 and 〈u, wgs84 pos:long , long〉; or
when it contains one of the following triples:
〈u, georss:point,"lat long"〉 or 〈u, georss:where,"<gml:Point><gml:pos> lat long
</gml:pos></gml:Point>"〉. The XML literal containing the GML description of the geomet-
ric shape is parsed with a DCG that can also be used to generate GML from Prolog shape terms.

?- shape(point(52.3325,4.8673)),
shape(box(point(52.3324,4.8621),point(52.3348,4.8684))),
shape(
polygon([[point(52.3632,4.981)|_], % the outer shell of the polygon

[point(52.3631,4.9815)|_] |_ % any number of holes 0..*
])).

true.
%% uri_shape(?URI, ?Shape) is nondet.
?- uri_shape(’http://www.example.org/myoffice’, Shape). % read from RDF
Shape = point(52.3325,4.8673).

3 Adding, Removing, and Bulkloading Shapes

The spatial index can be modified in two ways: By inserting or retracting single URI-shape pairs
respectively using the space assert/3, or the space retract/3 predicate; or by loading
many pairs at once using the space bulkload/3 predicate or its parameterless counterpart
space index all/0 which simply loads all the shapes it can find with the uri shape/2 pred-
icate into the default index. The former method is best for small manipulations of indices, while the

1The current version of the Space package, 0.1.2, only supports points, linestrings, and polygons (with holes) and box
regions. Development on the other (multi-)shape types is underway.

3

http://geos.refractions.net/
http://geos.refractions.net/
http://trac.gispython.org/spatialindex/
http://www.w3.org/2003/01/geo/
http://georss.org

latter method is best for the loading of large numbers of URI-shape pairs into an index. The Space
package can deal with multiple indices to make it possible to divide sets of features. Indices are
identified with a name handle, which can be any Prolog atom.2 The actual indexing of the shapes
is performed using lazy evaluation. Assertions and retractions are put on a queue that belongs to an
index. The queue is committed to the index whenever a query is performed, or when a different kind
of modification is called for (i.e. when the queue contains assertions and a retraction is requested or
vice versa).

?- space_assert(ex:myoffice, point(52.3325,4.8673), demo_index). % only adds it to the ’demo_index’ queue
true.
?- space_contains(box(point(52.3324,4.8621), point(52.3348,4.8684)),

Cont, demo_index).
% uses ’demo_index’, so triggers a call to space_index(’demo_index’).
Cont = ’http://www.example.org/myoffice’ . % first instantiation, etc.

?- space_bulkload(space, uri_shape, demo_index).
true.

% If the KML Geometry elements have an ID attribute,
% you can load them from a file, e.g. ’office.kml’, like this:
?- space_bulkload(kml_file_uri_shape(’office.kml’), ’demo_index’).
% Added 12 URI-Shape pairs to demo_index
true.

% You can insert the same objects one by one like this:
?- forall(kml_file_uri_shape(’office.kml’, Uri, Shape),

space_assert(Uri, Shape, ’demo_index’)).
true.

4 Query types

We chose three basic spatial query types as our basic building blocks: containment, intersection, and
nearest neighbor. These three query types are implemented as pure Prolog predicates, respectively
space contains/3, space intersects/3, and space nearest/3. These predicates
work completely analogously, taking an index handle and a query shape to retrieve the URI of a shape
matching the query, which is bound to the second argument. Any successive calls to the predicate
try to re-instantiate the second argument with a different matching URI. The results of containment
and intersection queries are instantiated in no particular order, while the nearest neighbor results are
instantiated in order of increasing distance to the query shape. The space nearest bounded/4
predicate is a containment query based on space nearest/3, which returns objects within a cer-
tain range of the query shape in order of increasing distance.

2Every predicate in the Space package that must be given an index handle also has an abbreviated version without the
index handle argument which automatically uses the default index.

4

?- space_nearest(point(52.3325,4.8673), N, ’demo_index’).
N = ’http://sws.geonames.org/2759113/’ ; % retry, ask for more
N = ’http://sws.geonames.org/2752058/’ ; % retry
N = ’http://sws.geonames.org/2754074/’ . % cut, satisfied

5 Importing and Exporting Shapes

Besides supporting input from RDF we support input and output for other standards, likeGML,
KML and WKT. All shapes can be converted from and to these standards with the gml shape/2,
kml shape/2, and wkt shape/2 predicates.

% Convert a WKT shape into GML and KML}
?- wkt_shape(’POINT (52.3325 4.8673)’, Shape), % instantiate from WKT

gml_shape(GML, Shape),
kml_shape(KML, Shape).

Shape = point(52.3325, 4.8673),
GML = ’<gml:Point><gml:pos>52.3325 4.8673</gml:pos></gml:Point>’,
KML = ’<Point><coordinates>4.8673,52.3325</coordinates></Point>’ .

6 Integration of Space and Semantics

The non-deterministic implementation of the queries makes them behave like a lazy stream of solu-
tions. This allows tight integration with other types of reasoning, like RDF(S) and OWL reasoning or
other Prolog rules. An example of combined RDF and spatial reasoning is shown below.

% Finds nearest railway stations in the province Utrecht (in GeoNames)
?- uri_shape(ex:myoffice, Office),

rdf(Utrecht, geo:name, literal(’Provincie Utrecht’)),
space_nearest(Office, Near),
% ’S’ stands for a spot, like a building, ’RSTN’ for railway station
rdf(Near, geo:featureCode, geo:’S.RSTN’),
% ’Near’ connected to ’Utrecht’ by transitive ’parentFeature’
rdf_reachable(Near, geo:parentFeature, Utrecht),
rdf(Near, geo:name, literal(Name)), % fetch name of ’Near’
uri_shape(Near, Station), % fetch shape of station
% compute actual distance in km}
space_distance_greatcircle(Office, Station, Distance, km).

Utrecht = ’http://sws.geonames.org/2745909/’, % first instantiation
Near = ’http://sws.geonames.org/6639765/’,
Name = ’Station Abcoude’ ,
Station = point(52.2761, 4.97904),
Distance = 9.85408 ; % etc.

5

http://www.opengeospatial.org/standards/gml
http://code.google.com/apis/kml/
http://en.wikipedia.org/wiki/Well-known_text

Utrecht = ’http://sws.geonames.org/2745909/’, % second instantiation
Near = ’http://sws.geonames.org/6639764/’,
Name = ’Station Breukelen’ ,
Station = point(52.17, 4.9906),
Distance = 19.9199 . % etc.

Integration of multiple spatial queries can be done in the same way. Since the queries return URIs an
intermediate URI-Shape predicate is necessary to get a shape that can be used as a query. An example
is shown below.

% Find features inside nearby polygons.
?- uri_shape(ex:myoffice, Office),

space_nearest(Office, NearURI),
uri_shape(NearURI, NearShape), % look up the shape of the URI ’Near’
NearShape = polygon(_), % assert that it must be a polygon}
space_contains(NearShape, Contained).

7 Architecture

The Space package consists of C++ and Prolog code. The main component is the Prolog mod-
ule space.pl. All parsing and generation of input and output formats is done in Prolog. All in-
dex manipulation is done through the foreign language interface (FLI) from Prolog to C++. The
space bulkload/3 predicate also communicates back across the FLI from C++ to Prolog, allow-
ing the indexing functions to ask for candidates to index from the Prolog database, for example, by
calling the uri shape/2 predicate.

7.1 Incremental Search and Non-determinism

The three search operations provided by the Space package all yield their results incrementally, i.e.
one at a time. Prolog predicates actually do not have return values, but instantiate parameters. Mul-
tiple return values are returned by subsequently instantiating the same variable, so the first call to a
predicate can make different variable instantiations than the second call. This standard support of
non-deterministic behavior makes it easy to write incremental algorithms in Prolog.

Internally, the search operations are handled by C++ functions that work on an R*-tree index
from the Spatial Index Library [2]. The C++ functions are accessed with the SWI-Prolog foreign
language interface. To implement non-deterministic behavior the query functions have to store their
state between successive calls and Prolog has to be aware which state is relevant to every call.

Every search query creates an instance of a SpatialIndex::IQueryStrategy class (the Incremen-
talNearestNeighborStrategy class for INN queries, the IncrementalRangeQuery for containment and
intersection queries). This class contains the search algorithm, accesses the R*-tree index, and stores
the current state of the algorithm. For containment and intersection queries the results can be re-
turned in any particular order so implementing non-deterministic behavior simply involves storing a
pointer to a node in the R*-tree and returning every subsequent matching object. For nearest neighbor
queries keeping state is slightly more complicated, because it is necessary to keep a priority queue of
candidate results at all times to guarantee that the results are returned in order of increasing proximity.

6

The Spatial Index library does not include an incremental nearest neighbor, so we implemented
an adaptation of the algorithm described in [3] as an IQueryStrategy. The original algorithm emits
results, for example, with a callback function, without breaking from the search loop that finds all
matches. Our adaptation breaks the search loop at every matching object and stores a handle to the
state (including the priority queue) so that it can restart the search loop where it left off. This makes it
possible to tie the query strategy into the non-deterministic foreign language interface of SWI-Prolog
with very little time overhead. A pointer to the IQueryStrategy instance is stored on the Prolog stack,
so that every successive call to the procedure knows with which query to continue.

An alternative implementation would be to take the exact IncNearest algorithm described in [3]
and to emit the results into a queue. The Prolog stack would then contain a pointer to the queue. Every
successive call would dequeue a result from the queue. This strategy is less time efficient, because of
two reasons. It does not halt after each match, so it is less efficient when looking for few results. It
requires two separate processes to run. One to find results, the other to poll the queue. This means
there is some process management and communication overhead.

8 Documentation

8.1 library(space/space): Core spatial database

set space(+Option) [det]

set space(+IndexName, +Option) [det]

This predicate can be used to change the options of a spatial index (or de default index for
set space/1). Some options, like rtree_storage(S) where S is disk or memory only
have effect after clearing or bulkloading. Others, take effect immediately on a running index.
More documentation will be provided in the near future.

space assert(+URI, +Shape, +IndexName) [det]

space assert(+URI, +Shape) [det]

Insert URI with associated Shape in the queue to be inserted into the index with name
IndexName or the default index. Indexing happens lazily at the next call of a query or manually
by calling space index/1.

space retract(+URI, +Shape, +IndexName) [det]

space retract(+URI, +Shape) [det]

Insert URI with associated Shape in the queue to be removed into the index with name
IndexName or the default index. Indexing happens lazily at the next call of a query or manually
by calling space index/1.

space index(+IndexName) [det]

space index [det]

Processes all asserts or retracts in the space queue for index IndexName or the default index if
no index is specified.

space clear(+IndexName) [det]

space clear [det]

Clears index IndexName or the default index if no index is specified, removing all of its
contents.

7

space bulkload(:Closure, +IndexName) [det]

space bulkload(:Closure) [det]

space bulkload [det]

Fast loading of many Shapes into the index IndexName. Closure is called with two additional
arguments: URI and Shape, that finds candidate URI-Shape pairs to index in the index
IndexName.

space bulkload/0 defaults to uri shape/2 for :Closure.

See also the uri shape/2 predicate for an example of a suitable functor.

space contains(+Query, ?Cont, +IndexName) [nondet]

space contains(+Query, ?Cont) [nondet]

Containment query. Unifies Cont with shapes contained in Query Shape (or shape of Query
URI) according to index IndexName or the default index.

space intersects(+Query, ?Inter, +IndexName) [nondet]

space intersects(+Query, ?Inter) [nondet]

Intersection query. Unifies Inter with shapes intersecting with Query Shape (or Shape of Query
URI) according to index IndexName or the default index. (intersection subsumes containment)

space nearest(+Query, -Near, +IndexName) [nondet]

space nearest(+Query, -Near) [nondet]

Incremental Nearest-Neighbor query. Unifies Near with shapes in order of increasing distance
to Query Shape (or Shape of Query URI) according to index IndexName or the default index.

uri shape(?URI, ?Shape) [nondet]

Finds pairs of URIs and their corresponding Shapes based on WGS84 RDF properties (e.g.
wgs84:lat), GeoRSS Simple properties (e.g. georss:polygon), and GeoRSS GML properties
(e.g. georss:where).

uri shape/2 is a dynamic predicate, which means it can be extended. If you use
uri shape/2 in this way, the URI argument has to be a canonical URI, not a QName.

uri shape(?URI, ?Shape, +Source) [nondet]

Finds pairs of URIs and their corresponding Shapes using uri shape/2 from RDF that was
loaded from a given Source.

space index all(+IndexName) [det]

space index all [det]

Loads all URI-Shape pairs found with uri shape/2 into index IndexName or the default
index name.

shape(+Shape) [det]

Checks whether Shape is a valid supported shape.

space distance(+Point1, +Point2, -Distance) [det]

Calculates the distance between Point1 and Point2 by default using pythagorean distance.

See also space distance greatcircle/4 for great circle distance.

8

space distance greatcircle(+Point1, +Point2, -Dist) [det]

space distance greatcircle(+Point1, +Point2, -Dist, +Unit) [det]

Calculates great circle distance between Point1 and Point2 in the specified Unit, which can take
as a value km (kilometers) or nm (nautical miles). By default, nautical miles are used.

8.2 library(space/georss)

georss candidate(?URI, ?Shape) [nondet]

Finds URI-Shape pairs by searching for RDF triples that link URI to a Shape with GeoRSS
RDF properties (e.g. georss:where, georss:line, georss:polygon). Both GeoRSS Simple and
GML are supported.

georss candidate(?URI, ?Shape, +Source) [nondet]

Finds URI-Shape pairs using georss candidate/2 in RDF that was loaded from a certain
Source.

georss simple candidate(?URI, ?Shape) [nondet]

Finds URI-Shape pairs by searching for GeoRSS Simple properties (e.g. georss:point,
georss:line, georss:polygon) in the RDF database.

georss uri shape triple(+URI, +Shape, -Subject, -Predicate, -Object) [det]

georss uri shape triple(-URI, -Shape, +Subject, +Predicate, +Object) [det]

Converts between a URI-Shape pair and its GeoRSS simple RDF triple form.

georss gml candidate(?URI, ?Shape) [nondet]

Finds URI-Shape pairs by searching for GeoRSS GML properties (i.e. georss:where) in the
RDF database. Uses gml shape/2 to parse the XMLLiteral representing the GML shape.

8.3 library(space/wgs84)

wgs84 candidate(?URI, ?Point) [nondet]

Finds URI-Shape pairs of RDF resources that are place-tagged with W3C WGS84 properties
(i.e. lat, long, alt). Point = point(?Lat,?Long) ; Point = point(?Lat,?Long,?Alt).

wgs84 candidate(?URI, ?Point, +Source) [nondet]

Finds URI-Shape pairs of RDF resources that are place-tagged with W3C WGS84 properties
(i.e. lat, long, alt). From RDF that was loaded from a certain Source.

lat(?URI, ?Lat) [nondet]

Finds the WGS84 latitude of resource URI (and vice versa) using the rdf db index. Lat is a
number.

long(?URI, ?Long) [nondet]

Finds the WGS84 longitude of resource URI (and vice versa) using the rdf db index. Long is a
number.

alt(?URI, ?Alt) [nondet]

Finds the WGS84 altitude of resource URI (and vice versa) using the rdf db index. Alt is a
number.

9

coordinates(?URI, ?Lat, ?Long) [nondet]

coordinates(?URI, ?Lat, ?Long, ?Alt) [nondet]

Finds the WGS84 latitude, longitude and possibly altitude of resource URI (and vice versa)
using the rdf db index. Lat, Long, and Alt are numbers.

8.4 library(space/freebase)

freebase candidate(?URI, ?Point) [nondet]

Finds URI-Shape pairs of RDF resource that are place-tagged with Freebase’s loca-
tion.location.geoposition notation that capture WGS84 latitude/longitude positions.

freebase candidate(?URI, ?Point, ?Source) [nondet]

Finds URI-Shape pairs of RDF resource that are place-tagged with Freebase’s loca-
tion.location.geoposition notation that capture WGS84 latitude/longitude positions. From RDF
that was loaded from a certain Source.

8.5 library(space/dbpedia)

dbpedia candidate(?URI, ?Point) [nondet]

Finds URI-Shape pairs of RDF resource that are place-tagged with DBpedia’s coordinaten-
Property notation that capture WGS84 latitude/longitude positions.

dbpedia candidate(?URI, ?Point, ?Source) [nondet]

Finds URI-Shape pairs of RDF resource that are place-tagged with DBpedia’s coordinaten-
Property notation that capture WGS84 latitude/longitude positions. From RDF that was loaded
from a certain Source.

8.6 library(space/wkt)

wkt shape(?WKT, ?Shape) [semidet]

Converts between the WKT serialization of a Shape and its native Prolog term representation.

8.7 library(space/kml)

kml file to georss(+KMLfile) [det]

kml file to georss(+KMLfile, +RDFfile) [det]

Converts the contents of an KML file into GeoRSS RDF in the RDF database of Prolog. The
Geometries are converted to GeoRSS properties and values. Documents, Folders, etc. are
ignored. MultiGeometry objects are expanded into separate simple Geometries. Geometries
with an XML ID are assigned that ID as URI, other Geometries are assigned a RDF blank
node. The kml:name and kml:description are translated to RDF properties.

georss to kml file(+KMLfile) [det]

georss to kml file(+KMLfile, +Options) [det]

Converts the contents of the RDF database of Prolog into a KML file without style information
and without Folders. kml:name and kml:description properties in the RDF database are
converted to their KML counterparts. Options can be used to pass Document level options,
for example, the name of the dataset. Options can also include a graph(Graph) option to
specify which RDF named graph should be converted to KML.

10

kml shape(?Stream, ?Shape) [semidet]

kml shape(?Stream, ?Shape, ?Attributes, ?Content) [semidet]

Converts between the KML serialization of a shape and its internal Prolog term representation.
Attributes and Content can hold additional attributes and XML content elements of the KML,
like ID, name, or styleUrl.

kml uri shape(?KML, ?URI, ?Shape) [semidet]

Converts between the KML serialization of a URI-shape pair and its internal Prolog term rep-
resentation. It is assumed the KML Geometry element has a ID attribute specifying the URI of
the shape. e.g.

<PointID="http://example.org/point1"><coordinates>52.37,4.89</coordinates></Point>

kml file shape(+File, ?Shape) [semidet]

kml file shape(+File, ?Shape, ?Attributes, ?Content) [semidet]

Reads shapes from a KML file using kml shape/2. kml file shape/4
also reads extra attributes and elements of the KML Geometry. e.g. <Point
targetId=”NCName”><extrude>0</extrude>...</Point> will, besides parsing the Point, also
instantiate Content with [extrude(0)] and Attributes with [targetId(’NCName’)].

kml file uri shape(+File, ?URI, ?Shape) [semidet]

Reads URI-shape pairs from File using kml uri shape/2.

kml save header(+Stream, +Options) [semidet]

Outputs a KML header to Stream. This can be followed by calls to kml save shape/3 and
kml save footer/1.

Options is an option list that can contain the option name(Name) specifying the Name of the
document.

To be done options to configure optional entities, like styles

kml save shape(+Stream, +Shape, +Options) [semidet]

Outputs a KML serialization of Shape to Stream. This can be preceded by a call to
kml save header/2 and followed by more calls to kml save shape/3 and a call to
kml save footer/1.

Options is an option list that can contain the option attr(+List) or content(+List)
that can be used to add additional attributes or xml element content to a shape. This can be used
to specify things like the ID or name.

Layout elements, like Placemark and Folder, have their own separate extra attributes to sup-
ply additional attributes and content. These can contain the special terms geom attributes and
geom content that pass their content to the shape contained by the Placemark. For example,
rendering a Placemark with the ID ”placemark12” of an extruded Point shape with its URI as
name of the Placemark and as ID of the shape and an additional styleUrl works as follows:

kml_save_shape(Stream,
placemark(point(53.0,3.9),

[id(placemark12),

11

geom_attributes([id(URI)])
],
[name(URI),styleUrl(URI),

geom_content([extrude(1)])
]),

[]).

kml save footer(+Stream) [det]

Outputs a KML footer to stream Stream. This can be preceded by calls to
kml save header/2 and kml save shape/3.

8.8 library(space/gml)

gml shape(?GML, ?Shape) [semidet]

Converts between the GML serialization of a shape and its internal Prolog term representation.

8.9 library(space/space web loader)

space load url(+URL) [det]

Retrieve RDF over HTTP from a URL, load it in the rdf db and index all URI-Shape pairs that
can be found in it into the default index.

space load url(+URL, +Options) [det]

Load using space load url/1, given extra options.

index(+IndexName)
Index the URI-Shape pairs into index named IndexName.

graph(+Graph)
Store the URI-Shape pairs in the named graph Graph. The pairs are recorded as
uri_shape(URI,Shape,Graph).

space unload url(+URL) [det]

Unload the RDF that was fetched from URL and remove all URI-Shape pairs that are contained
in it from the default index.

space unload url(+URL, +Options) [det]

Unload the RDF that was fetched from URL and remove all URI-Shape pairs that are contained
in it. Accepts extra options:

index(+IndexName)
Remove from the index named IndexName.

graph(+Graph)
Remove the URI-Shape pairs from the named graph Graph.

space crawl url(+URL) [det]

Retrieve RDF over HTTP from a URL, load it in the rdf db and index all URI-Shape pairs that
can be found in it into the default index. Also attempt to resolve all URIs that appear as object

12

in a link property statement downloaded from the URL. Retrieve these URIs and process them
in the same way. Iterate this process until there are no new links that have not already been
crawled.

space crawl url(+URL, +Options) [det]

Crawl using space crawl url/1, with additional options.

index(+IndexName)
Index the URI-Shape pairs into index named IndexName.

graph(+Graph)
Store the URI-Shape pairs in the named graph Graph. The pairs are recorded as
uri_shape(URI,Shape,Graph).

space uncrawl url(+URL) [det]

Unload the RDF that was fetched from URL and remove all URI-Shape pairs that are contained
in it from the default index. Also unload all data that were crawled by iteratively resolving the
URIs linked to with a link property.

space uncrawl url(+URL, +IndexName) [det]

Unload using space uncrawl url/1, but remove the URI-Shape pairs from the index
named IndexName.

index(+IndexName)
Remove the URI-Shape pairs from index named IndexName.

graph(+Graph)
Remove the URI-Shape pairs from the named graph Graph.

13

Index
alt/2, 9

coordinates/3, 10
coordinates/4, 10

dbpedia candidate/2, 10
dbpedia candidate/3, 10

freebase candidate/2, 10
freebase candidate/3, 10

georss candidate/2, 9
georss candidate/3, 9
georss gml candidate/2, 9
georss simple candidate/2, 9
georss to kml file/1, 10
georss to kml file/2, 10
georss uri shape triple/5, 9
gml shape/2, 5, 12

kml file shape/2, 11
kml file shape/4, 11
kml file to georss/1, 10
kml file to georss/2, 10
kml file uri shape/3, 11
kml save footer/1, 12
kml save header/2, 11
kml save shape/3, 11
kml shape/2, 5, 11
kml shape/4, 11
kml uri shape/3, 11

lat/2, 9
long/2, 9

set space/1, 7
set space/2, 7
shape/1, 8
space assert/2, 7
space assert/3, 3, 7
space bulkload/0, 8
space bulkload/1, 8
space bulkload/2, 8
space bulkload/3, 3, 6
space clear/0, 7
space clear/1, 7

space contains/2, 8
space contains/3, 4, 8
space crawl url/1, 12
space crawl url/2, 13
space distance/3, 8
space distance greatcircle/3, 9
space distance greatcircle/4, 9
space index/0, 7
space index/1, 7
space index all/0, 3, 8
space index all/1, 8
space intersects/2, 8
space intersects/3, 4, 8
space load url/1, 12
space load url/2, 12
space nearest/2, 8
space nearest/3, 4, 8
space nearest bounded/4, 4
space retract/2, 7
space retract/3, 3, 7
space uncrawl url/1, 13
space uncrawl url/2, 13
space unload url/1, 12
space unload url/2, 12

uri shape/2, 3, 6, 8
uri shape/3, 8

wgs84 candidate/2, 9
wgs84 candidate/3, 9
wkt shape/2, 5, 10

14

References

[1] Willem Robert van Hage, Jan Wielemaker and Guus Schreiber. The Space package: Tight In-
tegration Between Space and Semantics. Proceedings of the 8th International Semantic Web
Conference Workshop: TerraCognita 2009.

[2] Marios Hadjieleftheriou, Erik Hoel, and Vassilis J. Tsotras. Sail: A spatial index library for
efficient application integration. Geoinformatica, 9(4), 2005.

[3] Gı́sli R. Hjaltason and Hanan Samet. Distance browsing in spatial databases. ACM Transactions
on Database Systems (TODS), 24(2):265–318, 1999.

15

	Introduction
	Shapes as Prolog Terms
	Adding, Removing, and Bulkloading Shapes
	Query types
	Importing and Exporting Shapes
	Integration of Space and Semantics
	Architecture
	Incremental Search and Non-determinism

	Documentation
	library(space/space): Core spatial database
	library(space/georss)
	library(space/wgs84)
	library(space/freebase)
	library(space/dbpedia)
	library(space/wkt)
	library(space/kml)
	library(space/gml)
	library(space/space_web_loader)

