
SWI-Prolog RDF parser

Jan Wielemaker
HCS,

University of Amsterdam
The Netherlands

E-mail: jan@swi-prolog.org

January 9, 2017

Abstract

[RDF]http://www.w3.org/RDF/ (Resource Description Format) is a [W3C]http://www.w3.org/
standard for expressing meta-data about web-resources. It has two representations providing the
same semantics. RDF documents are normally transferred as XML documents using the RDF-
XML syntax. This format is unsuitable for processing. The parser defined here converts an RDF-
XML document into the triple notation. The library rdf write creates an RDF/XML document
from a list of triples.

Contents

1 Introduction 2

2 Parsing RDF in Prolog 2

3 Predicates for parsing RDF/XML 3
3.1 RDF Object representation . 5
3.2 Name spaces . 5
3.3 Low-level access . 5

4 Writing RDF graphs 6

5 Testing the RDF translator 7

A Metrics 7

1

[
[

1 Introduction

RDF is a promising standard for representing meta-data about documents on the web as well as ex-
changing frame-based data (e.g. ontologies). RDF is often associated with ‘semantics on the web’. It
consists of a formal data-model defined in terms of triples. In addition, a graph model is defined for
visualisation and an XML application is defined for exchange.

‘Semantics on the web’ is also associated with the Prolog programming language. It is assumed
that Prolog is a suitable vehicle to reason with the data expressed in RDF models. Most of the related
web-infra structure (e.g. XML parsers, DOM implementations) are defined in Java, Perl, C or C++.

Various routes are available to the Prolog user. Low-level XML parsing is due to its nature best
done in C or C++. These languages produce fast code. As XML/SGML are at the basis of most
of the other web-related formats we will benefit most here. XML and SGML, being very stable
specifications, make fast compiled languages even more attractive.

But what about RDF? RDF-XML is defined in XML, and provided with a Prolog term representing
the XML document processing it according to the RDF syntax is quick and easy in Prolog. The
alternative, getting yet another library and language attached to the system, is getting less attractive.
In this document we explore the suitability of Prolog for processing XML documents in general and
into RDF in particular.

2 Parsing RDF in Prolog

We realised an RDF compiler in Prolog on top of the sgml2pl package (providing a name-space
sensitive XML parser). The transformation is realised in two passes.

The first pass rewrites the XML term into a Prolog term conveying the same information in a more
friendly manner. This transformation is defined in a high-level pattern matching language defined on
top of Prolog with properties similar to DCG (Definite Clause Grammar).

The source of this translation is very close to the BNF notation used by the [specification]http://www.w3.org/TR/REC-
rdf-syntax/, so correctness is ‘obvious’. Below is a part of the definition for RDF containers. Note
that XML elements are represented using a term of the format:

element(Name, [AttrName = Value...], [Content ...])

memberElt(LI) ::=
\referencedItem(LI).

memberElt(LI) ::=
\inlineItem(LI).

referencedItem(LI) ::=
element(\rdf(li),

[\resourceAttr(LI)],
[]).

inlineItem(literal(LI)) ::=
element(\rdf(li),

[\parseLiteral],
LI).

inlineItem(description(description, _, _, Properties)) ::=

2

[

element(\rdf(li),
[\parseResource],
\propertyElts(Properties)).

inlineItem(LI) ::=
element(\rdf(li),

[],
[\rdf_object(LI)]), !. % inlined object

inlineItem(literal(LI)) ::=
element(\rdf(li),

[],
[LI]). % string value

Expression in the rule that are prefixed by the \ operator acts as invocation of another rule-set. The
body-term is converted into a term where all rule-references are replaced by variables. The resulting
term is matched and translation of the arguments is achieved by calling the appropriate rule. Below is
the Prolog code for the referencedItem rule:

referencedItem(A, element(B, [C], [])) :-
rdf(li, B),
resourceAttr(A, C).

Additional code can be added using a notation close to the Prolog DCG notation. Here is the rule for
a description, producing properties both using propAttrs and propertyElts.

description(description, About, BagID, Properties) ::=
element(\rdf(’Description’),

\attrs([\?idAboutAttr(About),
\?bagIdAttr(BagID)

| \propAttrs(PropAttrs)
]),

\propertyElts(PropElts)),
{ !, append(PropAttrs, PropElts, Properties)
}.

3 Predicates for parsing RDF/XML

The parser is designed to operate in various environments and therefore provides interfaces at various
levels. First we describe the top level defined in rdf, simply parsing a RDF-XML file into a list
of triples. Please note these are not asserted into the database because it is not necessarily the final
format the user wishes to reason with and it is not clean how the user wants to deal with multiple
RDF documents. Some options are using global URI’s in one pool, in Prolog modules or using an
additional argument.

load rdf(+File, -Triples)
Same as load rdf(File, Triples, []).

3

load rdf(+File, -Triples, +Options)
Read the RDF-XML file File and return a list of Triples. Options defines additional processing
options. Currently defined options are:

base uri(BaseURI)
If provided local identifiers and identifier-references are globalised using this URI. If
omited or the atom [], local identifiers are not tagged.

blank nodes(Mode)
If Mode is share (default), blank-node properties (i.e. complex properties without iden-
tifier) are reused if they result in exactly the same triple-set. Two descriptions are shared
if their intermediate description is the same. This means they should produce the same set
of triples in the same order. The value noshare creates a new resource for each blank
node.

expand foreach(Boolean)
If Boolean is true, expand rdf:aboutEach into a set of triples. By default the parser
generates rdf(each(Container), Predicate, Subject).

lang(Lang)
Define the initial language (i.e. pretend there is an xml:lang declaration in an enclosing
element).

ignore lang(Bool)
If true, xml:lang declarations in the document are ignored. This is mostly for com-
patibility with older versions of this library that did not support language identifiers.

convert typed literal(:ConvertPred)
If the parser finds a literal with the rdf:datatype=Type attribute, call ConvertPred(+Type,
+Content, -Literal). Content is the XML element contentas returned by the XML parser (a
list). The predicate must unify Literal with a Prolog representation of Content according
to Type or throw an exception if the conversion cannot be made.
This option servers two purposes. First of all it can be used to ignore type declarations for
backward compatibility of this library. Second it can be used to convert typed literals to a
meaningful Prolog representation. E.g. convert ’42’ to the Prolog integer 42 if the type is
xsd:int or a related type.

namespaces(-List)
Unify List with a list of NS=URL for each encountered xmlns:NS=URL declaration found
in the source.

entity(+Name, +Value)
Overrule entity declaration in file. As it is common practice to declare namespaces using
entities in RDF/XML, this option allows for changing the namespace without changing
the file. Multiple of these options are allowed.

The Triples list is a list of rdf(Subject, Predicate, Object) triples. Subject is either a plain
resource (an atom), or one of the terms each(URI) or prefix(URI) with the obvious meaning.
Predicate is either a plain atom for explicitely non-qualified names or a term NameSpace:Name.
If NameSpace is the defined RDF name space it is returned as the atom rdf. Finally, Object is
a URI, a Predicate or a term of the format literal(Value) for literal values. Value is either a
plain atom or a parsed XML term (list of atoms and elements).

4

3.1 RDF Object representation

The Object (3rd) part of a triple can have several different types. If the object is a resource it is returned
as either a plain atom or a term NameSpace:Name. If it is a literal it is returned as literal(Value),
where Value takes one of the formats defined below.

• An atom
If the literal Value is a plain atom is a literal value not subject to a datatype or xml:lang
qualifier.

• lang(LanguageID, Atom)
If the literal is subject to an xml:lang qualifier LanguageID specifies the language and Atom
the actual text.

• A list
If the literal is an XML literal as created by parseType=”Literal”, the raw output of the XML
parser for the content of the element is returned. This content is a list of element(Name, At-
tributes, Content) and atoms for CDATA parts as described with the SWI-Prolog [SGML/XML
parser]http://www.swi-prolog.org/packages/sgml2pl.html

• type(Type, StringValue)
If the literal has an rdf:datatype=Type a term of this format is returned.

3.2 Name spaces

XML name spaces are identified using a URI. Unfortunately various URI’s are in common use to refer
to RDF. The rdf_parser.pl module therefore defines the namespace as a multifile/1 predi-
cate, that can be extended by the user. For example, to parse the [Netscape OpenDirectory]http://www.mozilla.org/rdf/doc/inference.html
structure.rdf file, the following declarations are used:

:- multifile
rdf_parser:rdf_name_space/1.

rdf_parser:rdf_name_space(’http://www.w3.org/TR/RDF/’).
rdf_parser:rdf_name_space(’http://directory.mozilla.org/rdf’).
rdf_parser:rdf_name_space(’http://dmoz.org/rdf’).

The initial definition of this predicate is given below.

rdf_name_space(’http://www.w3.org/1999/02/22-rdf-syntax-ns#’).
rdf_name_space(’http://www.w3.org/TR/REC-rdf-syntax’).

3.3 Low-level access

The above defined load rdf/[2,3] is not always suitable. For example, it cannot deal with doc-
uments where the RDF statement is embedded in an XML document. It also cannot deal with really
large documents (e.g. the Netscape OpenDirectory project, currently about 90 MBytes), without huge
amounts of memory.

5

[
[

For really large documents, the sgml2pl parser can be programmed to handle the content of a spe-
cific element (i.e. <rdf:RDF>) element-by-element. The parsing primitives defined in this section
can be used to process these one-by-one.

xml to rdf(+XML, +BaseURI, -Triples)
Process an XML term produced by load structure/3 using the dialect(xmlns) output
option. XML is either a complete <rdf:RDF> element, a list of RDF-objects (container or
description) or a single description of container.

process rdf(+Input, :OnTriples, +Options)
Exploits the call-back interface of sgml2pl, calling OnTriples(Triples, File:Line) with the list
of triples resulting from a single top level RDF object for each RDF element in the input as
well as the source-location where the description started. Input is either a file name or term
stream(Stream). When using a stream all triples are associated to the value of the base uri
option. This predicate can be used to process arbitrary large RDF files as the file is processed
object-by-object. The example below simply asserts all triples into the database:

assert_list([], _).
assert_list([H|T], Source) :-

assert(H),
assert_list(T, Source).

?- process_rdf(’structure,rdf’, assert_list, []).

Options are described with load rdf/3. The option expand foreach is not supported as
the container may be in a different description. Additional it provides embedded:

embedded(Boolean)
The predicate process rdf/3 processes arbitrary XML documents, only interpreting
the content of rdf:RDF elements. If this option is false (default), it gives a warning
on elements that are not processed. The option embedded(true) can be used to process
RDF embedded in xhtml without warnings.

4 Writing RDF graphs

The library rdf write provides the inverse of load rdf/2 using the predicate rdf write xml/2.
In most cases the RDF parser is used in combination with the Semweb package providing semweb/rdf db.
This library defines rdf save/2 to save a named RDF graph from the database to a file. This library
writes a list of rdf terms to a stream. It has been developed for the SeRQL server which computes
an RDF graph that needs to be transmitted in an HTTP request. As we see this as a typical use-case
scenario the library only provides writing to a stream.

rdf write xml(+Stream, +Triples)
Write an RDF/XML document to Stream from the list of Triples. Stream must use one of the
following Prolog stream encodings: ascii, iso latin 1 or utf8. Characters that can-
not be represented in the encoding are represented as XML entities. Using ASCII is a good
idea for documents that can be represented almost completely in ASCII. For more international
documents using UTF-8 creates a more compact document that is easier to read.

6

rdf_write(File, Triples) :-
open(File, write, Out, [encoding(utf8)]),
call_cleanup(rdf_write_xml(Out, Triples),

close(Out)).

5 Testing the RDF translator

A test-suite and driver program are provided by rdf_test.pl in the source directory. To run these
tests, load this file into Prolog in the distribution directory. The test files are in the directory suite
and the proper output in suite/ok. Predicates provided by rdf_test.pl:

suite(+N)
Run test N using the file suite/tN.rdf and display the RDF source, the intermediate Prolog
representation and the resulting triples.

passed(+N)
Process suite/tN.rdf and store the resulting triples in suite/ok/tN.pl for later vali-
dation by test/0.

test
Run all tests and classify the result.

A Metrics

It took three days to write and one to document the Prolog RDF parser. A significant part of the time
was spent understanding the RDF specification.

The size of the source (including comments) is given in the table below.

lines words bytes file function
109 255 2663 rdf.pl Driver program
312 649 6416 rdf parser.pl 1-st phase parser
246 752 5852 rdf triple.pl 2-nd phase parser
126 339 2596 rewrite.pl rule-compiler
793 1995 17527 total

We also compared the performance using an RDF-Schema file generated by [Protege-2000]http://www.smi.stanford.edu/projects/protege/
and interpreted as RDF. This file contains 162 descriptions in 50 Kbytes, resulting in 599 triples. En-
vironment: Intel Pentium-II/450 with 384 Mbytes memory running SuSE Linux 6.3.

The parser described here requires 0.15 seconds excluding 0.13 seconds Prolog startup time to
process this file. The [Pro Solutions]http://www.pro-solutions.com/rdfdemo/ parser (written in Perl)
requires 1.5 seconds exluding 0.25 seconds startup time.

7

[
[

	Introduction
	Parsing RDF in Prolog
	Predicates for parsing RDF/XML
	RDF Object representation
	Name spaces
	Low-level access

	Writing RDF graphs
	Testing the RDF translator
	Metrics

