
SWI-Prolog SSL Interface

Jan van der Steen, Matt Lilley and Jan Wielemaker
Diff Automatisering v.o.f

Jan Wielemaker
SWI, University of Amsterdam

The Netherlands
E-mail: jan@swi-prolog.org

January 9, 2017

Abstract

The SWI-Prolog SSL (Secure Socket Layer) library implements a pair of filtered streams that
realises an SSL encrypted connection on top of a pair of Prolog wire streams, typically a network
socket. SSL provides public key based encryption and digitally signed identity information of the
peer. The SSL library is well integrated with SWI-Prolog’s HTTP library for both implementing
HTTPS servers and communicating with HTTPS servers. It is also used by the smtp pack for
accessing secure mail agents. Plain SSL can be used to realise secure connections between e.g.,
Prolog agents.

1

http://www.diff.nl
http://www.swi-prolog.org/pack/list?p=smtp

Contents

1 Introduction 3

2 library(ssl): Secure Socket Layer (SSL) library 3

3 library(crypto): Cryptography and authentication library 9

4 XML cryptographic libraries 12
4.1 library(saml): SAML Authentication . 12
4.2 library(xmlenc): XML encryption library . 13
4.3 library(xmldsig): XML Digital signature . 14

5 SSL Security 14

6 CRLs and Revocation 15
6.0.1 Disabling certificate checking . 16
6.0.2 Establishing a safe connection . 16

7 Example code 17
7.1 Accessing an HTTPS server . 17
7.2 Creating an HTTPS server . 17
7.3 HTTPS behind a proxy . 19

8 Acknowledgments 19

2

1 Introduction

Raw TCP/IP networking is dangerous for two reasons. It is hard to tell whether the party you think
you are talking to is indeed the right one and anyone with access to a subnet through which your data
flows can ‘tap’ the wire and listen for sensitive information such as passwords, credit card numbers,
etc. Secure Socket Layer (SSL) deals with both problems. It uses certificates to establish the identity
of the peer and encryption to make it useless to tap into the wire. SSL allows agents to talk in private
and create secure web services.

The SWI-Prolog ssl library provides an API to turn a pair of arbitrary Prolog wire streams into
SSL powered encrypted streams. Note that secure protocols such as secure HTTP simply run the plain
protocol over (SSL) encrypted streams.

Cryptography is a difficult topic. If you just want to download documents from an HTTPS server
without worrying much about security, http open/3 will do the job for you. As soon as you
have higher security demands we strongly recommend you to read enough background material to
understand what you are doing. See section 5 for some remarks regarding this implementation. This
The Linux Documentation Project page provides some additional background and tips for managing
certificates and keys.

2 library(ssl): Secure Socket Layer (SSL) library
See also library(socket), library(http/http_open), library(crypto)

An SSL server and client can be built with the (abstracted) predicate calls from the table below.
The tcp_ predicates are provided by library(socket). The predicate ssl context/3 de-
fines properties of the SSL connection, while ssl negotiate/5 establishes the SSL connection
based on the wire streams created by the TCP predicates and the context.

The SSL Server The SSL Client
ssl context/3 ssl context/3
tcp socket/1
tcp accept/3 tcp connect/3
tcp open socket/3 stream pair/3
ssl negotiate/5 ssl negotiate/5

The library is abstracted to communication over streams, and is not reliant on those streams being
directly attached to sockets. The tcp_ calls here are simply the most common way to use the library.
Other two-way communication channels such as (named), pipes can just as easily be used.

ssl context(+Role, -SSL, :Options) [det]

Create an SSL context. The context defines several properties of the SSL connection such
as involved keys, preferred encryption, and passwords. After establishing a context, an SSL
connection can be negotiated using ssl negotiate/5, turning two arbitrary plain Prolog
streams into encrypted streams. This predicate processes the options below.

host(+HostName)
For the client, the host to which it connects. This option should be specified when Role

3

http://www.tldp.org/HOWTO/SSL-Certificates-HOWTO/index.html

is client. Otherwise, certificate verification may fail when negotiating a secure
connection.

certificate file(+FileName)
Specify where the certificate file can be found. This can be the same as the
key_file(+FileName) option. A server must have at least one certificate be-
fore clients can connect. A client must have a certificate only if the server demands
the client to identify itself with a client certificate using the peer_cert(true)
option. If a certificate is provided, it is necessary to also provide a match-
ing private key via the key file/1 option. To configure multiple certifi-
cates, use the option certificate key pairs/1 instead. Alternatively, use
ssl add certificate key/4 to add certificates and keys to an existing context.

key file(+FileName)
Specify where the private key that matches the certificate can be found. If the key is
encrypted with a password, this must be supplied using the password(+Text) or
pem_password_hook(:Goal) option.

certificate key pairs(+Pairs)
Alternative method for specifying certificates and keys. The argument is a list of pairs
of the form Certificate-Key, where each component is a string or an atom that holds,
respectively, the PEM-encoded certificate and key. To each certificate, further certificates
of the chain can be appended. Multiple types of certificates can be present at the
same time to enable different ciphers. Using multiple certificate types with completely
independent certificate chains requires OpenSSL 1.0.2 or greater.

password(+Text)
Specify the password the private key is protected with (if any). If you do not want to store
the password you can also specify an application defined handler to return the password
(see next option). Text is either an atom or string. Using a string is preferred as strings are
volatile and local resources.

pem password hook(:Goal)
In case a password is required to access the private key the supplied predicate will be
called to fetch it. The hook is called as call(Goal, +SSL, -Password) and
typically unifies Password with a string containing the password.

require crl(+Boolean)
If true (default is false), then all certificates will be considered invalid unless they can
be verified as not being revoked. You can do this explicity by passing a list of CRL
filenames via the crl/1 option, or by doing it yourself in the cert verify hook. If you
specify require_crl(true) and provide neither of these options, verification will
necessarily fail

crl(+ListOfFileNames)
Provide a list of filenames of PEM-encoded CRLs that will be given to the context to
attempt to establish that a chain of certificates is not revoked. You must also set
require_crl(true) if you want CRLs to actually be checked by OpenSSL.

cacert file(+FileName)
Specify a file containing certificate keys of trusted certificates. The peer is trusted if its
certificate is signed (ultimately) by one of the provided certificates. Using the FileName

4

system(root_certificates) uses a list of trusted root certificates as provided by
the OS. See system root certificates/1 for details.
Additional verification of the peer certificate as well as accepting certificates that are not
trusted by the given set can be realised using the hook cert verify hook(:Goal).

cert verify hook(:Goal)
The predicate ssl negotiate/5 calls Goal as follows:

call(Goal, +SSL,
+ProblemCertificate, +AllCertificates, +FirstCertificate,
+Error)

In case the certificate was verified by one of the provided certifications from the
cacert_file option, Error is unified with the atom verified. Otherwise it con-
tains the error string passed from OpenSSL. Access will be granted iff the predicate
succeeds. See load certificate/2 for a description of the certificate terms. See
cert accept any/5 for a dummy implementation that accepts any certificate.

cipher list(+Atom)
Specify a cipher preference list (one or more cipher strings separated by colons, commas
or spaces).

ecdh curve(+Atom)
Specify a curve for ECDHE ciphers. If this option is not specified, the OpenSSL default
parameters are used. With OpenSSL prior to 1.1.0, prime256v1 is used by default.

peer cert(+Boolean)
Trigger the request of our peer’s certificate while establishing the SSL layer. This option
is automatically turned on in a client SSL socket. It can be used in a server to ask the
client to identify itself using an SSL certificate.

close parent(+Boolean)
If true, close the raw streams if the SSL streams are closed. Default is false.

close notify(+Boolean)
If true (default is false), the server sends TLS close_notify when closing the
connection. In addition, this mitigates truncation attacks for both client and server role:
If EOF is encountered without having received a TLS shutdown, an exception is raised.
Well-designed protocols are self-terminating, and this attack is therefore very rarely a
concern.

min protocol version(+Atom)
Set the minimum protocol version that can be negotiated. Atom is one of sslv3, tlsv1,
tlsv1_1 and tlsv1_2. This option is available with OpenSSL 1.1.0 and later, and
should be used instead of disable_ssl_methods/1.

max protocol version(+Atom)
Set the maximum protocol version that can be negotiated. Atom is one of sslv3, tlsv1,
tlsv1_1 and tlsv1_2. This option is available with OpenSSL 1.1.0 and later, and
should be used instead of disable_ssl_methods/1.

disable ssl methods(+List)
A list of methods to disable. Unsupported methods will be ignored. Methods include
sslv2, sslv3, sslv23, tlsv1, tlsv1_1 and tlsv1_2. This option is

5

deprecated starting with OpenSSL 1.1.0. Use min protocol version/1 and
max protocol version/1 instead.

ssl method(+Method)
Specify the explicit Method to use when negotiating. For allowed values, see the list
for disable_ssl_methods above. Using this option is discouraged. When using
OpenSSL 1.1.0 or later, this option is ignored, and a version-flexible method is used
to negotiate the connection. Using version-specific methods is deprecated in recent
OpenSSL versions, and this option will become obsolete and ignored in the future.

sni hook(:Goal)
This option provides Server Name Indication (SNI) for SSL servers. This means that
depending on the host to which a client connects, different options (certificates etc.) can
be used for the server. This TLS extension allows you to host different domains using
the same IP address and physical machine. When a TLS connection is negotiated with a
client that has provided a host name via SNI, the hook is called as follows:

call(Goal, +SSL0, +HostName, -SSL)

Given the current context SSL0, and the host name of the client request, the predicate
computes SSL which is used as the context for negotiating the connection. The first so-
lution is used. If the predicate fails, the default options are used, which are those of the
encompassing ssl context/3 call. In that case, if no default certificate and key are
specified, the client connection is rejected.

Arguments
Role is one of server or client and denotes whether the SSL in-

stance will have a server or client role in the established connec-
tion.

SSL is a SWI-Prolog blob of type ssl_context, i.e., the type-test for
an SSL context is blob(SSL, ssl_context).

ssl add certificate key(+SSL0, +Certificate, +Key, -SSL)
Add an additional certificate/key pair to SSL0, yielding SSL. Certificate and Key are either
strings or atoms that hold the PEM-encoded certificate plus certificate chain and private key,
respectively. Using strings is preferred for security reasons.

This predicate allows dual-stack RSA and ECDSA servers (for example), and is an alternative
for using the certificate_key_pairs/1 option. As of OpenSSL 1.0.2, multiple certifi-
cate types with completely independent certificate chains are supported. If a certificate of the
same type is added repeatedly to a context, the result is undefined. Currently, up to 12 additional
certificates of different types are admissible.

ssl set sni hook(+SSL0, :Goal, -SSL)
SSL is the same as SSL0, except that the SNI hook of SSL is Goal. See the sni hook(:Goal)
option of ssl context/3 for more information about this hook.

ssl negotiate(+SSL, +PlainRead, +PlainWrite, -SSLRead, -SSLWrite) [det]

Once a connection is established and a read/write stream pair is available, (PlainRead and
PlainWrite), this predicate can be called to negotiate an SSL session over the streams. If the
negotiation is successful, SSLRead and SSLWrite are returned.

6

After a successful handshake and finishing the communication
the user must close SSLRead and SSLWrite, for example using
call_cleanup(close(SSLWrite), close(SSLRead)). If the SSL context
(created with ssl context/3 has the option close_parent(true) (default false),
closing SSLRead and SSLWrite also closes the original PlainRead and PlainWrite streams.
Otherwise these must be closed explicitly by the user.

Errors ssl_error(Code, LibName, FuncName, Reason) is raised if the negotiation
fails. The streams PlainRead and PlainWrite are not closed, but an unknown amount of data
may have been read and written.

ssl peer certificate(+Stream, -Certificate) [semidet]

True if the peer certificate is provided (this is always the case for a client connection) and
Certificate unifies with the peer certificate. The example below uses this to obtain the Common
Name of the peer after establishing an https client connection:

http_open(HTTPS_url, In, []),
ssl_peer_certificate(In, Cert),
memberchk(subject(Subject), Cert),
memberchk(’CN’ = CommonName), Subject)

ssl session(+Stream, -Session) [det]

Retrieves (debugging) properties from the SSL context associated with Stream. If Stream is not
an SSL stream, the predicate raises a domain error. Session is a list of properties, containing
the members described below. Except for Version, all information are byte arrays that are
represented as Prolog strings holding characters in the range 0..255.

ssl version(Version)
The negotiated version of the session as an integer.

cipher(Cipher)
The negotiated cipher for this connection.

session key(Key)
The key material used in SSLv2 connections (if present).

master key(Key)
The key material comprising the master secret. This is generated from the server random,
client random and pre-master key.

client random(Random)
The random data selected by the client during handshaking.

server random(Random)
The random data selected by the server during handshaking.

session id(SessionId)
The SSLv3 session ID. Note that if ECDHE is being used (which is the default for newer
versions of OpenSSL), this data will not actually be sent to the server.

load certificate(+Stream, -Certificate) [det]

Loads a certificate from a PEM- or DER-encoded stream, returning a term which will unify with

7

the same certificate if presented in cert verify hook. A certificate is a list containing the fol-
lowing terms: issuer name/1, hash/1, signature/1, version/1, notbefore/1,
notafter/1, serial/1, subject/1 and key/1. subject/1 and issuer name are
both lists of =/2 terms representing the name.

Note that the OpenSSL CA.pl utility creates certificates that have a human readable textual
representation in front of the PEM representation. You can use the following to skip to the
certificate if you know it is a PEM certificate:

skip_to_pem_cert(In) :-
repeat,
(peek_char(In, ’-’)
-> !
; skip(In, 0’\n),

at_end_of_stream(In), !
).

load crl(+Stream, -CRL) [det]

Loads a CRL from a PEM- or DER-encoded stream, returning a term contain-
ing terms hash/1, signature/1, issuer name/1 and revocations/1,
which is a list of revoked/2 terms. Each revoked/2 term is of the form
revoked(+Serial, DateOfRevocation)

system root certificates(-List) [det]

List is a list of trusted root certificates as provided by the OS. This is the list used by
ssl context/3 when using the option system(root_certificates). The list is
obtained using an OS specific process. The current implementation is as follows:

• On Windows, CertOpenSystemStore() is used to import the "ROOT" certificates from the
OS.

• On MacOSX, the trusted keys are loaded from the SystemRootCertificates key chain. The
Apple API for this requires the SSL interface to be compiled with an XCode compiler,
i.e., not with native gcc.

• Otherwise, certificates are loaded from a file defined by the Prolog flag
system_cacert_filename. The initial value of this flag is operating system
dependent. For security reasons, the flag can only be set prior to using the SSL library.
For example:

:- use_module(library(ssl)).
:- set_prolog_flag(system_cacert_filename,

’/home/jan/ssl/ca-bundle.crt’).

load private key(+Stream, +Password, -PrivateKey) [det]

Load a private key PrivateKey from the given stream Stream, using Password to decrypt the
key if it is encrypted. Note that the password is currently only supported for PEM files.
DER-encoded keys which are password protected will not load. The key must be an RSA key.
EC, DH and DSA keys are not supported, and PrivateKey will be bound to an atom (ec key,

8

dh key or dsa key) if you try and load such a key. Otherwise PrivateKey will be unified with
private_key(KeyTerm) where KeyTerm is a rsa/8 term representing an RSA key.

load public key(+Stream, -PublicKey) [det]

Load a public key PublicKey from the given stream Stream. Supports loading both DER- and
PEM-encoded keys. The key must be an RSA key. EC, DH and DSA keys are not supported,
and PublicKey will be bound to an atom (one of ec key, dh key or dsa key) if you try and
load such a key. Otherwise PublicKey will be unified with public_key(KeyTerm) where
KeyTerm is an rsa/8 term representing an RSA key.

cert accept any(+SSL, +ProblemCertificate, +AllCertificates, +FirstCertificate, +Error) [det]

Implementation for the hook ‘cert verify hook(:Hook)‘ that accepts any certificate. This is
intended for http open/3 if no certificate verification is desired as illustrated below.

http_open(’https:/...’, In,
[cert_verify_hook(cert_accept_any)
])

3 library(crypto): Cryptography and authentication library
author

- Matt Lilley
- Markus Triska

This library provides bindings to functionality of OpenSSL that is related to cryptography and
authentication, not necessarily involving connections, sockets or streams.

The hash functionality of this library subsumes and extends that of library(sha),
library(hash_stream) and library(md5) by providing a unified interface to all available
digest algorithms.

The underlying OpenSSL library (libcrypto) is dynamically loaded if either
library(crypto) or library(ssl) are loaded. Therefore, if your application uses
library(ssl), you can use library(crypto) for hashing without increasing the memory
footprint of your application. In other cases, the specialised hashing libraries are more lightweight
but less general alternatives to library(crypto).

crypto data hash(+Data, -Hash, +Options) [det]

Hash is the hash of Data. The conversion is controlled by Options:

algorithm(+Algorithm)
One of md5, sha1, sha224, sha256 (default), sha384, sha512, blake2s256 or
blake2b512. The BLAKE digest algorithms require OpenSSL 1.1.0 or greater.

encoding(+Encoding)
If Data is a sequence of character codes, this must be translated into a sequence of bytes,
because that is what the hashing requires. The default encoding is utf8. The other
meaningful value is octet, claiming that Data contains raw bytes.

9

https://www.metalevel.at

Arguments
Data is either an atom, string or code-list
Hash is an atom that represents the hash.

crypto file hash(+File, -Hash, +Options) [det]

True if Hash is the hash of the content of File. For Options, see crypto data hash/3.

crypto context new(-Context, +Options) [det]

Context is unified with the empty context, taking into account Options. The context can be
used in crypto data hash/4. For Options, see crypto data hash/3.

Arguments

Context is an opaque pure Prolog term that is subject to garbage collection.

crypto data context(+Data, +Context0, -Context) [det]

Context0 is an existing computation context, and Context is the new context after hashing Data
in addition to the previously hashed data. Context0 may be produced by a prior invocation of
either crypto context new/2 or crypto data context/3 itself.

This predicate allows a hash to be computed in chunks, which may be important while working
with Metalink (RFC 5854), BitTorrent or similar technologies, or simply with big files.

crypto context hash(+Context, -Hash)
Obtain the hash code of Context. Hash is an atom representing the hash code that is associated
with the current state of the computation context Context.

crypto open hash stream(+OrgStream, -HashStream, +Options) [det]

Open a filter stream on OrgStream that maintains a hash. The hash can be retrieved at
any time using crypto stream hash/2. Available Options in addition to those of
crypto data hash/3 are:

close parent(+Bool)
If true (default), closing the filter stream also closes the original (parent) stream.

crypto stream hash(+HashStream, -Hash) [det]

Unify Hash with a hash for the bytes sent to or read from HashStream. Note that the hash is
computed on the stream buffers. If the stream is an output stream, it is first flushed and the
Digest represents the hash at the current location. If the stream is an input stream the Digest
represents the hash of the processed input including the already buffered data.

rsa private decrypt(+PrivateKey, +CipherText, -PlainText) [det]

rsa private encrypt(+PrivateKey, +PlainText, -CipherText) [det]

rsa public decrypt(+PublicKey, +CipherText, -PlainText) [det]

rsa public encrypt(+PublicKey, +PlainText, -CipherText) [det]

rsa private decrypt(+PrivateKey, +CipherText, -PlainText, +Options) [det]

rsa private encrypt(+PrivateKey, +PlainText, -CipherText, +Options) [det]

rsa public decrypt(+PublicKey, +CipherText, -PlainText, +Options) [det]

rsa public encrypt(+PublicKey, +PlainText, -CipherText, +Options) [det]

RSA Public key encryption and decryption primitives. A string can be safely communicated by
first encrypting it and have the peer decrypt it with the matching key and predicate. The length
of the string is limited by the key length.

10

Options:

encoding(+Encoding)
Encoding to use for Data. Default is utf8. Alternatives are utf8 and octet.

padding(+PaddingScheme)
Padding scheme to use. Default is pkcs1. Alternatives are pkcs1_oaep, sslv23
and none. Note that none should only be used if you implement cryptographically
sound padding modes in your application code as encrypting unpadded data with RSA is
insecure

Errors ssl_error(Code, LibName, FuncName, Reason) is raised if there is an error,
e.g., if the text is too long for the key.

See also load private key/3, load public key/2 can be use to load keys from a file. The
predicate load certificate/2 can be used to obtain the public key from a certificate.

rsa sign(+Key, +Data, -Signature, +Options) [det]

Create an RSA signature for Data. Options:

type(+Type)
SHA algorithm used to compute the digest. Values are the same as for sha hash/3:
sha1 (default), sha224, sha256, sha384 or sha512

encoding(+Encoding)
Encoding to use for Data. Default is octet. Alternatives are utf8 and text.

This predicate is used to compute a sha1WithRSAEncryption signature as follows:

sha1_with_rsa(PemKeyFile, KeyPassword, Data, Signature) :-
DigestAlgorithm = sha1,
read_key(PemKeyFile, KeyPassword, PrivateKey),
sha_hash(Data, Digest, [algorithm(DigestAlgorithm)]),
rsa_sign(Key, Digest, Signature, [type(DigestAlgorithm)]).

read_key(PemKeyFile, KeyPassword, PrivateKey) :-
setup_call_cleanup(

open(File, read, In, [type(binary)]),
load_private_key(In, Password, Key),
close(In).

rsa verify(+Key, +Data, -Signature, +Options) [det]

Verifies an RSA signature for Data. Options:

type(+Type)
SHA algorithm used to compute the digest. Values are the same as for sha hash/3:
sha1 (default), sha224, sha256, sha384 or sha512

encoding(+Encoding)
Encoding to use for Data. Default is octet. Alternatives are utf8 and text.

11

evp decrypt(+CipherText, +Algorithm, +Key, +IV, -PlainText, +Options)
Decrypt the given CipherText, using the symmetric algorithm Algorithm, key Key, and iv IV,
to give PlainText. CipherText, Key and IV should all be strings, and PlainText is created as a
string as well. Algorithm should be an algorithm which your copy of OpenSSL knows about.
Examples are:

• aes-128-cbc
• aes-256-cbc
• des3

If the IV is not needed for your decryption algorithm (such as aes-128-ecb) then any string can
be provided as it will be ignored by the underlying implementation

Options:

encoding(+Encoding)
Encoding to use for Data. Default is utf8. Alternatives are utf8 and octet.

padding(+PaddingScheme)
Padding scheme to use. Default is block. You can disable padding by supplying none
here.

Example of aes-128-cbc encryption:

?- evp_encrypt("this is some input", ’aes-128-cbc’, "sixteenbyteofkey",
"sixteenbytesofiv", CipherText, []),

evp_decrypt(CipherText, ’aes-128-cbc’,
"sixteenbyteofkey", "sixteenbytesofiv",
RecoveredText, []).

CipherText = <binary string>
RecoveredText = "this is some input".

evp encrypt(+PlainText, +Algorithm, +Key, +IV, -CipherTExt, +Options)
Encrypt the given PlainText, using the symmetric algorithm Algorithm, key Key, and iv IV, to
give CipherText. See evp decrypt/6.

4 XML cryptographic libraries

The SSL package provides several libraries dealing with cryptographic operations of XML documents.
These libraries depend on the sgml package. These libraries are part of this package because the
sgml package has no external dependencies and will thus be available in any SWI-Prolog installation
while configuring and building this ssl package is much more involved.

4.1 library(saml): SAML Authentication
See also https://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.

pdf

12

https://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
https://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf

There are four primary integration points for applications to use this code:
1) You must declare at least one service provider (SP) 2) You must de-
clare at least one identity provider (IdP) per SP 3) Finally, you can call
saml_authenticate(+SP, +IdP, +Callback, +Request) to obtain asser-
tions The asynchronous nature of the SAML process means that a callback must be used.
Assuming that the IdP was able to provide at least some valid assertions about the user, af-
ter calling Callback with 2 extra arguments (a list of the assertion terms and the URL being
request by the user), the user will be redirected back to their original URL. It is therefore
up to the callback to ensure that this does not simply trigger another round of SAML ne-
gotiations - for example, by throwing http_reply(forbidden(RequestURL)) if
the assertions are not strong enough 4) Finally, your SP metadata will be available from
the web server directly. This is required to configure the IdP. This will be available at
’./metadata.xml’, relative to the LocationSpec provided when the SP was declared.

Configuring an SP: To declare an SP, use the declaration :
-saml_sp(+ServiceProvider: atom, +LocationSpec: term, +PrivateKeySpec: term, +Password: atom +CertificateSpec: term, +Options: list).

The ServiceProvider is the identifier of your service. Ideally, this should be a fully-
qualified URI The LocationSpec is a location that the HTTP dispatch layer will understand
for example ’.’ or root(’saml’). The Private KeySpec is a ’file specifier’ that resolves
to a private key (see below for specifiers) The Password is a password used for reading
the private key. If the key is not encrypted, any atom can be supplied as it will be ignored
The CertificateSpec is a file specifier that resolves to a certificate holding the public key
corresponding to PrivateKeySPec There are currently no implemented options (the list is
ignored).

Configuring an IdP: To declare an IdP, use the declaration
:-saml_idp(+ServiceProvider: atom, +MetadataSpec: term). ServiceProvider
is the identifier used when declaring your SP. You do not need to declare them in a particular order,
but both must be present in the system before running saml authenticate/4. MetadataSpec is

a file specifier that resolves to the metadata for the IdP. Most IdPs will be able to provide this on
request

File Specifiers: The following specifiers are supported for locating files:

• file(Filename): The local file Filename
• resource(Resource): The prolog resource Resource. See resource/3
• url(URL): The file identified by the HTTP (or HTTPS if you have the HTTPS plugin loaded)

URL

This library uses SAML to exchange messages with an Identity Provider to establish assertions
about the current user’s session. It operates only as the service end, not the identity provider end.

4.2 library(xmlenc): XML encryption library
See also

- https://www.w3.org/TR/xmlenc-core1/
- https://en.wikipedia.org/wiki/Security_Assertion_Markup_Language

This library is a partial implementation of the XML encryption standard. It implements the de-
cryption part, which is needed by SAML clients.

13

https://www.w3.org/TR/xmlenc-core1/
https://en.wikipedia.org/wiki/Security_Assertion_Markup_Language

decrypt xml(+DOMIn, -DOMOut, :KeyCallback, +Options) [det]

Arguments
KeyCallback may be called as follows:

• call(KeyCallback, name, KeyName, Key)

• call(KeyCallback, public_key, public_key(RSA), Key)

• call(KeyCallback, certificate, Certificate, Key)

4.3 library(xmldsig): XML Digital signature
See also

- http://www.di-mgt.com.au/xmldsig.html
- https://www.bmt-online.org/geekisms/RSA_verify
- http://stackoverflow.com/questions/5576777/
whats-the-difference-between-nid-sha-and-nid-sha1-in-openssl

This library deals with XMLDSIG, RSA signed XML documents.

xmld signed DOM(+DOM, -SignedDOM, +Options) [det]

Translate an XML DOM structure in a signed version. Options:

key file(+File)
File holding the private key needed to sign

key password(+Password)
String holding the password to op the private key.

The SignedDOM must be emitted using xml write/3 or xml write canonical/3. If
xml write/3 is used, the option layout(false) is needed to avoid changing the layout
of the SignedInfo element and the signed DOM, which will cause the signature to be invalid.

xmld verify signature(+DOM, +SignatureDOM, -Certificate, +Options) [det]

Confirm that an ds:Signature element contains a valid signature. Certificate is bound
to the certificate that appears in the element if the signature is valid. It is up to the caller to
determine if the certificate is trusted or not.

Note: The DOM and SignatureDOM must have been obtained using the load structure/3
option keep_prefix(true) otherwise it is impossible to generate an identical document
for checking the signature. See also xml write canonical/3.

5 SSL Security

Using SSL (in this particular case based on the OpenSSL implementation) to connect to SSL services
(e.g., an https:// address) easily gives a false sense of security. This section explains some of the
pitfalls.1. As stated in the introduction, SSL aims at solving two issues: tapping information from the
wire by means of encryption and make sure that you are talking to the right address.

1We do not claim to be complete, just to start warning you if security is important to you. Please make sure you
understand (Open)SSL before relying on it.

14

http://www.di-mgt.com.au/xmldsig.html
https://www.bmt-online.org/geekisms/RSA_verify
http://stackoverflow.com/questions/5576777/whats-the-difference-between-nid-sha-and-nid-sha1-in-openssl
http://stackoverflow.com/questions/5576777/whats-the-difference-between-nid-sha-and-nid-sha1-in-openssl

Encryption is generally well arranged as long as you ensure that the underlying SSL library has
all known security patches installed and you use an encryption that is not known to be weak. The
Windows version of SWI-Prolog ships with its own binary of the OpenSSL library. Ensure this is
up-to-date. Most other systems ship with the OpenSSL library and SWI-Prolog uses the system
version. This applies for the binaries we distribute for MacOSX and Linux, as well as official Linux
packages. Check the origin and version of the OpenSSL libraries if SWI-Prolog was compiled from
source. The OpenSSL library version as reported by SSLeay version() is available in the Prolog flag
ssl library version as illustrated below on Ubuntu 14.04.

?- [library(ssl)].
?- current_prolog_flag(ssl_library_version, X).
X = ’OpenSSL 1.0.1f 6 Jan 2014’.

Whether you are talking to the right address is a complicated issue. The core of the validation is that
the server provides a certificate that identifies the server. This certificate is digitally signed by another
certificate, and ultimately by a root certificate. (There may be additional links in this chain as well, or
there may just be one certificate signed by itself) Verifying the peer implies:

1. Verifying the chain or digital signatures until a trusted root certificate is found, taking care that
the chain does not contain any invalid certificates, such as certificates which have expired, are
not yet valid, have altered or forged signatures, are valid for the purposes of SSL (and in the
case of an issuer, issuing child certificates)

2. Verifying that the signer of a certificate did not revoke the signed certificate.

3. Verifying that the host we connected to is indeed the host claimed in the certificate.

The default https client plugin (http/http ssl plugin) registers the system trusted root cer-
tificate with OpenSSL. This is achieved using the option cacert file(system(root certificates)) of
ssl context/3. The verification is left to OpenSSL. To the best of our knowledge, the current
(1.0) version of OpenSSL only implements step (1) of the verification process outlined above. This
implies that an attacker that can control DNS mapping (host name to IP) or routing (IP to physical
machine) can fake to be a secure host as long as they manage to obtain a certificate that is signed from
a recognised authority. Version 1.0.2 supports hostname checking, and will not validate a certificate
chain if the leaf certificate does not match the hostname. ’Match’ here is not a simple string compari-
son; certificates are allowed (subject to many rules) to have wildcards in their SubjectAltName field.
Care must also be taken to ensure that the name we are checking against does not contain embedded
NULLs. If SWI-Prolog is compiled against a version of OpenSSL that does NOT have hostname
checking (ie 1.0.0 or earlier), it will attempt to do the validation itself. This is not guaranteed to
be perfect, and it only supports a small subset of allowed wildcards. If security is important, use
OpenSSL 1.0.2 or higher.

After validation, the predicate ssl peer certificate/2 can be used to obtain the peer cer-
tificate and inspect its properties.

6 CRLs and Revocation

Certificates must sometimes be revoked. Unfortunately this means that the elegant chain-of-trust
model breaks down, since the information you need to determine whether a certificate is trustworthy

15

no longer depends on just the certificate and whether the issuer is trustworthy, but now on a third
piece of data - whether the certificate has been revoked. These are managed in two ways in OpenSSL:
CRLs and OCSP. SWI-Prolog supports CRLs only. (Typically OCSP responders are configured in
such a way as to just consult CRLs anyway. This gives the illusion of up-to-the-minute revocation
information because OCSP is an interactive, online, real-time protocol. However the information
provided can still be several weeks out of date!)

To do CRL checking, pass require crl(true) as an option to the ssl context/3 (or
http open/3) option list. If you do this, a certificate will not be validated unless it can be checked
for on a revocation list. There are two options for this:

First, you can pass a list of filenames in as the option crl/1. If the CRL corresponds to an issuer
in the chain, and the issued certificate is not on the CRL, then it is assumed to not be revoked. Note
that this does NOT prove the certificate is actually trustworthy - the CRL you pass may be out of
date! This is quite awkward to get right, since you do not necessarily know in advance what the chain
of certificates the other party will present are, so you cannot reasonably be expected to know which
CRLs to pass in.

Secondly, you can handle the CRL checking in the cert verify hook when the Error is bound to
unknown crl. At this point you can obtain the issuer certificate (also given in the hook), find the CRL
distribution point on it (the crl/1 argument), try downloading the CRL (the URL can have literally
any protocol, most commonly HTTP and LDAP, but theoretically anything else, too, including the
possibility that the certificate has no CRL distribution point given, and you are expected to obtain
the CRL by email, fax, or telegraph. Therefore how to actually obtain a CRL is out of scope of
this document), load it using load crl/2, then check to see whether the certificate currently under
scrutiny appears in the list of revocations. It is up to the application to determine what to do if the
CRL cannot be obtained - either because the protocol to obtain it is not supported or because the place
you are obtaining it from is not responding. Just because the CRL server is not responding does not
mean that your certificate is safe, of course - it has been suggested that an ideal way to extend the life
of a stolen certificate key would be to force a denial of service of the CRL server.

6.0.1 Disabling certificate checking

In some cases clients are not really interested in host validation of the peer and whether or not the
certificate can be trusted. In these cases the client can pass cert verify hook(cert accept any),
calling cert accept any/5 which accepts any certificate. Note that this will accept literally ANY
certificate presented - including ones which have expired, have been revoked, and have forged signa-
tures. This is probably not a good idea!

6.0.2 Establishing a safe connection

Applications that exchange sensitive data with e.g., a backend server typically need to ensure they
have a secure connection to their peer. To do this, first obtain a non-secure connection to the
peer (eg via a TCP socket connection). Then create an SSL context via ssl context/3. For
the client initiating the connection, the role is ’client’, and you should pass options host/1 and
cacert file/1 at the very least. If you expect the peer to have a certificate which would be ac-
cepted by your host system, you can pass cacert file(system(root certificates)), otherwise you
will need a copy of the CA certificate which was used to sign the peer’s certificate. Alternatively,
you can pass cert verify hook/1 to write your own custom validation for the peer’s certifi-
cate. Depending on the requirements, you may also have to provide your /own/ certificate if the peer

16

demands mutual authentication. This is done via the certificate file/1, key file/1 and
either password/1 or pem password hook/1.

Once you have the SSL context and the non-secure stream, you can call ssl negotiate/5
to obtain a secure stream. ssl negotiate/5 will raise an exception if there were any certificate
errors that could not be resolved.

The peer behaves in a symmetric fashion: First, a non-secure connection is obtained, and
a context is created using ssl context/3 with the role set to server. In the server case,
you must provide certificate file/1 and key file/1, and then either password/1 or
pem password hook/1. If you require the other party to present a certificate as well, then
peer cert(true) should be provided. If the peer does not present a certificate, or the certificate can-
not be validated as trusted, the connection will be rejected.

By default, revocation is not checked. To enable certificate revocation checking, pass re-
quire crl(true) when creating the SSL context. See section 6 for more information about revocations.

7 Example code

Examples of a simple server and client (server.pl and client.pl as well as a simple HTTPS
server (https.pl) can be found in the example directory which is located in doc/packages/
examples/ssl relative to the SWI-Prolog installation directory. The etc directory contains ex-
ample certificate files as well as a README on the creation of certificates using OpenSSL tools.

7.1 Accessing an HTTPS server

Accessing an https:// server can be achieved using the code skeleton below. The line
:- use_module(library(http/http_ssl_plugin)). can be omitted if the develop-
ment environment is present because the plugin is dynamically loaded by http open/3 of the
https scheme is detected. See section 5 for more information about security aspects.

:- use_module(library(http/http_open)).
:- use_module(library(http/http_ssl_plugin)).

...,
http_open(HTTPS_url, In, []),
...

7.2 Creating an HTTPS server

The SWI-Prolog infrastructure provides two main ways to launch an HTTPS server:

• Using library(http/thread httpd), the server is started in HTTPS mode by adding
an option ssl/1 to http server/2. The argument of ssl/1 is an option list that is passed
as the third argument to ssl context/3.

• Using library(http/http unix daemon), an HTTPS server is started by using the
command line argument --https.

17

Two items are typically specified as, respectively, options or additional command line arguments:

• server certificate. This identifies the server and acts as a public key for the encryption.

• private key of the server, which must be kept secret. The key may be protected by a password.
If this is the case, the server must provide the password by means of the password option,
the pem password hook callback or, in case of the Unix daemon, via the --pwfile or
--password command line options.

Here is an example that uses the self-signed demo certificates distributed with the SSL package.
As is typical for publicly accessible HTTPS servers, this version does not require a certificate from
the client:

:- use_module(library(http/thread_httpd)).
:- use_module(library(http/http_ssl_plugin)).

https_server(Port, Options) :-
http_server(reply,

[port(Port),
ssl([certificate_file(’etc/server/server-cert.pem’),

key_file(’etc/server/server-key.pem’),
password("apenoot1")

])
| Options
]).

There are two hooks that let you extend HTTPS servers with custom definitions:

• http:ssl server create hook(+SSL0, -SSL, +Options): This extensible
predicate is called exactly once, after creating an HTTPS server with Options. If this predicate
succeeds, SSL is the context that is used for negotiating all new connections. Otherwise, SSL0
is used, which is the context that was created with the given options.

• http:ssl server open client hook(+SSL0, -SSL, +Options): This predi-
cate is called before each connection that the server negotiates with a client. If this predicate
succeeds, SSL is the context that is used for the new connection. Otherwise, SSL0 is used,
which is the context that was created when launching the server.

Important use cases of these hooks are running dual-stack RSA/ECDSA servers, and updating
certificates while the server keeps running.

The example file https.pl also provides a server that does require the client to show its cer-
tificate. This provides an additional level of security, often used to allow a selected set of clients to
perform sensitive tasks.

Note that a single Prolog program can call http server/2with different parameters to provide
services at several security levels as described below. These servers can either use their own dispatch-
ing or commonly use http dispatch/1 and check the port property of the request to verify they
are called with the desired security level. If a service is approached at a too low level of security, the
handler can deny access or use HTTP redirect to send the client to to appropriate interface.

18

• A plain HTTP server at port 80. This can either be used for non-sensitive information or for
redirecting to a more secure service.

• An HTTPS server at port 443 for sensitive services to the general public.

• An HTTPS server that demands for a client key on a selected port for administrative tasks or
sensitive machine-to-machine communication.

7.3 HTTPS behind a proxy

The above expects Prolog to be accessible directly from the internet. This is becoming more popular
now that services are often deployed using virtualization. If the Prolog services are placed behind a
reverse proxy, HTTPS implementation is the task of the proxy server (e.g., Apache or Nginx). The
communication from the proxy server to the Prolog server can use either plain HTTP or HTTPS. As
plain HTTP is easier to setup and faster, this is typically preferred if the network between the proxy
server and Prolog server can be trusted.

Note that the proxy server must decrypt the HTTPS traffic because it must decide on the destina-
tion based on the encrypted HTTP header. Port forwarding provides another option to make a server
running on a machine that is not directly connected to the internet visible. It is not needed to decrypt
the traffic using port forwarding, but it is also not possible to realise virtual hosts or path-based proxy
rules.

Virtual hosts for HTTPS are available via Server Name Indication (SNI). This is a TLS extension
that allows servers to host different domains from the same IP address. See the sni hook/1 option
of ssl context/3 for more information.

8 Acknowledgments

The development of the SWI-Prolog SSL interface has been sponsored by Scientific Software and Sys-
tems Limited. The current version contains contributions from many people. Besides the mentioned
authors, Markus Triska has submitted several patches, and improved and documented the integration
of this package with the HTTP infrastructure.

References

19

http://www.sss.co.nz
http://www.sss.co.nz
https://www.metalevel.at

Index
cacert file/1, 16
cert accept any/5, 9, 16
cert verify hook/1, 16
certificate file/1, 17
crl/1, 16
crypto context hash/2, 10
crypto context new/2, 10
crypto data context/3, 10
crypto data hash/3, 9
crypto file hash/3, 10
crypto open hash stream/3, 10
crypto stream hash/2, 10

decrypt xml/4, 14

evp decrypt/6, 12
evp encrypt/6, 12

host/1, 16
http/http ssl plugin library, 15
http dispatch/1, 18
http open/3, 3, 16, 17
http server/2, 17, 18

key file/1, 17

load certificate/2, 7
load crl/2, 8, 16
load private key/3, 8
load public key/2, 9

password/1, 17
pem password hook/1, 17

rsa private decrypt/3, 10
rsa private decrypt/4, 10
rsa private encrypt/3, 10
rsa private encrypt/4, 10
rsa public decrypt/3, 10
rsa public decrypt/4, 10
rsa public encrypt/3, 10
rsa public encrypt/4, 10
rsa sign/4, 11
rsa verify/4, 11

sni hook/1, 19

ssl library, 3
ssl add certificate key/4, 6
ssl context/3, 3, 15–17, 19
ssl negotiate/5, 6, 17
ssl peer certificate/2, 7, 15
ssl session/2, 7
ssl set sni hook/3, 6
system root certificates/1, 8

xmld signed DOM/3, 14
xmld verify signature/4, 14

20

	Introduction
	library(ssl): Secure Socket Layer (SSL) library
	library(crypto): Cryptography and authentication library
	XML cryptographic libraries
	library(saml): SAML Authentication
	library(xmlenc): XML encryption library
	library(xmldsig): XML Digital signature

	SSL Security
	CRLs and Revocation
	Disabling certificate checking
	Establishing a safe connection

	Example code
	Accessing an HTTPS server
	Creating an HTTPS server
	HTTPS behind a proxy

	Acknowledgments

