
SWI-Prolog binding to libarchive

Jan Wielemaker
VU University Amsterdam

The Netherlands
E-mail: J.Wielemaker@vu.nl

March 6, 2015

Abstract

The library libarchive provides a portable way to access archive files as well as encoded (typ-
ically compressed) data. This package is a Prolog wrapper around this library. The motivation
to introduce this library is twofold. In the first place, it provides a minimal platform independent
API to access archives. In the second place, it allows accessing archives through Prolog streams,
which often eliminates the need for temporary files and all related consequences for performance,
security and platform dependency.

1

Contents

1 Motivation 3

2 library(archive): Access several archive formats 3

3 Status 6

2

1 Motivation

Archives play two roles: they combine multiple documents into a single one and they typically provide
compression and sometimes encryption or other services. Bundling multiple resources into a single
archive may greatly simplify distribution and guarantee that the individual resources are consistent.
SWI-Prolog provides archiving using its (rather arcane) saved-state format. See resource/3 and
open resource/3. It also provides compression by means of library(zlib).

External archives may be accessed through the process interface provided by
process create/3, but this has disadvantages. The one that motivated this library was
that using external processes provide no decent platform independent access to archives. Most likely
zip files come closest to platform independent access, but there are many different programs for
accessing zip files that provide slightly different sets of options and the existence of any of these
programs cannot be guaranteed without distributing our own bundled version. Similar arguments
hold for Unix tar archives, where just about any Unix-derives system has a tar program but except for
very basic commands, the command line options are not compatible and tar is not part of Windows.
The only format granted on Windows is .cab, but a program to create them is not part of Windows
and the .cab format is rare outside the Windows context.

Discarding availability of archive programs, each archive program comes with its own set of com-
mand line options and its own features and limitations. Fortunately, libarchive provides a consistent
interface to a wealth of compression and archiving formats. The library archive wraps this library,
providing access to archives using Prolog streams both for the archive as a whole and the archive
entries. E.g., archives may be read from Prolog streams and each member in turn may be processed
using Prolog streams without materialising data using temporary files.

2 library(archive): Access several archive formats
See also http://code.google.com/p/libarchive/

This library uses libarchive to access a variety of archive formats. The following example lists the
entries in an archive:

list_archive(File) :-
archive_open(File, Archive, []),
repeat,

(archive_next_header(Archive, Path)
-> format(’˜w˜n’, [Path]),

fail
; !,

archive_close(Archive)
).

archive open(+Data, -Archive, +Options) [det]

Open the archive in Data and unify Archive with a handle to the opened archive. Data is
either a file or a stream that contains a valid archive. Details are controlled by Options.

3

Typically, the option close_parent(true) is used to close stream if the archive is closed
using archive close/1. For other options, the defaults are typically fine. The option
format(raw) must be used to process compressed streams that do not contain explicit
entries (e.g., gzip’ed data) unambibuously. The raw format creates a pseudo archive holding a
single member named data.

close parent(+Boolean)
If this option is true (default false), Stream is closed if archive close/1 is
called on Archive.

compression(+Compression)
Synomym for filter(Compression). Deprecated.

filter(+Filter)
Support the indicated filter. This option may be used multiple times to support multiple
filters. If no filter options are provided, all is assumed. Supported values are all,
bzip2, compress, gzip, grzip, lrzip, lzip, lzma, lzop, none, rpm, uu and
xz. The value all is default.

format(+Format)
Support the indicated format. This option may be used multiple times to support multiple
formats. If no format options are provided, all is assumed. Note that all does not
include raw. To open both archive and non-archive files, both format(all) and
format(raw) must be specified. Supported values are: all, 7zip, ar, cab, cpio,
empty, gnutar, iso9660, lha, mtree, rar, raw, tar, xar and zip. The value
all is default.

Note that the actually supported compression types and formats may vary depending on the
version and installation options of the underlying libarchive library. This predicate raises a
domain error if the (explicitly) requested format is not supported.

Errors
- domain_error(filter, Filter) if the requested filter is not supported.
- domain_error(format, Format) if the requested format type is not supported.

archive close(+Archive) [det]

Close the archive. If close_parent(true) is specified, the underlying stream is closed
too. If there is an entry opened with archive open entry/2, actually closing the archive
is delayed until the stream associated with the entry is closed. This can be used to open a
stream to an archive entry without having to worry about closing the archive:

archive_open_named(ArchiveFile, EntryName, Stream) :-
archive_open(ArchiveFile, Handle, []),
archive_next_header(Handle, Name),
archive_open_entry(Handle, Stream),
archive_close(Archive).

archive property(+Handle, ?Property) [nondet]

True when Property is a property of the archive Handle. Defined properties are:

4

filters(List)
True when the indicated filters are applied before reaching the archive format.

archive next header(+Handle, -Name) [semidet]

Forward to the next entry of the archive for which Name unifies with the pathname of the entry.
Fails silently if the name of the archive is reached before success. Name is typically specified
if a single entry must be accessed and unbound otherwise. The following example opens a
Prolog stream to a given archive entry. Note that Stream must be closed using close/1 and
the archive must be closed using archive close/1 after the data has been used. See also
setup call cleanup/3.

open_archive_entry(ArchiveFile, Entry, Stream) :-
open(ArchiveFile, read, In, [type(binary)]),
archive_open(In, Archive, [close_parent(true)]),
archive_next_header(Archive, Entry),
archive_open_entry(Archive, Stream).

Errors permission_error(next_header, archive, Handle) if a previously opened
entry is not closed.

archive open entry(+Archive, -Stream) [det]

Open the current entry as a stream. Stream must be closed. If the stream is not closed before
the next call to archive next header/2, a permission error is raised.

archive header property(+Archive, ?Property)
True when Property is a property of the current header. Defined properties are:

filetype(-Type)
Type is one of file, link, socket, character_device, block_device,
directory or fifo. It appears that this library can also return other values. These are
returned as an integer.

mtime(-Time)
True when entry was last modified at time.

size(-Bytes)
True when entry is Bytes long.

link target(-Target)
Target for a link. Currently only supported for symbolic links.

format(-Format)
Provides the name of the archive format applicable to the current entry. The returned
value is the lowercase version of the output of archive_format_name().

archive extract(+ArchiveFile, +Dir, +Options)
Extract files from the given archive into Dir. Supported options:

remove prefix(+Prefix)
Strip Prefix from all entries before extracting

5

Errors
- existence_error(directory, Dir) if Dir does not exist or is not a directory.
- domain_error(path_prefix(Prefix), Path) if a path in the archive does not start
with Prefix

To be done Add options

archive entries(+Archive, -Paths) [det]

True when Paths is a list of pathnames appearing in Archive.

archive data stream(+Archive, -DataStream, +Options) [nondet]

True when DataStream is a stream to a data object inside Archive. This predicate transparently
unpacks data inside possibly nested archives, e.g., a tar file inside a zip file. It applies the
appropriate decompression filters and thus ensures that Prolog reads the plain data from
DataStream. DataStream must be closed after the content has been processed. Backtracking
opens the next member of the (nested) archive. This predicate processes the following options:

meta data(-Data:list(dict))
If provided, Data is unified with a list of filters applied to the (nested) archive to open the
current DataStream. The first element describes the outermost archive. Each Data dict
contains the header properties (archive header property/2) as well as the keys:

filters(Filters:list(atom))
Filter list as obtained from archive property/2

name(Atom)
Name of the entry.

Note that this predicate can handle a non-archive files as a pseudo archive holding a single
stream by using archive open/3 with the options [format(all), format(raw)].

3 Status

The current version is merely a proof-of-concept. It lacks writing archives and does not support many
of the options of the underlying library. The main motivation for starting this library was to achieve
portability of the upcomming SWI-Prolog package distribution system. Other functionality will be
added on ‘as needed’ basis.

6

Index
archive library, 3
archive close/1, 4
archive data stream/3, 6
archive entries/2, 6
archive extract/3, 5
archive header property/2, 5
archive next header/2, 5
archive open/3, 3
archive open entry/2, 5
archive property/2, 4

open resource/3, 3

process create/3, 3

resource/3, 3

7

	Motivation
	library(archive): Access several archive formats
	Status

