
Prolog Unit Tests

Jan Wielemaker
University of Amsterdam

VU University Amsterdam
The Netherlands

E-mail: jan@swi-prolog.org

April 22, 2015

Abstract

This document describes a Prolog unit-test framework. This framework was initially devel-
oped for SWI-Prolog. The current version also runs on SICStus Prolog, providing a portable
testing framework. See section 9.1.

1

Contents

1 Introduction 3

2 A Unit Test box 3
2.1 Test Unit options . 6
2.2 Writing the test body . 6

2.2.1 Testing deterministic predicates . 6
2.2.2 Testing semi-deterministic predicates . 7
2.2.3 Testing non-deterministic predicates . 7
2.2.4 Testing error conditions . 8
2.2.5 One body with multiple tests using assertions 8

3 Using separate test files 9

4 Running the test-suite 9

5 Tests and production systems 9

6 Controlling the test suite 10

7 Auto-generating tests 10

8 Coverage analysis 11

9 Portability of the test-suite 12
9.1 PlUnit on SICStus . 12

10 Motivation of choices 13

2

1 Introduction

There is really no excuse not to write tests!
Automatic testing of software during development is probably the most important Quality As-

surance measure. Tests can validate the final system, which is nice for your users. However, most
(Prolog) developers forget that it is not just a burden during development.

• Tests document how the code is supposed to be used.

• Tests can validate claims you make on the Prolog implementation. Writing a test makes the
claim explicit.

• Tests avoid big applications saying ‘No’ after modifications. This saves time during develop-
ment, and it saves a lot of time if you must return to the application a few years later or you
must modify and debug someone else’s application.

2 A Unit Test box

Tests are written in pure Prolog and enclosed within the directives begin tests/1,2 and
end tests/1. They can be embedded inside a normal source module, or be placed in a sepa-
rate test-file that loads the files to be tested. Code inside a test box is normal Prolog code. The entry
points are defined by rules using the head test(Name) or test(Name, Options), where Name is a
ground term and Options is a list describing additional properties of the test. Here is a very simple
example:

:- begin_tests(lists).
:- use_module(library(lists)).

test(reverse) :-
reverse([a,b], [b,a]).

:- end_tests(lists).

The optional second argument of the test-head defines additional processing options. Defined options
are:

blocked(+Reason:atom)
The test is currently disabled. Tests are flagged as blocked if they cannot be run for some rea-
son. E.g. they crash Prolog, they rely on some service that is not available, they take too much
resources, etc. Tests that fail but do not crash, etc. should be flagged using fixme(Fixme).

fixme(+Reason:atom)
Similar to blocked(Reason), but the test it executed anyway. If it fails, a - is printed instead
of the . character. If it passes a + and if it passes with a choicepoint, !. A summary is printed
at the end of the test run and the goal test report(fixme) can be used to get details.

condition(:Goal)
Pre-condition for running the test. If the condition fails the test is skipped. The condition can

3

be used as an alternative to the setup option. The only difference is that failure of a condition
skips the test and is considered an error when using the setup option.

cleanup(:Goal)
Goal is always called after completion of the test-body, regardless of whether it fails, succeeds
or throws an exception. This option or call cleanup/2 must be used by tests that require
side-effects that must be reverted after the test completes. Goal may share variables with the
test body.

create_file(Tmp) :-
tmp_file(plunit, Tmp),
open(Tmp, write, Out),
write(Out, ’hello(World).\n’),
close(Out).

test(read, [setup(create_file(Tmp)),
cleanup(delete_file(Tmp))

]) :-
read_file_to_terms(Tmp, Terms, []),
Term = hello(_).

setup(:Goal)
Goal is run before the test-body. Typically used together with the cleanup option to create
and destroy the required execution environment.

forall(:Generator)
Run the same test for each solution of Generator. Each run invokes the setup and cleanup
handlers. This can be used to run the same test with different inputs. If an error occurs, the
test is reported as name (forall bindings = 〈vars〉), where 〈vars〉 indicates the
bindings of variables in Generator.

true(AnswerTerm Cmp Value)
Body must succeed deterministically. AnswerTerm is compared to Value using the comparison
operator Cmp. Cmp is typically one of =/2, ==/2, =:=/2 or =@=/2,1 but any test can be used.
This is the same as inserting the test at the end of the conjunction, but it allows the test engine
to distinguish between failure of copy term/2 and producing the wrong value. Multiple
variables must be combined in an arbitrary compound term. E.g. A1-A2 == v1-v2

test(copy, [true(Copy =@= hello(X,X))
]) :-

copy_term(hello(Y,Y), Copy).

AnswerTerm Cmp Value(E)
quivalent to true(AnswerTerm Cmp Value) if Cmp is one of the comparison operators given
above.

1The =@= predicate (denoted structural equivalence) is the same as variant/2 in SICStus.

4

fail
Body must fail.

throws(Error)
Body must throw Error. The error is verified using subsumes chk(Error, Generated). I.e.
the generated error must be more specific than the specified Error.

error(Error)
Body must throw error(Error, Context). See throws for details.

all(AnswerTerm Cmp Instances)
Similar to true(AnswerTerm Cmp Values), but used for non-deterministic predicates. Each
element is compared using Cmp. Order matters. For example:

test(or, all(X == [1,2])) :-
(X = 1 ; X = 2).

set(AnswerTerm Cmp Instances)
Similar to all(AnswerTerm Cmp Instances), but before testing both the bindings of AnswerT-
erm and Instances are sorted using sort/2. This removes duplicates and places both set in
the same order.2

nondet
If this keyword appears in the option list, non-deterministic success of the body is not consid-
ered an error.

sto(Terms)
Declares that executing body is subject to occurs-check (STO). The test is executed with Terms.
Terms is either rational trees or finite trees. STO programs are not portable
between different kinds of terms. Only programs not subject to occurs-check (NSTO) are
portable3. Fortunately, most practical programs are NSTO. Writing tests that are STO is still
useful to ensure the robustness of a predicate. In case sto4 and sto5 below, an infinite list (a
rational tree) is created prior to calling the actual predicate. Ideally, such cases produce a type
error or fail silently.

test(sto1, [sto(rational_trees)]) :-
X=s(X).

test(sto2, [sto(finite_trees),fail]) :-
X=s(X).

test(sto3, [sto(rational_trees), fail]) :-
X=s(X), fail.

test(sto4, [sto(rational_trees),error(type_error(list,L))]) :-
L = [_|L], length(L,_).

test(sto5, [sto(rational_trees),fail]) :-
L = [_|L], length(L,3).

2The result is only well-defined of Cmp is ==.
3See 7.3.3 of ISO/IEC 13211-1 PROLOG: Part 1 - General Core, for a detailed discussion of STO and NSTO

5

Programs that depend on STO cases tend to be inefficient, even incorrect, are hard to understand
and debug, and terminate poorly. It is therefore advisable to avoid STO programs whenever
possible.

SWI’s Prolog flag occurs check must not be modified within plunit tests.

2.1 Test Unit options

begin tests(+Name)
Start named test-unit. Same as begin_tests(Name, []).

begin tests(+Name, +Options)
Start named test-unit with options. Options provide conditional processing, setup and cleanup
similar to individual tests (second argument of test/2 rules).

Defined options are:

blocked(+Reason)
Test-unit has been blocked for the given Reason.

condition(:Goal)
Executed before executing any of the tests. If Goal fails, the test of this unit is skipped.

setup(:Goal)
Executed before executing any of the tests.

cleanup(:Goal)
Executed after completion of all tests in the unit.

sto(+Terms)
Specify default for subject-to-occurs-check mode. See section 2 for details on the sto
option.

2.2 Writing the test body

The test-body is ordinary Prolog code. Without any options, the body must be designed to succeed
deterministically. Any other result is considered a failure. One of the options fail, true, throws,
all or set can be used to specify a different expected result. See section 2 for details. In this section
we illustrate typical test-scenarios by testing SWI-Prolog built-in and library predicates.

2.2.1 Testing deterministic predicates

Deterministic predicates are predicates that must succeed exactly once and, for well behaved predi-
cates, leave no choicepoints. Typically they have zero or more input- and zero or more output argu-
ments. The test goal supplies proper values for the input arguments and verifies the output arguments.
Verification can use test-options or be explicit in the body. The tests in the example below are equiv-
alent.

test(add) :-
A is 1 + 2,
A =:= 3.

6

test(add, [true(A =:= 3)]) :-
A is 1 + 2.

The test engine verifies that the test-body does not leave a choicepoint. We illustrate that using the
test below:

test(member) :-
member(b, [a,b,c]).

Although this test succeeds, member/2 leaves a choicepoint which is reported by the test subsystem.
To make the test silent, use one of the alternatives below.

test(member) :-
member(b, [a,b,c]), !.

test(member, [nondet]) :-
member(b, [a,b,c]).

2.2.2 Testing semi-deterministic predicates

Semi-deterministic predicates are predicates that either fail or succeed exactly once and, for well
behaved predicates, leave no choicepoints. Testing such predicates is the same as testing deterministic
predicates. Negative tests must be specified using the option fail or by negating the body using
\+/1.

test(is_set) :-
\+ is_set([a,a]).

test(is_set, [fail]) :-
is_set([a,a]).

2.2.3 Testing non-deterministic predicates

Non-deterministic predicates succeed zero or more times. Their results are tested either using
findall/3 or setof/3 followed by a value-check or using the all or set options. The fol-
lowing are equivalent tests:

test(member) :-
findall(X, member(X, [a,b,c]), Xs),
Xs == [a,b,c].

test(member, all(X == [a,b,c])) :-
member(X, [a,b,c]).

7

2.2.4 Testing error conditions

Error-conditions are tested using the option throws(Error) or by wrapping the test in a catch/3.
The following tests are equivalent:

test(div0) :-
catch(A is 1/0, error(E, _), true),
E =@= evaluation_error(zero_divisor).

test(div0, [error(evaluation_error(zero_divisor))]) :-
A is 1/0.

2.2.5 One body with multiple tests using assertions

PlUnit is designed to cooperate with the assertion/1 test provided by library(debug).4 If an
assertion fails in the context of a test, the test framework reports this and considers the test failed, but
does not trap the debugger. Using assertion/1 in the test-body is attractive for two scenarios:

• Confirm that multiple claims hold. Where multiple claims about variable bindings can be tested
using the == option in the test header, arbitrary boolean tests, notably about the state of the
database, are harder to combine. Simply adding them in the body of the test has two disadvan-
tages: it is less obvious to distinguish the tested code from the test and if one of the tests fails
there is no easy way to find out which one.

• Testing ‘scenarios’ or sequences of actions. If one step in such a sequence fails there is again no
easy way to find out which one. By inserting assertions into the sequence this becomes obvious.

Below is a simple example, showing two failing assertions. The first line of the failure message
gives the test. The second reports the location of the assertion.5 If the assertion call originates from a
different file this is reported appropriately. The last line gives the actually failed goal.

:- begin_tests(test).

test(a) :-
A is 2ˆ3,
assertion(float(A)),
assertion(A == 9).

:- end_tests(test).

?- run_tests.
% PL-Unit: test
ERROR: /home/jan/src/pl-devel/linux/t.pl:5:

4This integration was suggested by Günter Kniesel.
5If known. The location is determined by analysing the stack. The second failure shows a case where this does not work

because last-call optimization has already removed the context of the test-body.

8

test a: assertion at line 7 failed
Assertion: float(8)

ERROR: /home/jan/src/pl-devel/linux/t.pl:5:
test a: assertion failed
Assertion: 8==9

. done
% 2 assertions failed

3 Using separate test files

Test-units can be embedded in normal Prolog source-files. Alternatively, tests for a source-file can be
placed in another file alongside the file to be tested. Test files use the extension .plt. The predicate
load test files/1 can load all files that are related to source-files loaded into the current project.

4 Running the test-suite

At any time, the tests can be executed by loading the program and running run tests/0 or
run tests(+Unit).

run tests
Run all test-units.

run tests(+Spec)
Run only the specified tests. Spec can be a list to run multiple tests. A single specification is
either the name of a test unit or a term 〈Unit〉:〈Tests〉, running only the specified test. 〈Tests〉 is
either the name of a test or a list of names. Running particular tests is particularly useful for
tracing a test:6

?- gtrace, run_tests(lists:member).

To identify nonterminating tests, interrupt the looping process with Control-C. The test name and
location will be displayed.

5 Tests and production systems

Most applications do not want the test-suite to end up in the final application. There are several ways
to achieve this. One is to place all tests in separate files and not to load the tests when creating the
production environment. Alternatively, use the directive below before loading the application.

:- set_test_options([load(never)]).

6Unfortunately the body of the test is called through meta-calling, so it cannot be traced. The called user-code can be
traced normally though.

9

6 Controlling the test suite

set test options(+Options)
Defined options are:

load(+Load)
Determines whether or not tests are loaded. When never, everything between
begin tests/1 and end tests/1 is simply ignored. When always, tests are
always loaded. Finally, when using the default value normal, tests are loaded if the code
is not compiled with optimisation turned on.

run(+Run)
Specifies when tests are run. Using manual, tests can only be run using run tests/0
or run tests/1. Using make, tests will be run for reloaded files, but not for files
loaded the first time. Using make(all) make/0 will run all test-suites, not only those
that belong to files that are reloaded.

silent(+Bool)
When true (default is false), send informational messages using the ‘silent’ level. In
practice this means there is no output except for errors.

sto(+Bool)
When true (default false), assume tests are not subject to occurs check (non-STO)
and verify this if the Prolog implementation supports testing this.

load test files(+Options)
Load .plt test-files that belong to the currently loaded sources.

running tests
Print all currently running tests to the terminal. It can be used to find running thread in multi-
threaded test operation or find the currently running test if a test appears to be blocking.

test report(+What)
Print report on the executed tests. What defines the type of report. Currently this only supports
fixme, providing details on how the fixme-flagged tests proceeded.

7 Auto-generating tests

Prolog is an interactive environment. Where users of non-interactive systems tend to write tests as
code, Prolog developers tend to run queries interactively during development. This interactive testing
is generally faster, but the disadvantage is that the tests are lost at the end of the session. The test-
wizard tries to combine the advantages. It collects toplevel queries and saves them to a specified file.
Later, it extracts these queries from the file and locates the predicates that are tested by the queries. It
runs the query and creates a test clause from the query.

Auto-generating test cases is experimentally supported through the library test wizard. We
briefly introduce the functionality using examples. First step is to log the queries into a file. This is
accomplished with the commands below. Queries.pl is the name in which to store all queries. The
user can choose any filename for this purpose. Multiple Prolog instances can share the same name, as
data is appended to this file and write is properly locked to avoid file corruption.

10

:- use_module(library(test_wizard)).
:- set_prolog_flag(log_query_file, ’Queries.pl’).

Next, we will illustrate using the library by testing the predicates from library lists. To generate
test cases we just make calls on the terminal. Note that all queries are recorded and the system will
select the appropriate ones when generating the test unit for a particular module.

?- member(b, [a,b]).
Yes
?- reverse([a,b], [b|A]).
A = [a] ;
No

Now we can generate the test-cases for the module list using make tests/3:

?- make_tests(lists, ’Queries.pl’, current_output).
:- begin_tests(lists).

test(member, [nondet]) :-
member(b, [a, b]).

test(reverse, [true(A==[a])]) :-
reverse([a, b], [b|A]).

:- end_tests(lists).

8 Coverage analysis

An important aspect of tests is to know which parts of program is used (covered) by the tests. An
experimental analysis is provided by the library test cover.

show coverage(:Goal)
Run Goal and write a report on which percentage of the clauses in each file are used by the
program and which percentage of the clauses always fail.

We illustrate this here using CHAT, a natural language question and answer application by David
H.D. Warren and Fernando C.N. Pereira.

1 ?- show_coverage(test_chat).
Chat Natural Language Question Answering Test
...

==
Coverage by File

==

11

File Clauses %Cov %Fail
==
/staff/jan/lib/prolog/chat/xgrun.pl 5 100.0 0.0
/staff/jan/lib/prolog/chat/newg.pl 186 89.2 18.3
/staff/jan/lib/prolog/chat/clotab.pl 28 89.3 0.0
/staff/jan/lib/prolog/chat/newdic.pl 275 35.6 0.0
/staff/jan/lib/prolog/chat/slots.pl 128 74.2 1.6
/staff/jan/lib/prolog/chat/scopes.pl 132 70.5 3.0
/staff/jan/lib/prolog/chat/templa.pl 67 55.2 1.5
/staff/jan/lib/prolog/chat/qplan.pl 106 75.5 0.9
/staff/jan/lib/prolog/chat/talkr.pl 60 20.0 1.7
/staff/jan/lib/prolog/chat/ndtabl.pl 42 59.5 0.0
/staff/jan/lib/prolog/chat/aggreg.pl 47 48.9 2.1
/staff/jan/lib/prolog/chat/world0.pl 131 71.8 1.5
/staff/jan/lib/prolog/chat/rivers.pl 41 100.0 0.0
/staff/jan/lib/prolog/chat/cities.pl 76 43.4 0.0
/staff/jan/lib/prolog/chat/countr.pl 156 100.0 0.0
/staff/jan/lib/prolog/chat/contai.pl 334 100.0 0.0
/staff/jan/lib/prolog/chat/border.pl 857 98.6 0.0
/staff/jan/lib/prolog/chat/chattop.pl 139 43.9 0.7
==

Using ?- show_coverage(run_tests)., this library currently only shows some rough quality
measure for test-suite. Later versions should provide a report to the developer identifying which
clauses are covered, not covered and always failed.

9 Portability of the test-suite

One of the reasons to have tests is to simplify migrating code between Prolog implementations. Un-
fortunately creating a portable test-suite implies a poor integration into the development environment.
Luckily, the specification of the test-system proposed here can be ported quite easily to most Prolog
systems sufficiently compatible to SWI-Prolog to consider porting your application. Most important
is to have support for term expansion/2.

In the current system, test units are compiled into sub-modules of the module in which they appear.
Few Prolog systems allow for sub-modules and therefore ports may have to fall-back to inject the code
in the surrounding module. This implies that support predicates used inside the test unit should not
conflict with predicates of the module being tested.

9.1 PlUnit on SICStus

The directory of plunit.pl and swi.plmust be in the library search-path. With PLUNITDIR
replaced accordingly, add the following into your .sicstusrc or sicstus.ini.

:- set_prolog_flag(language, iso). % for maximal compatibility
library_directory(’PLUNITDIR’).

12

The current version runs under SICStus 3. Open issues:

• Some messages are unformatted because SICStus 3 reports all ISO errors as instantiation errors.

• Only plunit.pl. Both coverage analysis and the test generation wizard currently require
SWI-Prolog.

• The load option normal is the same as always. Use
set test options(load, never) to avoid loading the test suites.

• The run option is not supported.

• Tests are loaded into the enclosing module instead of a separate test module. This means that
predicates in the test module must not conflict with the enclosing module, nor with other test
modules loaded into the same module.

10 Motivation of choices

Easy to understand and flexible

There are two approaches for testing. In one extreme the tests are written using declarations dealing
with setup, cleanup, running and testing the result. In the other extreme a test is simply a Prolog goal
that is supposed to succeed. We have chosen to allow for any mixture of these approaches. Written
down as test/1 we opt for the simple succeeding goal approach. Using options to the test the user
can choose for a more declarative specification. The user can mix both approaches.

The body of the test appears at the position of a clause-body. This simplifies identification of the
test body and ensures proper layout and colouring support from the editor without the need for explicit
support of the unit test module. Only clauses of test/1 and test/2 may be marked as non-called
in environments that perform cross-referencing.

13

Index
assertion/1, 8

begin tests/1, 3, 6, 10
begin tests/2, 6

call cleanup/2, 4
catch/3, 8
copy term/2, 4

end tests/1, 3, 10

findall/3, 7

lists library, 11
load test files/1, 9, 10

make/0, 10
make tests/3, 11
member/2, 7

run tests/0, 9, 10
run tests/1, 9, 10
running tests/0, 10

set test options/1, 10
setof/3, 7
show coverage/1, 11
sort/2, 5

term expansion/2, 12
test/1, 13
test/2, 6, 13
test cover library, 11
test report/1, 10
test wizard library, 10

variant/2, 4

14

	Introduction
	A Unit Test box
	Test Unit options
	Writing the test body
	Testing deterministic predicates
	Testing semi-deterministic predicates
	Testing non-deterministic predicates
	Testing error conditions
	One body with multiple tests using assertions

	Using separate test files
	Running the test-suite
	Tests and production systems
	Controlling the test suite
	Auto-generating tests
	Coverage analysis
	Portability of the test-suite
	PlUnit on SICStus

	Motivation of choices

